IP是什么意思?为什么分成4段?
IP 1.是intellectual property的缩写,意思是知识产权(全称为:intellectual property right)。2.是英文 Internet Protocol的缩写,意思是“网络之间互连的协议”,也就是为计算机网络相互连接进行通信而设计的协议。在因特网中,它是能使连接到网上的所有计算机网络实现相互通信的一套规则,规定了计算机在因特网上进行通信时应当遵守的规则。任何厂家生产的计算机系统,只要遵守 IP协议就可以与因特网互连互通。正是因为有了IP协议,因特网才得以迅速发展成为世界上最大的、开放的计算机通信网络。因此,IP协议也可以叫做“因特网协议”。——IP是怎样实现网络互连的?各个厂家生产的网络系统和设备,如以太网、分组交换网等,它们相互之间不能互通,不能互通的主要原因是因为它们所传送数据的基本单元(技术上称之为“帧”)的格式不同。IP协议实际上是一套由软件程序组成的协议软件,它把各种不同“帧”统一转换成“IP数据报”格式,这种转换是因特网的一个最重要的特点,使所有各种计算机都能在因特网上实现互通,即具有“开放性”的特点。——那么,“数据报” 是什么?它又有什么特点呢?数据报也是分组交换的一种形式,就是把所传送的数据分段打成 “包”,再传送出去。但是,与传统的“连接型”分组交换不同,它属于“无连接型”,是把打成的每个“包”(分组)都作为一个“独立的报文”传送出去,所以叫做“数据报”。这样,在开始通信之前就不需要先连接好一条电路,各个数据报不一定都通过同一条路径传输,所以叫做“无连接型”。这一特点非常重要,它大大提高了网络的坚固性和安全性。——每个数据报都有报头和报文这两个部分,报头中有目的地址等必要内容,使每个数据报不经过同样的路径都能准确地到达目的地。在目的地重新组合还原成原来发送的数据。这就要IP具有分组打包和集合组装的功能。——在实际传送过程中,数据报还要能根据所经过网络规定的分组大小来改变数据报的长度,IP数据报的最大长度可达 65535个字节。——IP协议中还有一个非常重要的内容,那就是给因特网上的每台计算机和其它设备都规定了一个唯一的地址,叫做“IP 地址”。由于有这种唯一的地址,才保证了用户在连网的计算机上操作时,能够高效而且方便地从千千万万台计算机中选出自己所需的对象来。——现在电信网正在与 IP网走向融合,以IP为基础的新技术是热门的技术,如用IP网络传送话音的技术(即VoIP)就很热门,其它如IP over ATM、IPover SDH、IP over WDM等等,都是IP技术的研究重点。(IP全球通网)IPv6是"Internet Protocol Version 6"的缩写,也被称作下一代互联网协议,它是由IETF小组(Internet工程任务组Internet Engineering Task Force)设计的用来替代现行的IPv4(现行的IP)协议的一种新的IP协议。我们知道,Internet的主机都有一个唯一的IP地址,IP地址用一个32位二进制的数表示一个主机号码,但32位地址资源有限,已经不能满足用户的需求了,因些Internet研究组织发布新的主机标识方法,即IPv6。在RFC1884中(RFC是Request for Comments Document的缩写。RFC实际上就是Internet有关服务的一些标准),规定的标准语法建议把IPv6地址的128位(16个字节)写成8个16位的无符号整数,每个整数用四个十六进制位表示,这些数之间用冒号(:)分开,例如:3ffe:3201:1401:1280:c8ff:fe4d:db39IPv6相对于现在的IP(即IPv4)有如下特点:扩展的寻址能力IPv6将IP地址长度从32位扩展到128位,支持更多级别的地址层次、更多的可寻址节点数以及更简单的地址自动配置。通过在组播地址中增加一个“范围”域提高了多点传送路由的可扩展性。还定义了一种新的地址类型,称为“任意播地址”,用于发送包给一组节点中的任意一个;简化的报头格式一些IPv4报头字段被删除或变为了可选项,以减少包处理中例行处理的消耗并限制IPv6报头消耗的带宽;对扩展报头和选项支持的改进IP报头选项编码方式的改变可以提高转发效率,使得对选项长度的限制更宽松,且提供了将来引入新的选项的更大的灵活性;标识流的能力增加了一种新的能力,使得标识属于发送方要求特别处理(如非默认的服务质量获“实时”服务)的特定通信“流”的包成为可能;认证和加密能力IPv6中指定了支持认证、数据完整性和(可选的)数据机密性的扩展功能。知识产权是指公民、法人或者其他组织在科学技术方面或文化艺术方面,对创造性的劳动所完成的智力成果依法享有的专有权利。IP(Intellectual Property的简称) 知识产权知识产权包括工业产权和版权(在我国称为著作权)两部分。工业产权包括专利、商标、服务标志、厂商名称、原产地名称、制止不正当竞争等。版权是法律上规定的某一单位或个人对某项著作享有印刷出版和销售的权利,任何人要复制、翻译、改编或演出等均需要得到版权所有人的许可,否则就是对他人权利的侵权行为。知识产权的实质是把人类的智力成果作为财产来看待。商标权是指商标主管机关依法授予商标所有人对其注册商标受国家法律保护的专有权。商标是用以区别商品和服务不同来源的商业性标志,由文字、图形、字母、数字、三维标志、颜色组合或者上述要素的组合构成。我国商标权的获得必须履行商标注册程序,而且实行申请在先原则。著作权是文学、艺术、科学技术作品的原+创作者,依法对其作品所享有的一种民事权利。专利权与专利保护是指一项发明创造向国家专利局提出专利申请,经依法审查合格后,向专利申请人授予的在规定时间内对该项发明创造享有的专有权。发明创造被授予专利权后,专利权人对该项发明创造拥有独占权,任何单位和个人未经专利权人许可,都不得实施其专利,即不得为生产经营目的制造、使用、许诺销售、销售和进口其专利产品。未经专利权人许可,实施其专利即侵犯其专利权,引起纠纷的,由当事人协商解决;不愿协商或者协商不成的,专利权人或厉害关系人可以向人民法院起诉,也可以请求管理专利工作的部门处理。专利保护采取司法和行政执法“两条途径、平行运作、司法保障”的保护模式。本地区行政保护采取巡回执法和联合执法的专利执法形式,集中力量,重点对群体侵权、反复侵权等严重扰乱专利法治环境的现象加大打击力度。知识产权的三个特点1、知识产权的专有性,即独占性或垄断性;2、知识产权的地域性,即只在所确认和保护的地域内有效;3、知识产权的时间性,即只在规定期限保护。IP地址IP地址是IP网络中数据传输的依据,它标识了IP网络中的一个连接,一台主机可以有多个IP地址。IP分组中的IP地址在网络传输中是保持不变的。1.基本地址格式现在的IP网络使用32位地址,以点分十进制表示,如172.16.0.0。地址格式为:IP地址=网络地址+主机地址 或 IP地址=主机地址+子网地址+主机地址。网络地址是由Internet权力机构(InterNIC)统一分配的,目的是为了保证网络地址的全球唯一性。主机地址是由各个网络的系统管理员分配。因此,网络地址的唯一性与网络内主机地址的唯一性确保了IP地址的全球唯一性。2.保留地址的分配根据用途和安全性级别的不同,IP地址还可以大致分为两类:公共地址和私有地址。公用地址在Internet中使用,可以在Internet中随意访问。私有地址只能在内部网络中使用,只有通过代理服务器才能与Internet通信。一个机构或网络要连入Internet,必须申请公用IP地址。但是考虑到网络安全和内部实验等特殊情况,在IP地址中专门保留了三个区域作为私有地址,其地址范围如下:10.0.0.0/8:10.0.0.0~10.255.255.255172.16.0.0/12:172.16.0.0~172.31.255.255192.168.0.0/16:192.168.0.0~192.168.255.255 使用保留地址的网络只能在内部进行通信,而不能与其他网络互连。因为本网络中的保留地址同样也可能被其他网络使用,如果进行网络互连,那么寻找路由时就会因为地址的不唯一而出现问题。但是这些使用保留地址的网络可以通过将本网络内的保留地址翻译转换成公共地址的方式实现与外部网络的互连。这也是保证网络安全的重要方法之一。
讲述超级IP所划分的几个层次

如何判断用户输入的IP地址的格式是否正确
IP地址的4个数字都不能大于255,并且第一个数字不能为0,最后一个数字不能为0,也不能为255。
IP地址是指互联网协议地址(英语:Internet Protocol Address,又译为网际协议地址),是IP Address的缩写。IP地址是IP协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。Internet上的每台主机(Host)都有一个唯一的IP地址。IP协议就是使用这个地址在主机之间传递信息,这是Internet 能够运行的基础。IP地址的长度为32位(共有2^32个IP地址),分为4段,每段8位,用十进制数字表示,每段数字范围为0~255,段与段之间用句点隔开。例如159.226.1.1。IP地址可以视为网络标识号码与主机标识号码两部分,因此IP地址可分两部分组成,一部分为网络地址,另一部分为主机地址。IP地址分为A、B、C、D、E5类,它们适用的类型分别为:大型网络;中型网络;小型网络;多目地址;备用。常用的是B和C两类。

TCP/IP协议的体系结构分为哪几层?每层的功能?
TCP/IP传输协议是一个四层的体系结构,应用层、传输层、网络层和网络接口层都包含其中。每层的功能如下:1、应用层是直接为应用进程提供服务的。对不同种类的应用程序它们会根据自己的需要来使用应用层的不同协议;定义数据格式并按照对应的格式解读数据,加密、解密、格式化数据;应用层可以建立或解除与其他节点的联系,这样可以充分节省网络资源。2、运输层作为TCP/IP协议的第二层,运输层在整个TCP/IP协议中起到了中流砥柱的功能。且在运输层中,TCP和UDP也同样起到了中流砥柱的作用。主要功能是定义端口,标识应用程序身份,实现端口到端口的通信,TCP协议可以保证数据传输的可靠性。3、网络层网络层在TCP/IP协议中的位于第三层。在TCP/IP协议中网络层可以进行网络连接的建立和终止以及IP地址的寻找等功能。网络层的主要功能是定义网络地址、区分网段、子网内MAC寻址、对于不同子网的数据包进行路由。4、网络接口层在TCP/IP协议中,网络接口层位于第四层。由于网络接口层兼并了物理层和数据链路层,所以网络接口层既是传输数据的物理媒介,也可以为网络层提供一条准确无误的线路。扩展资料:TCP/IP协议有以下特点:1、协议标准是完全开放的,可以供用户免费使用,并且独立于特定的计算机硬件与操作系统。2、协议独立于网络硬件系统,可以运行在广域网,更适合于互联网使用。3、网络的地址是统一分配的,网络中每一个设备和终端都具有一个唯一地址。4、高层协议标准化,可以提供多种多样可靠网络服务。参考资料来源:百度百科-TCP/IP协议
ICP/IP协议分为:网络接口层,网际网层(IP层),传输层,应用层等四个层次。 作用: 1。网络接口层:接收IP数据并通过特定的网络进行传输,或从网络上接收物理帧,抽取IP数据报并转交给网际层。 2。网际网层(IP层):该层负责相同或不同网络中计算机之间的通信,主要处理数据和路由。 3。传输层:主要功能是数据格式化、数据确认和丢失重传等。 4。应用层:向用户提供一组常用的应用层协议。查看原帖>>

简要说明TCP/IP参考模型五个层次的名称,各层的传输格式和使用的设备是什么
TCP/IP参考模型是ARPANET及其后继的因特网使用的参考模型。其将协议分为:网络接入层、网际互连层、传输层以及应用层。1.应用层:对应OSI参考模型的上层,为用户提供所需的各种服务,如FTP,Telnet,DNS,SMTP等。2.传输层:传输层对应于OSI参考模型的传输层,为应用层实体提供端到端通信功能,确保数据包的顺序传输和数据的完整性。该层定义了两个主要协议:传输控制协议(TCP)和用户数据报协议(UDP)。TCP协议提供可靠的,面向连接的数据传输服务;而UDP协议提供不可靠的无连接数据传输服务。3.互联网互联层:互联网互联层对应OSI参考模型的网络层,主要解决从主机到主机的通信问题。它包含通过网络逻辑传输的协议设计数据包。重点是重新给主机一个IP地址来完成主机的寻址,它还负责在各种网络中路由数据包。该层有三个主要协议:Internet协议(IP),Internet组管理协议(IGMP)和Internet控制消息协议(ICMP)。 IP协议是Internetworking层中最重要的协议。它提供可靠的无连接数据报传送服务。4.网络接入层:网络接入层(即主机 - 网络层)对应于OSI参考模型中的物理层和数据链路层。它负责监视主机和网络之间的数据交换。实际上,TCP / IP本身并没有定义该层的协议,但参与互连的每个网络都使用自己的物理层和数据链路层协议,然后与TCP / IP的网络接入层连接。地址解析协议(ARP)在此层(OSI参考模型的数据链路层)上工作。扩展资料:OSI参考模型与TCP/IP参考模型的异同点:1. OSI参考模型和TCP / IP参考模型都使用分层结构,但OSI使用的七层模型和TCP / IP是四层结构。2. TCP / IP参考模型的网络接口层实际上没有真正的定义,但是是概念性描述。 OSI参考模型不仅分为两层,而且每层的功能都非常详细。即使在数据链路层,也分离媒体访问子层以解决局域网中共享媒体的问题。3. TCP / IP的网络互连层等同于OSI参考模型的网络层中的无连接网络服务。4. OSI参考模型基本上类似于TCP / IP参考模型的传输层功能。它负责为用户提供真正的端到端通信服务,并且还从高层屏蔽底层网络的实现细节。不同之处在于TCP / IP参考模型的传输层基于网络互连层,网络互连层仅提供无连接网络服务,因此面向连接的功能完全在TCP协议中实现,当然, TCP / IP的传输层还提供UDP等无连接服务;相反,OSI参考模型的传输层基于网络层,它提供面向连接和无连接的服务,但传输层仅提供面向连接的服务。5.在TCP / IP参考模型中,没有会话层和表示层。事实证明,这两层的功能可以完全包含在应用层中。6. OSI参考模型具有高抽象能力,适用于描述各种网络。 TCP / IP是首先开发TCP / IP模型的协议。7. OSI参考模型的概念明显不同,但它过于复杂;虽然TCP / IP参考模型在服务,接口和协议之间的区别中不清楚,但功能描述和实现细节是混合的。8. TCP / IP参考模型的网络接口层不是真实层; OSI参考模型的缺点是层数太多,划分意义不大但增加了复杂性。9.尽管OSI参考模型是乐观的,但由于缺乏时间安排,该技术尚不成熟且难以实施;相反,虽然TCP / IP参考模型有许多令人不满意的地方,但它非常成功。参考资料:百度百科-TCP/IP参考模型
传输格式应用层支持网络应用,应用协议仅仅是网络应用的一个组成部分,运行在不同主机上的进程则使用应用层协议进行通信。主要的协议有:http、ftp、telnet、smtp、pop3等。应用层是网络应用程序及其应用层协议存留的地方。因特网的应用层包括许多协议,例如HTTP(它为web文档提供了请求和传送)、SMTP(它提供了电子邮件报文的传输)和FTP(它提供了两个端系统之间的文件传送)。我们将看到,某些网络功能,如将像www,i}tf.}rg这样的对人友好的端系统名字转换为32比特网络地址,也是借助于应用层协议—域名系统(DNS)完成的。应用层协议分布在多个端系统上,一个端系统中的应用程序使用协议与另一个端系统中的应用程序交换信息分组。我们将这种位于应用层的信息分组称为报文(message)传输层负责为信源和信宿提供应用程序进程间的数据传输服务,这一层上主要定义了两个传输协议,传输控制协议即TCP和用户数据报协议UDP。运输层提供了在应用程序端点之间传送应用层报文的服务。在因特网中,有两个运输层协议,即TCP和UDP,利用其中的任何一个都能传输应用层报文.TCP向它的应用程序提供了面向连接的服务。这种服务包括了应用层报文向目的地的确保传递和流量控制(即发送方/接收方速率匹配)。TCP也将长报文划分为短报文,并提供拥塞控制机制,因此当网络拥塞时,源抑制其传输速率。UDP协议向它的应用程序提供无连接服务。这是一种不提供不必要服务的服务,不提供可靠性,没有流量控制,也没有拥塞控制。在本书中,我们将运输层分组称为报文段(segment)。网络层负责将数据报独立地从信源发送到信宿,主要解决路由选择、拥塞控制和网络互联等问题。因特网的网络层负责将称为数据报(datagram)的网络层分组从一合主机移动到另一台主机。源主机中的因特网传输层协议(TCP或UDP)向网络层递交运输层报文段和目的地址,就像你向邮政信件提供目的地址一样。因特网的网络层包括著名的IP协议,该协议定义了数据报中的各个字段以及端系统和路由器如何作用于这些字段。仅有一个IP协议,所有具有网络层的因特网组件都必须运行lP协议。因特网的网络层也包括决定路由的选路协议,数据报根据该路由从源传输到目的地。因特网是一个网络的网络,在一个网络中,其网络管理者能够运行所希望的任何选路协议。尽管网络层包括了IP协议和一些选路协议,它经常只被称为IP层,这反映了IP是将因特网连接在一起的粘合剂这样一个事实。数据链路层负责将IP数据报封装成合适在物理网络上传输的帧格式并传输,或将从物理网络接收到的帧解封,取出IP数据报交给网络层。因特网的网络层通过一系列路由器在源和目的地之间发送分组。为了将分组从一个节点(主机或路由器)移动到路径上的下一个节点,网络层必须依靠链路层的服务。特别是在每个节点,网络层将数据报下传给链路层,链路层沿着路径将数据报传递给下一个节点。在该下个节点,链路层将数据报上传给网络层。物理层负责将比特流在结点间传输,即负责物理传输。该层的协议既与链路有关也与传输介质有关。链路层的任务是将整个帧从一个网络元素移动到邻近的网络元素,而物理层的任务是将该帧中的一个一个比特从一个节点移动到下一个节点。该层中的协议仍然是链路相关的,并且进一步与链路(例如,双绞铜线、单模光纤)的实际传输媒体相关。例如,以太网具有许多物理层协议:关于双绞铜线的,关于同轴电缆的,关于光纤的,等等。在每种情况下,跨越这些链路移动一个比特的方式不同。TCP/IP协议的开发研制人员将Internet分为五个层次,以便于理解,它也称为互联网分层模型或互联网分层参考模型,物理层:中继器、集线器、还有我们通常说的双绞线也工作在物理层数据链路层:网桥(现已很少使用)、以太网交换机(二层交换机)、网卡(其实网卡是一半工作在物理层、一半工作在数据链路层)网络层:路由器、三层交换机传输层:四层交换机、也有工作在四层的路由器下面是各层面对应的设备:
TCP/IP参考模型共有五层:应用层、传输层、互联网层和主机至网络层。 互联网层所有上述的需求导致了基于无连结互联网络层的分组交换网络。这一层被称作互联网层(internet layer),它是整个体系结构的关键部分。它的功能是使主机可以把分组发往任何网络并使分组独立地传向目标(可能经由不同的网络)。这些分组到达的顺序和发送的顺序可能不同,因此如果需要按顺序发送和接收时,高层必须对分组进行排序。互联网层定义了正式的分组格式和协议,即IP协议(internet protocol)。互联网层的功能就是把IP分组发送到应该去的地方。分组路由和避免阻塞是这里主要的设计问题。TCP/IP互联网层和OSI网络层在功能上非常相似。传输层位于互联网层上的那一层,通常称为传输层(Transport layer)。它的功能是使源端和目标主机上的对等实体可以进行会话。在这一层定义了两个端到端的协议。一个是传输控制协议TCP(Transmission Control Protocol),它是一个面向连结的协议,允许从一台机器发出的字节流无差错地发往另一台机器。它将输入的字节流分成报文段并传给互联网层。TCP还要处理流量控制,以避免快速发送方向低速接收方发送过多的报文而使接收方无法处理。另一个协议是用户数据报协议UDP(user datagram protocol),它是一个不可靠的、无连结的协议,用于不需要TCP排序和流量控制能力而是自己完成这些功能的应用程序。IP、TCP和UDP的关系如图7所示。自从这个模型出现以来,IP已经在其它很多网络上实现了。应用层在TCP/IP模型的最上层是应用层(Application layer),它包含所有的高层的协议。高层协议有:虚拟终端协议TELNET、文件传输协议FTP、电子邮件传输协议SMTP、域名系统服务DNS、网络新闻传输协议NNTP和HTTP协议。虚拟终端协议TELNET:允许一台机器上的用户登录到远程机器上并且进行工作。文件传输协议FTP(File Transfer Protocol):提供有效地将数据从一台机器上移动到另一台机器上的方法。电子邮件协议SMTP(Simple Message Transfer Protocol):最初仅是一种文件传输,但是后来为它提出了专门的协议。域名系统服务DNS(Domain name service):用于把主机名映射到网络地址。超文本传输协议HTTP(Hypertext Transfer Protocol);用于在万维网(WWW)上获取主页等。主机至网络层 互联网层下面什么都没有,TCP/IP参考模型没有真正描述这一部分,只是指出主机必须使用某种协议与网络相连。
TCP/IP参考模型 TCP/IP协议的开发研制人员将Internet分为五个层次,以便于理解,它也称为互联网分层模型或互联网分层参考模型,如下表:应用层(第五层)传输层(第四层)互联网层(第三层)网络接口层(第二层)物理层(第一层)物理层:对应于网络的基本硬件,这也是Internet物理构成,即我们可以看得见的硬设备,如PC机、互连网服务器、网络设备等,必须对这些硬设备的电气特性作一个规范,使这些设备都能够互相连接并兼容使用。网络接口层:它定义了将资料组成正确帧的规程和在网络中传输帧的规程,帧是指一串资料,它是资料在网络中传输的单位。互联网层:本层定义了互联网中传输的“信息包”格式,以及从一个用户通过一个或多个路由器到最终目标的"信息包"转发机制。传输层:为两个用户进程之间建立、管理和拆除可靠而又有效的端到端连接。应用层:它定义了应用程序使用互联网的规程。参考:http://baike.baidu.com/view/7729.htm
简要说明TCP/IP参考模型五个层次的名称,各层的传输格式和使用的设备是什么, 你说的应该是一个机器里面的操作问问题吧,不过机器在操作的时候它都会有一个说明,你按照说明这样子操作可以了,因为我这边也无法帮你解答。

TCP/IP四层模型
ISO制定的OSI参考模型的过于庞大、复杂招致了许多批评。与此对照,由技术人员自己开发的TCP/IP协议栈获得了更为广泛的应用。 如图所示,是TCP/IP参考模型和OSI参考模型的对比示意图。在TCP/IP参考模型中,去掉了OSI参考模型中的会话层和表示层(这两层的功能被合并到应用层实现)。同时将OSI参考模型中的数据链路层和物理层合并为主机到网络层。下面,分别介绍各层的主要功能。实际上TCP/IP参考模型没有真正描述这一层的实现,只是要求能够提供给其上层-网络互连层一个访问接口,以便在其上传递IP分组。由于这一层次未被定义,所以其具体的实现方法将随着网络类型的不同而不同。网络互连层是整个TCP/IP协议栈的核心。它的功能是把分组发往目标网络或主机。同时,为了尽快地发送分组,可能需要沿不同的路径同时进行分组传递。因此,分组到达的顺序和发送的顺序可能不同,这就需要上层必须对分组进行排序。网络互连层定义了分组格式和协议,即IP协议(Internet Protocol)。网络互连层除了需要完成路由的功能外,也可以完成将不同类型的网络(异构网)互连的任务。除此之外,网络互连层还需要完成拥塞控制的功能。在TCP/IP模型中,传输层的功能是使源端主机和目标端主机上的对等实体可以进行会话。在传输层定义了两种服务质量不同的协议。即:传输控制协议TCP(transmission control protocol)和用户数据报协议UDP(user datagram protocol)。TCP协议是一个面向连接的、可靠的协议。它将一台主机发出的字节流无差错地发往互联网上的其他主机。在发送端,它负责把上层传送下来的字节流分成报文段并传递给下层。在接收端,它负责把收到的报文进行重组后递交给上层。TCP协议还要处理端到端的流量控制,以避免缓慢接收的接收方没有足够的缓冲区接收发送方发送的大量数据。UDP协议是一个不可靠的、无连接的协议,主要适用于不需要对报文进行排序和流量控制的场合。TCP/IP模型将OSI参考模型中的会话层和表示层的功能合并到应用层实现。应用层面向不同的网络应用引入了不同的应用层协议。其中,有基于TCP协议的,如文件传输协议(File Transfer Protocol,FTP)、虚拟终端协议(TELNET)、超文本链接协议(Hyper Text Transfer Protocol,HTTP),也有基于UDP协议的。IP协议是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。在局域网环境,IP协议往往被封装在以太网帧中传送。而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。IP报文格式:IP头部格式:其中:● 版本(Version)字段:占4比特。用来表明IP协议实现的版本号,当前一般为IPv4,即0100。● 报头长度(Internet Header Length,IHL)字段:占4比特。是头部占32比特的数字,包括可选项。普通IP数据报(没有任何选项),该字段的值是5,即160比特=20字节。此字段最大值为60字节。● 服务类型(Type of Service ,TOS)字段:占8比特。其中前3比特为优先权子字段(Precedence,现已被忽略)。第8比特保留未用。第4至第7比特分别代表延迟、吞吐量、可靠性和花费。当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。这4比特的服务类型中只能置其中1比特为1。可以全为0,若全为0则表示一般服务。● 总长度字段:占16比特。指明整个数据报的长度(以字节为单位)。最大长度为65535字节。● 标志字段:占16比特。用来唯一地标识主机发送的每一份数据报。通常每发一份报文,它的值会加1。● 标志位字段:占3比特。标志一份数据报是否要求分段。● 段偏移字段:占13比特。如果一份数据报要求分段的话,此字段指明该段偏移距原始数据报开始的位置。● 生存期(TTL:Time to Live)字段:占8比特。用来设置数据报最多可以经过的路由器数。由发送数据的源主机设置,通常为32、64、128等。每经过一个路由器,其值减1,直到0时该数据报被丢弃。● 协议字段:占8比特。指明IP层所封装的上层协议类型,如ICMP(1)、IGMP(2) 、TCP(6)、UDP(17)等。● 头部校验和字段:占16比特。内容是根据IP头部计算得到的校验和码。计算方法是:对头部中每个16比特进行二进制反码求和。(和ICMP、IGMP、TCP、UDP不同,IP不对头部后的数据进行校验)。● 源IP地址、目标IP地址字段:各占32比特。用来标明发送IP数据报文的源主机地址和接收IP报文的目标主机地址。可选项字段:占32比特。用来定义一些任选项:如记录路径、时间戳等。这些选项很少被使用,同时并不是所有主机和路由器都支持这些选项。可选项字段的长度必须是32比特的整数倍,如果不足,必须填充0以达到此长度要求。TCP是一种可靠的、面向连接的字节流服务。源主机在传送数据前需要先和目标主机建立连接。然后,在此连接上,被编号的数据段按序收发。同时,要求对每个数据段进行确认,保证了可靠性。如果在指定的时间内没有收到目标主机对所发数据段的确认,源主机将再次发送该数据段。 TCP是一种可靠的、面向连接的字节流服务。源主机在传送数据前需要先和目标主机建立连接。然后,在此连接上,被编号的数据段按序收发。同时,要求对每个数据段进行确认,保证了可靠性。如果在指定的时间内没有收到目标主机对所发数据段的确认,源主机将再次发送该数据段。TCP头部结构:其中:● 源、目标端口号字段:占16比特。TCP协议通过使用"端口"来标识源端和目标端的应用进程。端口号可以使用0到65535之间的任何数字。● 顺序号字段:占32比特。用来标识从TCP源端向TCP目标端发送的数据字节流,它表示在这个报文段中的第一个数据字节。● 确认号字段:占32比特。只有ACK标志为1时,确认号字段才有效。它包含目标端所期望收到源端的下一个数据字节。● 头部长度字段:占4比特。给出头部占32比特的数目。没有任何选项字段的TCP头部长度为20字节;最多可以有60字节的TCP头部。● 标志位字段(U、A、P、R、S、F):占6比特。各比特的含义如下:◆ URG:紧急指针(urgent pointer)有效。◆ ACK:确认序号有效。◆ PSH:接收方应该尽快将这个报文段交给应用层。◆ RST:重建连接。◆ SYN:发起一个连接。◆ FIN:释放一个连接。● 窗口大小字段:占16比特。此字段用来进行流量控制。单位为字节数,这个值是本机期望一次接收的字节数。● TCP校验和字段:占16比特。对整个TCP报文段,即TCP头部和TCP数据进行校验和计算,并由目标端进行验证。● 紧急指针字段:占16比特。它是一个偏移量,和序号字段中的值相加表示紧急数据最后一个字节的序号。● 选项字段:占32比特。可能包括"窗口扩大因子"、"时间戳"等选项。UDP是一种不可靠的、无连接的数据报服务。源主机在传送数据前不需要和目标主机建立连接。数据被冠以源、目标端口号等UDP报头字段后直接发往目的主机。这时,每个数据段的可靠性依靠上层协议来保证。在传送数据较少、较小的情况下,UDP比TCP更加高效。UDP头部结构:● 源、目标端口号字段:占16比特。作用与TCP数据段中的端口号字段相同,用来标识源端和目标端的应用进程。● 长度字段:占16比特。标明UDP头部和UDP数据的总长度字节。● 校验和字段:占16比特。用来对UDP头部和UDP数据进行校验。和TCP不同的是,对UDP来说,此字段是可选项,而TCP数据段中的校验和字段是必须项。在每个TCP、UDP数据段中都包含源端口和目标端口字段。有时,我们把一个IP地址和一个端口号合称为一个套接字(Socket),而一个套接字对(Socket pair)可以唯一地确定互连网络中每个TCP连接的双方(客户IP地址、客户端口号、服务器IP地址、服务器端口号)。如图所示,是常见的一些协议和它们对应的服务端口号。需要注意的是,不同的应用层协议可能基于不同的传输层协议,如FTP、TELNET、SMTP协议基于可靠的TCP协议。TFTP、SNMP、RIP基于不可靠的UDP协议。同时,有些应用层协议占用了两个不同的端口号,如FTP的20、21端口,SNMP的161、162端口。这些应用层协议在不同的端口提供不同的功能。如FTP的21端口用来侦听用户的连接请求,而20端口用来传送用户的文件数据。再如,SNMP的161端口用于SNMP管理进程获取SNMP代理的数据,而162端口用于SNMP代理主动向SNMP管理进程发送数据。还有一些协议使用了传输层的不同协议提供的服务。如DNS协议同时使用了TCP 53端口和UDP 53端口。DNS协议在UDP的53端口提供域名解析服务,在TCP的53端口提供DNS区域文件传输服务。 来自陈十一

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/43548.html。