运城北大青鸟分享TCP/IP协议的一些基础知识?
相信大家在学习互联网网页开发的时候应该接触过关于网络协议的一些知识点吧。今天IT培训http://www.kmbdqn.cn/就来简单了解一下,关于TCP/IP协议的一些基础知识。1.TCP/IP的具体含义从字面意义上讲,有人可能会认为TCP/IP是指TCP和IP两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下,它只是利用IP进行通信时所必须用到的协议群的统称。具体来说,IP或ICMP、TCP或UDP、TELNET或FTP、以及HTTP等都属于TCP/IP协议。他们与TCP或IP的关系紧密,是互联网必不可少的组成部分。TCP/IP一词泛指这些协议,因此,有时也称TCP/IP为网际协议群。互联网进行通信时,需要相应的网络协议,TCP/IP原本就是为使用互联网而开发制定的协议族。因此,互联网的协议就是TCP/IP,TCP/IP就是互联网的协议。2.数据包包、帧、数据包、段、消息以上五个术语都用来表述数据的单位,大致区分如下:包可以说是全能性术语;帧用于表示数据链路层中包的单位;数据包是IP和UDP等网络层以上的分层中包的单位;段则表示TCP数据流中的信息;消息是指应用协议中数据的单位。每个分层中,都会对所发送的数据附加一个部,在这个部中包含了该层必要的信息,如发送的目标地址以及协议相关信息。通常,为协议提供的信息为包部,所要发送的内容为数据。在下一层的角度看,从上一层收到的包全部都被认为是本层的数据。3.数据处理流程①应用程序处理先应用程序会进行编码处理,这些编码相当于OSI的表示层功能;编码转化后,邮件不一定马上被发送出去,这种何时建立通信连接何时发送数据的管理功能,相当于OSI的会话层功能。②TCP模块的处理TCP根据应用的指示,负责建立连接、发送数据以及断开连接。TCP提供将应用层发来的数据顺利发送至对端的可靠传输。为了实现这一功能,需要在应用层数据的前端附加一个TCP部。③IP模块的处理IP将TCP传过来的TCP部和TCP数据合起来当做自己的数据,并在TCP部的前端加上自己的IP部。IP包生成后,参考路由控制表决定接受此IP包的路由或主机。④网络接口(以太网驱动)的处理从IP传过来的IP包对于以太网来说就是数据。给这些数据附加上以太网部并进行发送处理,生成的以太网数据包将通过物理层传输给接收端。

如何进行tcp数据交互
这是我网络中找的参考,希望对你有帮助。 在多线程任务中,TCP任务通过三次握手能建立可靠的连接,但是经常会发生在数据传输或通信时发生网络突然断开或者长时间连接空循环监听而未进行操作,需要在软件设计时考虑程序运行中检测到服务器对客户端的这一“虚连接”现象。如果主机崩溃,write是否阻塞取决于内核的tcp缓冲区,但read将一直阻塞,直到超时ETIMEOUT,或由于某些中间路由器的原因返回EHOSTUNREACH/ENETUNREACH。select不能检测到该情况。如果主机崩溃并重起,客户的write到达主机时主机响应RST,客户的read将返ECONNRESET。此处的”非正常断开”指TCP连接不是以优雅的方式断开,如网线故障等物理链路的原因,还有突然主机断电等原因。心跳机制有两种方法可以检测:1.TCP连接双方定时发握手消息2.利用TCP协议栈中的KeepAlive探测第二种方法简单可靠,只需对TCP连接两个Socket设定KeepAlive探测,所以本文只讲第二种方法在Linux,Window2000下的实现(在其它的平台上没有作进一步的测试)1)Windows平台C代码//定义结构及宏struct TCP_KEEPALIVE {u_longonoff;u_longkeepalivetime;u_longkeepaliveinterval;} ;#define SIO_KEEPALIVE_VALS _WSAIOW(IOC_VENDOR,4)//KeepAlive实现TCP_KEEPALIVE inKeepAlive = {0}; //输入参数unsigned long ulInLen = sizeof(TCP_KEEPALIVE);TCP_KEEPALIVE outKeepAlive = {0}; //输出参数unsigned long ulOutLen = sizeof(TCP_KEEPALIVE);unsigned long ulBytesReturn = 0;//设置socket的keep alive为5秒,并且发送次数为3次inKeepAlive.onoff = 1;inKeepAlive.keepaliveinterval = 5000; //两次KeepAlive探测间的时间间隔inKeepAlive.keepalivetime = 5000; //开始首次KeepAlive探测前的TCP空闭时间if (WSAIoctl((unsigned int)s, SIO_KEEPALIVE_VALS,(LPVOID)&inKeepAlive, ulInLen,(LPVOID)&outKeepAlive, ulOutLen,&ulBytesReturn, NULL, NULL) == SOCKET_ERROR){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) WSAIoctl failed. error code(%d)!n"), WSAGetLastError()));}//定义结构及宏 struct TCP_KEEPALIVE { u_longonoff; u_longkeepalivetime; u_longkeepaliveinterval; } ; #define SIO_KEEPALIVE_VALS _WSAIOW(IOC_VENDOR,4) //KeepAlive实现 TCP_KEEPALIVE inKeepAlive = {0}; //输入参数 unsigned long ulInLen = sizeof(TCP_KEEPALIVE); TCP_KEEPALIVE outKeepAlive = {0}; //输出参数 unsigned long ulOutLen = sizeof(TCP_KEEPALIVE); unsigned long ulBytesReturn = 0; //设置socket的keep alive为5秒,并且发送次数为3次 inKeepAlive.onoff = 1; inKeepAlive.keepaliveinterval = 5000; //两次KeepAlive探测间的时间间隔 inKeepAlive.keepalivetime = 5000; //开始首次KeepAlive探测前的TCP空闭时间 if (WSAIoctl((unsigned int)s, SIO_KEEPALIVE_VALS, (LPVOID)&inKeepAlive, ulInLen, (LPVOID)&outKeepAlive, ulOutLen, &ulBytesReturn, NULL, NULL) == SOCKET_ERROR) { ACE_DEBUG ((LM_INFO, ACE_TEXT ("(%P|%t) WSAIoctl failed. error code(%d)!n"), WSAGetLastError())); }2)Linux平台C代码#include……////KeepAlive实现//下面代码要求有ACE,如果没有包含ACE,则请把用到的ACE函数改成linux相应的接口int keepAlive = 1;//设定KeepAliveint keepIdle = 5;//开始首次KeepAlive探测前的TCP空闭时间int keepInterval = 5;//两次KeepAlive探测间的时间间隔int keepCount = 3;//判定断开前的KeepAlive探测次数if(setsockopt(s,SOL_SOCKET,SO_KEEPALIVE,(void*)&keepAlive,sizeof(keepAlive)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) setsockopt SO_KEEPALIVE error!n")));}if(setsockopt(s,SOL_TCP,TCP_KEEPIDLE,(void *)&keepIdle,sizeof(keepIdle)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) setsockopt TCP_KEEPIDLE error!n")));}if(setsockopt(s,SOL_TCP,TCP_KEEPINTVL,(void *)&keepInterval,sizeof(keepInterval)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) setsockopt TCP_KEEPINTVL error!n")));}if(setsockopt(s,SOL_TCP,TCP_KEEPCNT,(void *)&keepCount,sizeof(keepCount)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t)setsockopt TCP_KEEPCNT error!n")));}心跳机制:定时发送一个自定义的结构体(心跳包),让对方知道自己还活着,以确保连接的有效性。网络中的接收和发送数据都是使用WINDOWS中的SOCKET进行实现。但是如果此套接字已经断开,那发送数据和接收数据的时候就一定会有问题。可是如何判断这个套接字是否还可以使用呢?这个就需要在系统中创建心跳机制。其实TCP中已经为我们实现了一个叫做心跳的机制。如果你设置了心跳,那TCP就会在一定的时间(比如你设置的是3秒钟)内发送你设置的次数的心跳(比如说2次),并且此信息不会影响你自己定义的协议。所谓“心跳”就是定时发送一个自定义的结构体(心跳包或心跳帧),让对方知道自己“在线”。以确保链接的有效性。所谓的心跳包就是客户端定时发送简单的信息给服务器端告诉它我还在而已。代码就是每隔几分钟发送一个固定信息给服务端,服务端收到后回复一个固定信息如果服务端几分钟内没有收到客户端信息则视客户端断开。比如有些通信软件长时间不使用,要想知道它的状态是在线还是离线就需要心跳包,定时发包收包。发包方:可以是客户也可以是服务端,看哪边实现方便合理。一般是客户端。服务器也可以定时轮询发心跳下去。心跳包之所以叫心跳包是因为:它像心跳一样每隔固定时间发一次,以此来告诉服务器,这个客户端还活着。事实上这是为了保持长连接,至于这个包的内容,是没有什么特别规定的,不过一般都是很小的包,或者只包含包头的一个空包。在TCP的机制里面,本身是存在有心跳包的机制的,也就是TCP的选项。系统默认是设置的是2小时的心跳频率。但是它检查不到机器断电、网线拔出、防火墙这些断线。而且逻辑层处理断线可能也不是那么好处理。一般,如果只是用于保活还是可以的。心跳包一般来说都是在逻辑层发送空的包来实现的。下一个定时器,在一定时间间隔下发送一个空包给客户端,然后客户端反馈一个同样的空包回来,服务器如果在一定时间内收不到客户端发送过来的反馈包,那就只有认定说掉线了。只需要send或者recv一下,如果结果为零,则为掉线。但是,在长连接下,有可能很长一段时间都没有数据往来。理论上说,这个连接是一直保持连接的,但是实际情况中,如果中间节点出现什么故障是难以知道的。更要命的是,有的节点(防火墙)会自动把一定时间之内没有数据交互的连接给断掉。在这个时候,就需要我们的心跳包了,用于维持长连接,保活。在获知了断线之后,服务器逻辑可能需要做一些事情,比如断线后的数据清理呀,重新连接呀当然,这个自然是要由逻辑层根据需求去做了。总的来说,心跳包主要也就是用于长连接的保活和断线处理。一般的应用下,判定时间在30-40秒比较不错。如果实在要求高,那就在6-9秒。TCP连接异常断开后操作系统会告诉你,你查询套接字的状态会得到异常,或者当发现函数失败WSAGetLastError的时候也会得到内核的通知。// 发送回应消息int nSend = Send4IntMsg(sock, (char*)(LPCTSTR)strSendBuf,strSendBuf.GetLength(), errMsg);if (nSend < 0) //发送消息失败closesocket(sock);//重新连接 在B/S编程和UDP编程时才用到心跳。比如定期向web服务器发一个request证明自己在线。http协议是请求一下就断开了,每次都要重新连接,重新请求,这种情况下才有必要用心跳机制。一般的TCP通信都是长连接,不可能频繁连接和断开。对于长期保持连接的情况,一旦断开,操作系统底层都会通知你,你需要解决的是如何获取到系统的通知。

学习网络安全的小结(心得体会)
由于现在家用电脑所使用的操作系统多数为Windows XP 和Windows 2000 pro(建议还在使用98的朋友换换系统,连微软都放弃了的系统你还用它干嘛?)所以后面我将主要讲一下基于这两个操作系统的安全防范。 个人电脑常见的被入侵方式谈到个人上网时的安全,还是先把大家可能会遇到的问题归个类吧。我们遇到的入侵方式大概包括了以下几种:(1)被他人盗取密码。(2)系统被_blank/>木马攻击。(3)浏览网页时被恶意的java scrpit程序攻击。(4)QQ被攻击或泄漏信息。(5)病毒感染。(6)系统存在漏洞使他人攻击自己。(7)黑客的恶意攻击。下面我们就来看看通过什么样的手段来更有效的防范攻击。查本地共享资源删除共享删除ipc$空连接账号密码的安全原则关闭自己的139端口445端口的关闭3389的关闭4899的防范常见端口的介绍如何查看本机打开的端口和过滤禁用服务本地策略本地安全策略用户权限分配策略终端服务配置用户和组策略防止rpc漏洞自己动手DIY在本地策略的安全选项工具介绍避免被恶意代码 木马等病毒攻击1.查看本地共享资源运行CMD输入net share,如果看到有异常的共享,那么应该关闭。但是有时你关闭共享下次开机的时候又出现了,那么你应该考虑一下,你的机器是否已经被黑客所控制了,或者中了病毒。2.删除共享(每次输入一个)net share admin$ /deletenet share c$ /deletenet share d$ /delete(如果有e,f,……可以继续删除)3.删除ipc$空连接在运行内输入regedit,在注册表中找到HKEY-LOCAL_MACHINESYSTEMCurrentControSetControlLSA项里数值名称RestrictAnonymous的数值数据由0改为1。4.关闭自己的139端口,ipc和RPC漏洞存在于此。关闭139端口的方法是在“网络和拨号连接”中“本地连接”中选取“Internet协议(TCP/IP)”属性,进入“高级TCP/IP设置”“WinS设置”里面有一项“禁用TCP/IP的NETBIOS”,打勾就关闭了139端口。5.防止rpc漏洞打开管理工具——服务——找到RPC(Remote Procedure Call (RPC) Locator)服务——将故障恢复中的第一次失败,第二次失败,后续失败,都设置为不操作。Windows XP SP2和Windows 2000 pro sp4,均不存在该漏洞。6.445端口的关闭修改注册表,添加一个键值HKEY_LOCAL_MACHINESystemCurrentControlSetServicesNetBTParameters在右面的窗口建立一个SMBDeviceEnabled 为REG_DWORD类型键值为0这样就可以了。7.3389的关闭Windows XP:我的电脑上点右键选属性——/>远程,将里面的远程协助和远程桌面两个选项框里的勾去掉。Windows 2000 Server 开始——/>程序——/>管理工具——/>服务里找到Terminal Services服务项,选中属性选项将启动类型改成手动,并停止该服务。(该方法在Windows XP同样适用)使用Windows 2000 pro的朋友注意,网络上有很多文章说在Windows 2000 pro 开始——/>设置——/>控制面板——/>管理工具——/>服务里找到Terminal Services服务项,选中属性选项将启动类型改成手动,并停止该服务,可以关闭3389,其实在2000pro 中根本不存在Terminal Services.8.4899的防范网络上有许多关于3389和4899的入侵方法。4899其实是一个远程控制软件所开启的服务端端口,由于这些控制软件功能强大,所以经常被黑客用来控制自己的肉鸡,而且这类软件一般不会被杀毒软件查杀,比后门还要安全。4899不象3389那样,是系统自带的服务。需要自己安装,而且需要将服务端上传到入侵的电脑并运行服务,才能达到控制的目的。所以只要你的电脑做了基本的安全配置,黑客是很难通过4899来控制你的。9、禁用服务若PC没有特殊用途,基于安全考虑,打开控制面板,进入管理工具——服务,关闭以下服务:(1)Alerter[通知选定的用户和计算机管理警报]。(2)ClipBook[启用“剪贴簿查看器”储存信息并与远程计算机共享]。(3)Distributed File System[将分散的文件共享合并成一个逻辑名称,共享出去,关闭后远程计算机无法访问共享。(4)Distributed Link Tracking Server[适用局域网分布式链接]。(5)Indexing Service[提供本地或远程计算机上文件的索引内容和属性,泄露信息]。(6)Messenger[警报]。(7)NetMeeting Remote Desktop Sharing[netmeeting公司留下的客户信息收集]。(8)Network DDE[为在同一台计算机或不同计算机上运行的程序提供动态数据交换]。(9)Network DDE DSDM[管理动态数据交换 (DDE) 网络共享]。(10)Remote Desktop Help Session Manager[管理并控制远程协助]。(11)Remote Registry[使远程计算机用户修改本地注册表]。(12)Routing and Remote Access[在局域网和广域往提供路由服务.黑客理由路由服务刺探注册信息]。(13)Server[支持此计算机通过网络的文件、打印、和命名管道共享]。(14)TCP/IPNetBIOS Helper[提供 TCP/IP 服务上的 NetBIOS 和网络上客户端的 NetBIOS 名称解析的支持而使用户能够共享文件、打印和登录到网络]。(15)Telnet[允许远程用户登录到此计算机并运行程序]。(16)Terminal Services[允许用户以交互方式连接到远程计算机]。(17)Window s Image Acquisition (WIA)[照相服务,应用与数码摄象机]。如果发现机器开启了一些很奇怪的服务,如r_server这样的服务,必须马上停止该服务,因为这完全有可能是黑客使用控制程序的服务端。10、账号密码的安全原则首先禁用guest账号,将系统内建的administrator账号改名(改的越复杂越好,最好改成中文的),然后设置一个密码,最好是8位以上字母数字符号组合。如果你使用的是其他账号,最好不要将其加进administrators,如果加入administrators组,一定也要设置一个足够安全的密码,同上如果你设置adminstrator的密码时,最好在安全模式下设置,因为经我研究发现,在系统中拥有最高权限的账号,不是正常登陆下的adminitrator账号,因为即使有了这个账号,同样可以登陆安全模式,将sam文件删除,从而更改系统的administrator的密码!而在安全模式下设置的administrator则不会出现这种情况,因为不知道这个administrator密码是无法进入安全模式。权限达到最大这个是密码策略:用户可以根据自己的习惯设置密码,下面是我建议的设置。打开管理工具—本地安全设置—密码策略(1)密码必须符合复杂要求性.启用。(2)密码最小值.我设置的是8。(3)密码最长使用期限.我是默认设置42天。(4)密码最短使用期限0天。(5)强制密码历史记住0个密码。(6)用可还原的加密来存储密码禁用。11、本地策略这个很重要,可以帮助我们发现那些心存叵测的人的一举一动,还可以帮助我们将来追查黑客。(虽然一般黑客都会在走时会清除他在你电脑中留下的痕迹,不过也有一些不小心的)打开管理工具,找到本地安全设置—本地策略—审核策略(1)审核策略更改 成功失败。(2)审核登陆事件 成功失败。(3)审核对象访问 失败。(4)审核跟踪过程 无审核。(5)审核目录服务访问 失败。(6)审核特权使用 失败。(7)审核系统事件 成功失败。(8)审核账户登陆时间 成功失败。(9)审核账户管理 成功失败。然后再到管理工具找到事件查看器,这里应用程序:右键/>属性/>设置日志大小上限,我设置了50mb,选择不覆盖事件安全性:右键/>属性/>设置日志大小上限,我也是设置了50mb,选择不覆盖事件系统:右键/>属性/>设置日志大小上限,我都是设置了50mb,选择不覆盖事件12、本地安全策略打开管理工具,找到本地安全设置—本地策略—安全选项(1)交互式登陆.不需要按 Ctrl+Alt+Del 启用 [根据个人需要,但是我个人是不需要直接输入密码登陆的]。(2)网络访问.不允许SAM账户的匿名枚举 启用 。(3)网络访问.可匿名的共享 将后面的值删除。(4)网络访问.可匿名的命名管道 将后面的值删除。(5)网络访问.可远程访问的注册表路径 将后面的值删除。(6)网络访问.可远程访问的注册表的子路径 将后面的值删除。(7)网络访问.限制匿名访问命名管道和共享。(8)账户.(前面已经详细讲过拉 )。13、用户权限分配策略打开管理工具,找到本地安全设置—本地策略—用户权限分配(1)从网络访问计算机 里面一般默认有5个用户,除Admin外我们删除4个,当然,等下我们还得建一个属于自己的ID。(2)从远程系统强制关机,Admin账户也删除,一个都不留。(3)拒绝从网络访问这台计算机 将ID删除。(4)从网络访问此计算机,Admin也可删除,如果你不使用类似3389服务。(5)通过远端强制关机,删掉。14、终端服务配置,打开管理工具,终端服务配置(1)打开后,点连接,右键,属性,远程控制,点不允许远程控制。(2)常规,加密级别,高,在使用标准Windows验证上点√!。(3)网卡,将最多连接数上设置为0。(4)高级,将里面的权限也删除.[我没设置]。再点服务器设置,在Active Desktop上,设置禁用,且限制每个使用一个会话。15、用户和组策略打开管理工具,计算机管理—本地用户和组—用户;删除Support_388945a0用户等等只留下你更改好名字的adminisrator权限。计算机管理—本地用户和组—组组。我们就不分组了,没必要。16、自己动手DIY在本地策略的安全选项(1)当登陆时间用完时自动注销用户(本地) 防止黑客密码渗透。(2)登陆屏幕上不显示上次登陆名(远程)如果开放3389服务,别人登陆时,就不会残留有你登陆的用户名,让他去猜你的用户名去吧。(3)对匿名连接的额外限制。(4)禁止按 alt+crtl +del(没必要)。(5)允许在未登陆前关机[防止远程关机/启动、强制关机/启动]。(6)只有本地登陆用户才能访问cd-rom。(7)只有本地登陆用户才能访问软驱。(8)取消关机原因的提示。A、打开控制面板窗口,双击“电源选项”图标,在随后出现的电源属性窗口中,进入到“高级”标签页面;B、在该页面的“电源按钮”设置项处,将“在按下计算机电源按钮时”设置为“关机”,单击“确定”按钮,来退出设置框;C、以后需要关机时,可以直接按下电源按键,就能直接关闭计算机了。当然,我们也能启用休眠功能键,来实现快速关机和开机;D、要是系统中没有启用休眠模式的话,可以在控制面板窗口中,打开电源选项,进入到休眠标签页面,并在其中将“启用休眠”选项选中就可以了。(9)禁止关机事件跟踪。开始“Start -/>”运行“ Run -/>输入”gpedit.msc “,在出现的窗口的左边部分,选择 ”计算机配置“(Computer Configuration )-/> ”管理模板“(Administrative Templates)-/> ”系统“(System),在右边窗口双击“Shutdown Event Tracker” 在出现的对话框中选择“禁止”(Disabled),点击然后“确定”(OK)保存后退出这样,你将看到类似于Windows 2000的关机窗口。17、常见端口的介绍TCP21 FTP22 SSH23 TELNET25 TCP SMTP53 TCP DNS80 HTTP135epmap138[冲击波]139smb4451025 DCE/1ff70682-0a51-30e8-076d-740be8cee98b1026 DCE/12345778-1234-abcd-ef00-0123456789ac1433 TCP SQL SERVER5631 TCP PCANYWHERE5632 UDP PCANYWHERE3389 Terminal Services4444[冲击波]UDP67[冲击波]137 netbios-ns161 An SNMP Agent is running/ Default community names of the SNMP Agent关于UDP一般只有腾讯QQ会打开4000或者是8000端口或者8080,那么,我们只运行本机使用4000这几个端口就行了。18、另外介绍一下如何查看本机打开的端口和TCPIP端口的过滤开始——运行——cmd,输入命令netstat -a ,会看到例如(这是我的机器开放的端口)Proto Local AddressForeign AddressStateTCPyf001:epmap yf001:0 LISTETCPyf001:1025 yf001:0 LISTETCP(用户名):1035yf001:0 LISTETCPyf001:netbios-ssn yf001:0 LISTEUDPyf001:1129*:*UDPyf001:1183*:*UDPyf001:1396*:*UDPyf001:1464*:*UDPyf001:1466*:*UDPyf001:4000*:*UDPyf001:4002*:*UDPyf001:6000*:*UDPyf001:6001*:*UDPyf001:6002*:*UDPyf001:6003*:*UDPyf001:6004*:*UDPyf001:6005*:*UDPyf001:6006*:*UDPyf001:6007*:*UDPyf001:1030*:*UDPyf001:1048*:*UDPyf001:1144*:*UDPyf001:1226*:*UDPyf001:1390*:*UDPyf001:netbios-ns *:*UDPyf001:netbios-dgm *:*UDPyf001:isakmp *:*现在讲讲基于Windows的TCP/IP的过滤。控制面板——网络和拨号连接——本地连接——INTERNET协议(TCP/IP)—属性—高级—选项—tcp/ip筛选—属性。后添加需要的tcp 和UDP端口就可以了。如果对端口不是很了解的话,不要轻易进行过滤,不然可能会导致一些程序无法使用。19、关于浏览器IE浏览器(或基于IE内核的浏览器)存在隐私问题,index.dat文件里记录着你上网的信息。所以我推荐大家换一款其他内核浏览器。现在炒的很热的FireFox,就很不错,如果你想打造一款属于自己的个性化浏览器,那FireFox是首选。它有强大的扩展定制功能!还有传说中那款最快的浏览器 Opera ,速度惊人,界面华丽。当然,由于国内一些网页并不是用WC3组织认证的标准HTML语言编写,所以IE还是不能丢,留作备用。处理IE隐私可以用:Webroot WindowWasher。RAMDISK 用内存虚拟出一块硬盘,将缓存文件写进去,不仅解决了隐私问题,理论上还能提高网速。 20、最后一招,也是最关键的一招:安装杀软与防火墙。(责任编辑:李磊)
我觉得你可以去找个这方面的培训机构学习,这样学习起来比较节约时间也很系统化,能够很快的学习并找到相关的工作

tcp和udp有什么区别,tcp和udp各有什么优缺点
TCP和UDP的区别(转) TCP协议与UDP协议的区别首先咱们弄清楚,TCP协议和UCP协议与TCP/IP协议的联系,很多人犯糊涂了,一直都是说TCP/IP协议与UDP协议的区别,我觉得这是没有从本质上弄清楚网络通信!TCP/IP协议是一个协议簇。里面包括很多协议的。UDP只是其中的一个。之所以命名为TCP/IP协议,因为TCP,IP协议是两个很重要的协议,就用他两命名了。TCP/IP协议集包括应用层,传输层,网络层,网络访问层。其中应用层包括:超文本传输协议(HTTP):万维网的基本协议.文件传输(TFTP简单文件传输协议):远程登录(Telnet),提供远程访问其它主机功能,它允许用户登录internet主机,并在这台主机上执行命令.网络管理(SNMP简单网络管理协议),该协议提供了监控网络设备的方法,以及配置管理,统计信息收集,性能管理及安全管理等.域名系统(DNS),该系统用于在internet中将域名及其公共广播的网络节点转换成IP地址.其次网络层包括:Internet协议(IP)Internet控制信息协议(ICMP)地址解析协议(ARP)反向地址解析协议(RARP)最后说网络访问层:网络访问层又称作主机到网络层(host-to-network).网络访问层的功能包括IP地址与物理地址硬件的映射,以及将IP封装成帧.基于不同硬件类型的网络接口,网络访问层定义了和物理介质的连接.当然我这里说得不够完善,TCP/IP协议本来就是一门学问,每一个分支都是一个很复杂的流程,但我相信每位学习软件开发的同学都有必要去仔细了解一番。下面我着重讲解一下TCP协议和UDP协议的区别。TCP(Transmission Control Protocol,传输控制协议)是面向连接的协议,也就是说,在收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,只简单的描述下这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。详细点说就是:(文章部分转载http://zhangjiangxing-gmail-com.iteye.com,主要是这个人讲解得很到位,的确很容易使人理解!)TCP三次握手过程1 主机A通过向主机B 发送一个含有同步序列号的标志位的数据段给主机B ,向主机B 请求建立连接,通过这个数据段,主机A告诉主机B 两件事:我想要和你通信;你可以用哪个序列号作为起始数据段来回应我.2 主机B 收到主机A的请求后,用一个带有确认应答(ACK)和同步序列号(SYN)标志位的数据段响应主机A,也告诉主机A两件事:我已经收到你的请求了,你可以传输数据了;你要用哪佧序列号作为起始数据段来回应我3 主机A收到这个数据段后,再发送一个确认应答,确认已收到主机B 的数据段:"我已收到回复,我现在要开始传输实际数据了这样3次握手就完成了,主机A和主机B 就可以传输数据了.3次握手的特点没有应用层的数据SYN这个标志位只有在TCP建产连接时才会被置1握手完成后SYN标志位被置0TCP建立连接要进行3次握手,而断开连接要进行4次1 当主机A完成数据传输后,将控制位FIN置1,提出停止TCP连接的请求2主机B收到FIN后对其作出响应,确认这一方向上的TCP连接将关闭,将ACK置13 由B 端再提出反方向的关闭请求,将FIN置14 主机A对主机B的请求进行确认,将ACK置1,双方向的关闭结束.由TCP的三次握手和四次断开可以看出,TCP使用面向连接的通信方式,大大提高了数据通信的可靠性,使发送数据端和接收端在数据正式传输前就有了交互,为数据正式传输打下了可靠的基础名词解释ACKTCP报头的控制位之一,对数据进行确认.确认由目的端发出,用它来告诉发送端这个序列号之前的数据段都收到了.比如,确认号为X,则表示前X-1个数据段都收到了,只有当ACK=1时,确认号才有效,当ACK=0时,确认号无效,这时会要求重传数据,保证数据的完整性.SYN同步序列号,TCP建立连接时将这个位置1FIN发送端完成发送任务位,当TCP完成数据传输需要断开时,提出断开连接的一方将这位置1TCP的包头结构:源端口 16位目标端口 16位序列号 32位回应序号 32位TCP头长度 4位reserved 6位控制代码 6位窗口大小 16位偏移量 16位校验和 16位选项32位(可选)这样我们得出了TCP包头的最小长度,为20字节。UDP(User Data Protocol,用户数据报协议)(1) UDP是一个非连接的协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。(2) 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等,因此一台服务机可同时向多个客户机传输相同的消息。(3) UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。(4) 吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、源端和终端主机性能的限制。(5)UDP使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态表(这里面有许多参数)。(6)UDP是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界,因此,应用程序需要选择合适的报文大小。我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。UDP的包头结构:源端口 16位目的端口 16位长度 16位校验和 16位小结TCP与UDP的区别:1.基于连接与无连接;2.对系统资源的要求(TCP较多,UDP少);3.UDP程序结构较简单;4.流模式与数据报模式 ;5.TCP保证数据正确性,UDP可能丢包,TCP保证数据顺序,UDP不保证。来自:http://www.cnblogs.com/bizhu/archive/2012/05/12/2497493.html

TCP协议详解及实战解析【精心整理收藏】
TCP协议是在TCP/IP协议模型中的运输层中很重要的一个协议、负责处理主机端口层面之间的数据传输。主要有以下特点:1.TCP是面向链接的协议,在数据传输之前需要通过三次握手建立TCP链接,当数据传递完成之后,需要通过四次挥手进行连接释放。2.每一条TCP通信都是两台主机和主机之间的,是点对点传输的协议。3.TCP提供可靠的、无差错、不丢失、不重复,按序到达的服务。4.TCP的通信双方在连接建立的任何时候都可以发送数据。TCP连接的两端都设有发送缓存和接收缓存,用来临时存放双向通信的数据。5.面向字节流。在数据传输的过程中如果报文比较长的话TCP会进行数据分段传输,每一条分段的TCP传输信息都带有分段的序号,每一段都包含一部分字节流。接收方根据每段携带的的序号信息进行数据拼接,最终拼接出来初始的传输数据。但是在整个传输的过程中每一段TCP携带的都是被切割的字节流数据。所以说TCP是面向字节流的。a.TCP和UDP在发送报文时所采用的方式完全不同。TCP并不关心应用程序一次把多长的报文发送到TCP缓存中,而是根据对方给出的窗口值和当前网络拥塞的程度来决定一个报文段应包含多少个字节(UDP发送的报文长度是应用程序给出的)。b.如果应用程序传送到TCP缓存的数据块太大,TCP就可以把它划分短一些再传。TCP也可以等待积累有足够多的字节后再构建成报文段发送出去。各字段含义:源端口:发送端的端口号目的端口:接收端的端口号序号:TCP将发送报文分段传输的时候会给每一段加上序号,接收端也可以根据这个序号来判断数据拼接的顺序,主要用来解决网络报乱序的问题确认号:确认号为接收端收到数据之后进行排序确认以及发送下一次期待接收到的序号,数值 = 接收到的发送号 + 1数据偏移:占4比特,表示数据开始的地方离TCP段的起始处有多远。实际上就是TCP段首部的长度。由于首部长度不固定,因此数据偏移字段是必要的。数据偏移以32位为长度单位,因此TCP首部的最大长度是60(15*4)个字节。控制位:URG:此标志表示TCP包的紧急指针域有效,用来保证TCP连接不被中断,并且督促 中间层设备要尽快处理这些数据;ACK:此标志表示应答域有效,就是说前面所说的TCP应答号将会包含在TCP数据包中;有两个取值:0和1, 为1的时候表示应答域有效,反之为0;PSH:这个标志位表示Push操作。所谓Push操作就是指在数据包到达接收端以后,立即传送给应用程序, 而不是在缓冲区中排队;RST:这个标志表示连接复位请求。用来复位那些产生错误的连接,也被用来拒绝错误和非法的数据包;SYN:表示同步序号,用来建立连接。SYN标志位和ACK标志位搭配使用,当连接请求的时候,SYN=1, ACK=0;连接被响应的时候,SYN=1,ACK=1;这个标志的数据包经常被用来进行端口扫描。扫描者发送 一个只有SYN的数据包,如果对方主机响应了一个数据包回来 ,就表明这台主机存在这个端口;但是由于这 种扫描方式只是进行TCP三次握手的第一次握手,因此这种扫描的成功表示被扫描的机器不很安全,一台安全 的主机将会强制要求一个连接严格的进行TCP的三次握手;FIN: 表示发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送FIN标志 位的TCP数据包后,连接将被断开。这个标志的数据包也经常被用于进行端口扫描。窗口:TCP里很重要的一个机制,占2字节,表示报文段发送方期望接收的字节数,可接收的序号范围是从接收方的确认号开始到确认号加上窗口大小之间的数据。后面会有实例讲解。校验和:校验和包含了伪首部、TCP首部和数据,校验和是TCP强制要求的,由发送方计算,接收方验证紧急指针:URG标志为1时,紧急指针有效,表示数据需要优先处理。紧急指针指出在TCP段中的紧急数据的最后一个字节的序号,使接收方可以知道紧急数据共有多长。选项:最常用的选项是最大段大小(Maximum Segment Size,MSS),向对方通知本机可以接收的最大TCP段长度。MSS选项只在建立连接的请求中发送。放在以太网帧里看TCP的位置TCP 数据包在 IP 数据包的负载里面。它的头信息最少也需要20字节,因此 TCP 数据包的最大负载是 1480 - 20 = 1460 字节。由于 IP 和 TCP 协议往往有额外的头信息,所以 TCP 负载实际为1400字节左右。因此,一条1500字节的信息需要两个 TCP 数据包。HTTP/2 协议的一大改进, 就是压缩 HTTP 协议的头信息,使得一个 HTTP 请求可以放在一个 TCP 数据包里面,而不是分成多个,这样就提高了速度。以太网数据包的负载是1500字节,TCP 数据包的负载在1400字节左右一个包1400字节,那么一次性发送大量数据,就必须分成多个包。比如,一个 10MB 的文件,需要发送7100多个包。发送的时候,TCP 协议为每个包编号(sequence number,简称 SEQ),以便接收的一方按照顺序还原。万一发生丢包,也可以知道丢失的是哪一个包。第一个包的编号是一个随机数。为了便于理解,这里就把它称为1号包。假定这个包的负载长度是100字节,那么可以推算出下一个包的编号应该是101。这就是说,每个数据包都可以得到两个编号:自身的编号,以及下一个包的编号。接收方由此知道,应该按照什么顺序将它们还原成原始文件。收到 TCP 数据包以后,组装还原是操作系统完成的。应用程序不会直接处理 TCP 数据包。对于应用程序来说,不用关心数据通信的细节。除非线路异常,否则收到的总是完整的数据。应用程序需要的数据放在 TCP 数据包里面,有自己的格式(比如 HTTP 协议)。TCP 并没有提供任何机制,表示原始文件的大小,这由应用层的协议来规定。比如,HTTP 协议就有一个头信息Content-Length,表示信息体的大小。对于操作系统来说,就是持续地接收 TCP 数据包,将它们按照顺序组装好,一个包都不少。操作系统不会去处理 TCP 数据包里面的数据。一旦组装好 TCP 数据包,就把它们转交给应用程序。TCP 数据包里面有一个端口(port)参数,就是用来指定转交给监听该端口的应用程序。应用程序收到组装好的原始数据,以浏览器为例,就会根据 HTTP 协议的Content-Length字段正确读出一段段的数据。这也意味着,一次 TCP 通信可以包括多个 HTTP 通信。服务器发送数据包,当然越快越好,最好一次性全发出去。但是,发得太快,就有可能丢包。带宽小、路由器过热、缓存溢出等许多因素都会导致丢包。线路不好的话,发得越快,丢得越多。最理想的状态是,在线路允许的情况下,达到最高速率。但是我们怎么知道,对方线路的理想速率是多少呢?答案就是慢慢试。TCP 协议为了做到效率与可靠性的统一,设计了一个慢启动(slow start)机制。开始的时候,发送得较慢,然后根据丢包的情况,调整速率:如果不丢包,就加快发送速度;如果丢包,就降低发送速度。Linux 内核里面 设定 了(常量TCP_INIT_CWND),刚开始通信的时候,发送方一次性发送10个数据包,即"发送窗口"的大小为10。然后停下来,等待接收方的确认,再继续发送。默认情况下,接收方每收到 两个TCP 数据包,就要 发送 一个确认消息。"确认"的英语是 acknowledgement,所以这个确认消息就简称 ACK。ACK 携带两个信息。发送方有了这两个信息,再加上自己已经发出的数据包的最新编号,就会推测出接收方大概的接收速度,从而降低或增加发送速率。这被称为"发送窗口",这个窗口的大小是可变的。注意,由于 TCP 通信是双向的,所以双方都需要发送 ACK。两方的窗口大小,很可能是不一样的。而且 ACK 只是很简单的几个字段,通常与数据合并在一个数据包里面发送。即使对于带宽很大、线路很好的连接,TCP 也总是从10个数据包开始慢慢试,过了一段时间以后,才达到最高的传输速率。这就是 TCP 的慢启动。TCP 协议可以保证数据通信的完整性,这是怎么做到的?前面说过,每一个数据包都带有下一个数据包的编号。如果下一个数据包没有收到,那么 ACK 的编号就不会发生变化。举例来说,现在收到了4号包,但是没有收到5号包。ACK 就会记录,期待收到5号包。过了一段时间,5号包收到了,那么下一轮 ACK 会更新编号。如果5号包还是没收到,但是收到了6号包或7号包,那么 ACK 里面的编号不会变化,总是显示5号包。这会导致大量重复内容的 ACK。如果发送方发现收到 三个 连续的重复 ACK,或者超时了还没有收到任何 ACK,就会确认丢包,即5号包遗失了,从而再次发送这个包。通过这种机制,TCP 保证了不会有数据包丢失。TCP是一个滑动窗口协议,即一个TCP连接的发送端在某个时刻能发多少数据是由滑动窗口控制的,而滑动窗口的大小实际上是由两个窗口共同决定的,一个是接收端的通告窗口,这个窗口值在TCP协议头部信息中有,会随着数据的ACK包发送给发送端,这个值表示的是在接收端的TCP协议缓存中还有多少剩余空间,发送端必须保证发送的数据不超过这个剩余空间以免造成缓冲区溢出,这个窗口是接收端用来进行流量限制的,在传输过程中,通告窗口大小与接收端的进程取出数据的快慢有关。另一个窗口是发送端的拥塞窗口(Congestion window),由发送端维护这个值,在协议头部信息中没有,滑动窗口的大小就是通告窗口和拥塞窗口的较小值,所以拥塞窗口也看做是发送端用来进行流量控制的窗口。滑动窗口的左边沿向右移动称为窗口合拢,发生在发送的数据被确认时(此时,表明数据已被接收端收到,不会再被需要重传,可以从发送端的发送缓存中清除了),滑动窗口的右边沿向右移动称为窗口张开,发生在接收进程从接收端协议缓存中取出数据时。随着发送端不断收到的被发送数据的ACK包,根据ACK包中的确认序号和通告窗口大小使滑动窗口得以不断的合拢和张开,形成滑动窗口的向前滑动。如果接收进程一直不取数据,则会出现0窗口现象,即滑动窗口左边沿与右边沿重合,此时窗口大小为0,就无法再发送数据。在TCP里,接收端(B)会给发送端(A)报一个窗口的大小,叫Advertised window。1.在没有收到B的确认情况下,A可以连续把窗口内的数据都发送出去。凡是已经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。2.发送窗口里面的序号表示允许发送的序号。显然,窗口越大,发送方就可以在收到对方确认之前连续发送更多数据,因而可能获得更高的传输效率。但接收方必须来得及处理这些收到的数据。3.发送窗口后沿的后面部分表示已发送且已收到确认。这些数据显然不需要再保留了。4.发送窗口前沿的前面部分表示不允许发送的,应为接收方都没有为这部分数据保留临时存放的缓存空间。5.发送窗口后沿的变化情况有两种:不动(没有收到新的确认)和前移(收到了新的确认)6.发送窗口前沿的变化情况有两种:不断向前移或可能不动(没收到新的确认)TCP的发送方在规定时间内没有收到确认就要重传已发送的报文段。这种重传的概念很简单,但重传时间的选择确是TCP最复杂的问题之一。TCP采用了一种自适应算法,它记录一个报文段发出的时间,以及收到响应的确认的时间这两个时间之差就是报文段的往返时间RTT。TCP保留了RTT的一个加权平均往返时间。超时重传时间RTO略大于加权平均往返时间RTT:即Round Trip Time,表示从发送端到接收端的一去一回需要的时间,tcp在数据传输过程中会对RTT进行采样(即对发送的数据包及其ACK的时间差进行测量,并根据测量值更新RTT值,具体的算法TCPIP详解里面有),TCP根据得到的RTT值更新RTO值,即Retransmission TimeOut,就是重传间隔,发送端对每个发出的数据包进行计时,如果在RTO时间内没有收到所发出的数据包的对应ACK,则任务数据包丢失,将重传数据。一般RTO值都比采样得到的RTT值要大。如果收到的报文段无差错,只是未按序号,中间还缺少一些序号的数据,那么能否设法只传送缺少的数据而不重传已经正确到达接收方的数据?答案是可以的,选择确认就是一种可行的处理方法。如果要使用选项确认SACK,那么在建立TCP连接时,就要在TCP首部的选项中加上“允许SACK”的选项,而双方必须都事先商定好。如果使用选择确认,那么原来首部中的“确认号字段”的用法仍然不变。SACK文档并没有明确发送方应当怎么响应SACK.因此大多数的实现还是重传所有未被确认的数据块。一般说来,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快,接收方就可能来不及接收,这会造成数据的丢失。所谓流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。在计算机网络中的链路容量,交换节点中的缓存和处理机等,都是网络的资源。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫做拥塞。拥塞控制方法:1.慢开始和拥塞避免2.快重传和快恢复3.随机早期检测1.一开始,客户端和服务端都处于CLOSED状态2.先是服务端主动监听某个端口,处于LISTEN状态(比如服务端启动,开始监听)。3.客户端主动发起连接SYN,之后处于SYN-SENT状态(第一次握手,发送 SYN = 1 ACK = 0 seq = x ack = 0)。4.服务端收到发起的连接,返回SYN,并且ACK客户端的SYN,之后处于SYN-RCVD状态(第二次握手,发送 SYN = 1 ACK = 1 seq = y ack = x + 1)。5.客户端收到服务端发送的SYN和ACK之后,发送ACK的ACK,之后处于ESTABLISHED状态(第三次握手,发送 SYN = 0 ACK = 1 seq = x + 1 ack = y + 1)。6.服务端收到客户端的ACK之后,处于ESTABLISHED状态。(需要注意的是,有可能X和Y是相等的,可能都是0,因为他们代表了各自发送报文段的序号。)TCP连接释放四次挥手1.当前A和B都处于ESTAB-LISHED状态。2.A的应用进程先向其TCP发出连接释放报文段,并停止再发送数据,主动关闭TCP连接。3.B收到连接释放报文段后即发出确认,然后B进入CLOSE-WAIT(关闭等待)状态。TCP服务器进程这时应通知高层应用进程,因而从A到B这个方向的连接就释放了,这时TCP连接处于半关闭状态,即A已经没有数据发送了。从B到A这个方向的连接并未关闭,这个状态可能会持续一些时间。4.A收到来自B的确认后,就进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文端。5.若B已经没有向A发送的数据,B发出连接释放信号,这时B进入LAST-ACK(最后确认)状态等待A的确认。6.A再收到B的连接释放消息后,必须对此发出确认,然后进入TIME-WAIT(时间等待)状态。请注意,现在TCP连接还没有释放掉,必须经过时间等待计时器(TIME-WAIT timer)设置的时间2MSL后,A才进入CLOSED状态。7。B收到A发出的确认消息后,进入CLOSED状态。以请求百度为例,看一下三次握手真实数据的TCP连接建立过程我们再来看四次挥手。TCP断开连接时,会有四次挥手过程,标志位是FIN,我们在封包列表中找到对应位置,理论上应该找到4个数据包,但我试了好几次,实际只抓到3个数据包。查了相关资料,说是因为服务器端在给客户端传回的过程中,将两个连续发送的包进行了合并。因此下面会按照合并后的三次挥手解释,若有错误之处请指出。第一步,当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段(FIN表示英文finish)。第二步,主机B收到这个FIN报文段之后,并不立即用FIN报文段回复主机A,而是先向主机A发送一个确认序号ACK,同时通知自己相应的应用程序:对方要求关闭连接(先发送ACK的目的是为了防止在这段时间内,对方重传FIN报文段)。第三步,主机B的应用程序告诉TCP:我要彻底的关闭连接,TCP向主机A送一个FIN报文段。第四步,主机A收到这个FIN报文段后,向主机B发送一个ACK表示连接彻底释放。这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。原因有二:一、保证TCP协议的全双工连接能够可靠关闭二、保证这次连接的重复数据段从网络中消失先说第一点,如果Client直接CLOSED了,那么由于IP协议的不可靠性或者是其它网络原因,导致Server没有收到Client最后回复的ACK。那么Server就会在超时之后继续发送FIN,此时由于Client已经CLOSED了,就找不到与重发的FIN对应的连接,最后Server就会收到RST而不是ACK,Server就会以为是连接错误把问题报告给高层。这样的情况虽然不会造成数据丢失,但是却导致TCP协议不符合可靠连接的要求。所以,Client不是直接进入CLOSED,而是要保持TIME_WAIT,当再次收到FIN的时候,能够保证对方收到ACK,最后正确的关闭连接。再说第二点,如果Client直接CLOSED,然后又再向Server发起一个新连接,我们不能保证这个新连接与刚关闭的连接的端口号是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但是还是有特殊情况出现:假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中,这些延迟数据在建立新连接之后才到达Server,由于新连接和老连接的端口号是一样的,又因为TCP协议判断不同连接的依据是socket pair,于是,TCP协议就认为那个延迟的数据是属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接还要在TIME_WAIT状态等待2倍MSL,这样可以保证本次连接的所有数据都从网络中消失。硬件速度网络和服务器的负载请求和响应报文的尺寸客户端和服务器之间的距离TCP 协议的技术复杂性TCP 连接建立握手;TCP 慢启动拥塞控制;数据聚集的 Nagle 算法;用于捎带确认的 TCP 延迟确认算法;TIME_WAIT 时延和端口耗尽。介绍完毕,就这?是的,就这。补充:大部分内容为网络整理,方便自己学习回顾,参考文章:TCP 协议简介TCP协议图文详解什么是TCP协议?wireshark抓包分析——TCP/IP协议TCP协议的三次握手和四次挥手TCP协议详解TCP带宽和时延的研究(1)

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/300704.html。