tcp连接的描述(简述tcp建立连接的过程)

      最后更新:2022-11-15 13:57:19 手机定位技术交流文章

      简述TCP协议建立连接的过程

      TCP协议建立连接的过程: 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。完成三次握手,客户端与服务器开始传送数据,在上述过程中,还有一些重要的概念:未连接队列:在三次握手协议中,服务器维护一个未连接队列,该队列为每个客户端的SYN包(syn=j)开设一个条目,该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包。这些条目所标识的连接在服务器处于Syn_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态。Backlog参数:表示未连接队列的最大容纳数目。SYN-ACK 重传次数 服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传,如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。注意,每次重传等待的时间不一定相同。 半连接存活时间:是指半连接队列的条目存活的最长时间,也即服务从收到SYN包到确认这个报文无效的最长时间,该时间值是所有重传请求包的最长等待时间总和,有时也称半连接存活时间为Timeout时间、SYN_RECV存活时间。
      1,tcp使用三次握手 (three-wayhandshake)协议来建立连接,这三次握手为:请求端(通常称为客户)发送一个syn报文段(syn为1)指明客户打算连接的服务器的端口,以及初始顺序号(isn)。服务器发回包含服务器的初始顺序号的syn报文段(syn为1)作为应答。同时,将确认号设置为客户的isn加1以对客户的syn报文段进行确认(ack也为1)。客户必须将确认号设置为服务器的isn加1以对服务器的syn报文段进行确认(ack为1),该报文通知目的主机双方已完成连接建立。发送第一个syn的一端将执行主动打开(activeopen),接收这个syn并发回下一个syn的另一端执行被动打开(passiveopen)。另外,tcp的握手协议被精心设计为可以处理同时打开(simultaneousopen),对于同时打开它仅建立一条连接而不是两条连接。因此,连接可以由任一方或双方发起,一旦连接建立,数据就可以双向对等地流动,而没有所谓的主从关系。2,应用层向tcp层发送用于网间传输的、用8位字节表示的数据流,然后tcp把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传送单元(mtu)的限制)。之后tcp把结果包传给ip层,由它来通过网络将包传送给接收端实体的tcp层。tcp为了保证不发生丢包,就给每个字节一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ack); 如果发送端实体在合理的往返时延(rtt)内未收到确认,那么对应的数据(假设丢失了)将会被重传。tcp用一个校验和函数来检验数据是否有错误;在发送和接收时都要计算校验和。
      当然是可以建立的

      简述TCP协议建立连接的过程

      “TCP连接”究竟是什么意思?

      我们经常听到"建立TCP连接","服务器的连接数量有限"等,但仔细一想,连接究竟是个什么东西,是和电话一样两端连起一根线?似乎有点抽象不是么? 1.久违的分组交换网络似乎这个概念只有在学校里学计算机网络才能接触到,但不过今天的话题其实和它离不开关系。我们知道最早的电话网络是以很容易理解的形式存在的,就是单纯的一根线加两端的设备,设备之间所沟通的所有信息都通过一根特定的电缆来回传输,如下图:这样的连接是我们特别好理解的,搭起两边的线,就是一个连接嘛!但是,我们讨论的是计算机网络!(严肃脸),计算机网络中两个设备节点是如何通信?计算机网络采取分组交换技术,什么意思呢?就是我有【一块数据】要发给对方小苍,那我会把这【一块数据】分成N份【单位数据】,分别发出去,而每份【单位数据】走哪条路是不一定的,但是这些【单位数据】总要全部达到小苍手里,小苍再根据【单位数据】里记录的序号拼接起来,组成完整的【一块数据】。这就是分组的意思所在。2.协议和协议实现上面不小心把TCP的大体实现给说了,实际上在具体的应用中,光有大体思路是不行的,还有很多细节问题,需要两个设备之间提前约定好协议,才能协同完成通信。举个例子:A向B发了10份【单位数据】,而B其实只收到9份【单位数据】,怎么办?TCP协议大家都应该是知道的,但协议只是想法,真正起作用的是在路由节点和设备节点上的协议软件,是运行在设备上的具体执行者,它根据协议指导,对具体数据进行控制和操作。这儿就不往下展开了。认识到协议和协议软件这一点非常重要,因为连接的限制恰恰就是受软件在设备中资源分配的影响的。3.连接的真面目上面说的第一种电话网络,如果两个设备搭设了一条线,那么两个电话就一定确定对方在线,因为他俩独享一条实时存在的线。但计算机网络的连接呢?向上面的图一样(图里不深究TCP,仅仅用来说明连接大体过程),其实他们俩并不能确保对方就是在线,只是通过几番确认,认为对方一直会在。而如果确认了对方存在,那么就会为以后的对话通讯分配内存、CPU处理时间等资源,每个设备都会在本地去维持这么一个状态,来告诉自己是有一个连接的,这些设备所花的资源和维护的状态,就是连接。而整个网络是不会记录有着一条连接的,所以说连接只是记录在各个设备的一个状态信息。那么,到现在我们知道了,连接其实并不是所谓的有一根电线连起两个设备,而是两方确认了一下对方的存在后,自己在本地记录的状态。那么下面可以讨论一下以前迷惑重重的概念了。4.为什么服务器都有连接数量的限制?这里只做讨论。我认为是有两点:物理带宽的限制,决定了一个时间段内发起连接的数据包不会超过某个数,造成了设备的链接数量的限制。维持连接需要分配内存等资源,设备的资源有限,决定了一定有个最大连接数的极限。5.待续 通过连接往外延伸的话题不少,先到此为止吧,有时间再补。
      “TCP连接”究竟是什么意思?

      TCP连接详解

      通过设置linux参数 net.ipv4.tcp_fin_timeout = 30 ,可以调整如发现系统存在大量TIME_WAIT状态的连接,通过调整内核参数解决:编辑文件/etc/sysctl.conf,加入以下内容tcp 通过序列号seq记录已经发送的数据刻度,通过ack记录已经接收的数据量。seq记录的是发送的数据,ack记录的是接收的数据量。单位是字节(8bit)tcp在每次发包时都会计算往复时间及其偏差。将这个往返时间和偏差相加,重发超时时间就是比这个总和要稍大一点的值。由于最初的数据包还不知道往返时间,所以其重发超时一般设置为6s左右。在建立tcp连接时,三次握手的时候会计算mss(最大消息长度),建立连接的双方会把自己的接口能适应的mss值放到tcp首部里面发送给对方,最后取较小的那个mss。tcp窗口大小指的是无需等待确认应答而可以继续发送数据的最大值,窗口大小为4个端。即在收到确认应答之前可以发送的数据的段数。接收端没有按序列顺序收到数据端时,会不停的发送确认应答,并将当前收到的顺序出问题的数据放到缓冲区。发送端连续三次收到相同序列号的数据段时,会重新发送该段的数据。接收端在接收到遗失的数据的时候会将数据与缓冲区的数据组合,重新按顺序确定ack的序列号,继续接收数据。tcp窗口的大小是由接收端的处理能力决定的,接收端会在ack的tcp首部中将能处理的窗口大小传给发送端。拥塞窗口是限制每次发送的数据的大小,初始值是1mss,也就是慢启动。随着正常的收发的进行,拥塞窗口的值会不断的增加。但是不会超过接收端处理窗口的大小。一开始拥塞窗口每次都会翻倍的增长,在超过慢启动阈值后增长速度会减慢。增长速率=一个数据段的大小 / 拥塞窗口的大小 *一个数据段的大小超时重发时,拥塞窗口会变为1mss, 慢启动阈值为原有窗口的一半重复确认应答时,慢启动阈值为原有窗口的一半,拥塞窗口会变为慢启动阈值+3数据端,1、已发送的数据收到了ack回执2、可以发送mss大小的数据时只有以上两个数据都满足时才发送数据。会有延迟,对延迟敏感的需求可以关。1、收到2*最大端长度的数据2、最大延迟0.5s发送确认应答将tcp的确认应答和回执数据通过一个包发送。接收数据之后等待应用处理生成返回数据以后在发送回复时同时发送回执。需要开启延迟确认应答。
      TCP连接详解

      TCP-连接参数详解

      TCP 建立连接时要经过 3 次握手,在客户端向服务器发起连接时,对于服务器而言,一个完整的连接建立过程,服务器会经历 2 种 TCP 状态:SYN_REVD, ESTABELLISHED。对应也会维护两个队列:半连接队列长度由内核参数 tcp_max_syn_backlog 决定,当使用 SYN Cookie 时(就是内核参数 net.ipv4.tcp_syncookies = 1),这个参数无效,即半连接队列长度 = min(backlog, 内核参数 net.core.somaxconn,内核参数 tcp_max_syn_backlog),半连接队列的长度肯定小于全连接队列的长度。这个公式实际上规定半连接队列长度不能超过全连接队列长度。首先,全连接满会影响半连接满。全连接满而且半连接中有一定数目处于SYN_REVD状态的连接时,没有必要再继续新的半连接,因为此时全连接已满,此时的动作是直接忽略该连接。半连接满了之后的动作是直接忽略(ignore or dropped),此时客户端需要不断的重发SYNC进行重试,重试的参数由tcp_syn_retries决定,该参数默认是5。如果超过客户端设置的超时时间,会报连接超时异常。客户端发出SYNC之后,不响应ACK,此时造成半连接队列满,server不能再提供服务,正常的客户端一直报连接超时。为了应对该攻击,有两种办法:667399 SYNs to LISTEN sockets ignored表明已经忽略SYN次了,此时说明半连接队列满了,或者因为全连接满而影响了半连接的进行。全连接队列长度 = min(backlog, 内核参数 net.core.somaxconn),net.core.somaxconn 默认为 128。这个很好理解,net.core.somaxconn 定义了系统级别的全连接队列最大长度,backlog 只是应用层传入的参数,不可能超过内核参数,所以 backlog 必须小于等于 net.core.somaxconn。对于 Linux 而言,基本上任意语言实现的通信框架或服务器程序在构造 socket server 时,都提供了 backlog 这个参数,因为在监听端口时,都会调用系统底层 API: int listen(int sockfd, int backlog);listen 函数中 backlog 参数的定义如下:cat /proc/sys/net/core/somaxconn或者sysctl -a | grep "net.core.somaxconn"线上机器(LINK)的运行结果如下:Recv-Q:全连连队列中数据的个数,也就是等待被accept的个数。Send-Q:全连接队列长度tomcat默认短连接,backlog(在Tomcat里面的术语是Accept count)默认100.Nginx默认是511因为Nginx是多进程模式,也就是多个进程都监听同一个端口以尽量避免上下文切换来提升性能
      TCP-连接参数详解

      tcp连接状态详解

      unix的哲学是一切皆文件,可以把socket看成是一种特殊的文件,而一些socket函数就是对其进行的操作api(读/写IO、打开、关闭)。我们知道普通文件的打开操作(open)返回一个文件描述字,与之类似,socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,sockfd即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。在将一个地址绑定到socket的时候,需要先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过不少血案,谨记对主机字节序不要做任何假定,务必将其转化为网络字节序再赋给socket。这里的主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:listen函数的第一个参数即为要监听的socket描述字,第二个参数为socket可以接受的排队的最大连接个数。listen函数表示等待客户的连接请求。connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()之后就向TCP服务器发送连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数去接收请求,这样连接就建立好了(在connect之后就建立好了三次连接),之后就可以开始进行类似于普通文件的网络I/O操作了。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与客户的TCP连接。accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,类似于操作完打开的文件要调用fclose关闭打开的文件。close一个TCP socket的缺省行为时把该socket标记为已关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:客户端向服务器发送一个SYN J服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1客户端再想服务器发一个确认ACK K+1socket中TCP的四次握手释放连接详解某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。一段时间之后,服务端调用close关闭它的socket。这导致它的TCP也发送一个FIN N;接收到这个FIN的源发送端TCP对它进行确认,这样每个方向上都有一个FIN和ACK。为什么要三次握手由于tcp连接是全双工的,存在着双向的读写通道,每个方向都必须单独进行关闭。当一方完成它的数据发送任务后就可以发送一个FIN来终止这个方向的连接。收到FIN只意味着这个方向上没有数据流动,但并不表示在另一个方向上没有读写,所以要双向的读写关闭需要四次握手,3. time_wait状态如何避免?首先服务器可以设置SO_REUSEADDR套接字选项来通知内核,如果端口忙,但TCP连接位于TIME_WAIT状态时可以重用端口。在一个非常有用的场景就是,如果你的服务器程序停止后想立即重启,而新的套接字依旧希望使用同一端口,此时SO_REUSEADDR选项就可以避免TIME_WAIT状态。1.客户端连接服务器的80服务,这时客户端会启用一个本地的端口访问服务器的80,访问完成后关闭此连接,立刻再次访问服务器的80,这时客户端会启用另一个本地的端口,而不是刚才使用的那个本地端口。原因就是刚才的那个连接还处于TIME_WAIT状态。2.客户端连接服务器的80服务,这时服务器关闭80端口,立即再次重启80端口的服务,这时可能不会成功启动,原因也是服务器的连接还处于TIME_WAIT状态。实战分析:状态描述:CLOSED:无连接是活动的或正在进行LISTEN:服务器在等待进入呼叫SYN_RECV:一个连接请求已经到达,等待确认SYN_SENT:应用已经开始,打开一个连接ESTABLISHED:正常数据传输状态FIN_WAIT1:应用说它已经完成FIN_WAIT2:另一边已同意释放ITMED_WAIT:等待所有分组死掉CLOSING:两边同时尝试关闭TIME_WAIT:另一边已初始化一个释放LAST_ACK:等待所有分组死掉命令解释:如何尽量处理TIMEWAIT过多?编辑内核文件/etc/sysctl.conf,加入以下内容:net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。net.ipv4.tcp_fin_timeout 修改系默认的 TIMEOUT 时间然后执行 /sbin/sysctl -p 让参数生效./etc/sysctl.conf是一个允许改变正在运行中的Linux系统的接口,它包含一些TCP/IP堆栈和虚拟内存系统的高级选项,修改内核参数永久生效。简单来说,就是打开系统的TIMEWAIT重用和快速回收。本文主要讲述了socket的主要api,以及tcp的连接过程和其中各个阶段的连接状态,理解这些是更深入了解tcp的基础!
      tcp连接状态详解

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/45687.html

          热门文章

          文章分类