TCP协议的通讯过程
你大概说的是3步握手吧,这跟传真机的5部握手很类似。 下面的资料希望对你有用TCP/IP 是很多的不同的协议组成,实际上是一个协议组,TCP 用户数据报表协议(也称作TCP 传输控制协议,Transport Control Protocol。可靠的主机到主机层协议。这里要先强调一下,传输控制协议是OSI 网络的第四层的叫法,TCP 传输控制协议是TCP/IP 传输的6 个基本协议的一种。两个TCP 意思非相同。)。TCP 是一种可靠的面向连接的传送服务。它在传送数据时是分段进行的,主机交换数据必须建立一个会话。它用比特流通信,即数据被作为无结构的字节流。通过每个TCP 传输的字段指定顺序号,以获得可靠性。是在OSI参考模型中的第四层,TCP 是使用IP 的网间互联功能而提供可靠的数据传输,IP 不停的把报文放到网络上,而TCP 是负责确信报文到达。在协同IP 的操作中TCP 负责:握手过程、报文管理、流量控制、错误检测和处理(控制),可以根据一定的编号顺序对非正常顺序的报文给予从新排列顺序。关于TCP 的RFC 文档有RFC793、RFC791、RFC1700。在TCP 会话初期,有所谓的“三握手”:对每次发送的数据量是怎样跟踪进行协商使数据段的发送和接收同步,根据所接收到的数据量而确定的数据确认数及数据发送、接收完毕后何时撤消联系,并建立虚连接。为了提供可靠的传送,TCP 在发送新的数据之前,以特定的顺序将数据包的序号,并需要这些包传送给目标机之后的确认消息。TCP 总是用来发送大批量的数据。当应用程序在收到数据后要做出确认时也要用到TCP。由于TCP 需要时刻跟踪,这需要额外开销,使得TCP 的格式有些显得复杂。下面就让我们看一个TCP 的经典案例,这是后来被称为MITNICK 攻击中KEVIN 开创了两种攻击技术:TCP 会话劫持SYN FLOOD(同步洪流)在这里我们讨论的时TCP 会话劫持的问题。先让我们明白TCP 建立连接的基本简单的过程。为了建设一个小型的模仿环境我们假设有3 台接入互联网的机器。A 为攻击者操纵的攻击机。B 为中介跳板机器(受信任的服务器)。C 为受害者使用的机器(多是服务器),这里把C 机器锁定为目标机器。A 机器向B机器发送SYN 包,请求建立连接,这时已经响应请求的B 机器会向A 机器回应SYN/ACK表明同意建立连接,当A 机器接受到B 机器发送的SYN/ACK 回应时,发送应答ACK 建立A 机器与B 机器的网络连接。这样一个两台机器之间的TCP 通话信道就建立成功了。B 终端受信任的服务器向C 机器发起TCP 连接,A 机器对服务器发起SYN 信息,使C 机器不能响应B 机器。在同时A 机器也向B 机器发送虚假的C 机器回应的SYN 数据包,接收到SYN 数据包的B 机器(被C 机器信任)开始发送应答连接建立的SYN/ACK 数据包,这时C 机器正在忙于响应以前发送的SYN 数据而无暇回应B 机器,而A 机器的攻击者预测出B 机器包的序列号(现在的TCP 序列号预测难度有所加大)假冒C 机器向B 机器发送应答ACK 这时攻击者骗取B 机器的信任,假冒C 机器与B 机器建立起TCP 协议的对话连接。这个时候的C 机器还是在响应攻击者A 机器发送的SYN 数据。TCP 协议栈的弱点:TCP 连接的资源消耗,其中包括:数据包信息、条件状态、序列号等。通过故意不完成建立连接所需要的三次握手过程,造成连接一方的资源耗尽。通过攻击者有意的不完成建立连接所需要的三次握手的全过程,从而造成了C 机器的资源耗尽。序列号的可预测性,目标主机应答连接请求时返回的SYN/ACK 的序列号时可预测的。(早期TCP 协议栈,具体的可以参见1981 年出的关于TCP 雏形的RFC793 文档)TCP 头结构TCP 协议头最少20 个字节,包括以下的区域(由于翻译不禁相同,文章中给出相应的英文单词):TCP 源端口(Source Port):16 位的源端口其中包含初始化通信的端口。源端口和源IP 地址的作用是标示报问的返回地址。TCP 目的端口(Destination port):16 位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。TCP 序列号(序列码,Sequence Number):32 位的序列号由接收端计算机使用,重新分段的报文成最初形式。当SYN 出现,序列码实际上是初始序列码(ISN),而第一个数据字节是ISN+1。这个序列号(序列码)是可以补偿传输中的不一致。TCP 应答号(Acknowledgment Number):32 位的序列号由接收端计算机使用,重组分段的报文成最初形式。,如果设置了ACK 控制位,这个值表示一个准备接收的包的序列码。数据偏移量(HLEN):4 位包括TCP 头大小,指示何处数据开始。保留(Reserved):6 位值域,这些位必须是0。为了将来定义新的用途所保留。标志(Code Bits):6 位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。窗口(Window):16 位,用来表示想收到的每个TCP 数据段的大小。校验位(Checksum):16 位TCP 头。源机器基于数据内容计算一个数值,收信息机要与源机器数值结果完全一样,从而证明数据的有效性。优先指针(紧急,Urgent Pointer):16 位,指向后面是优先数据的字节,在URG标志设置了时才有效。如果URG 标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。选项(Option):长度不定,但长度必须以字节。如果没有选项就表示这个一字节的域等于0。填充:不定长,填充的内容必须为0,它是为了数学目的而存在。目的是确保空间的可预测性。保证包头的结合和数据的开始处偏移量能够被32 整除,一般额外的零以保证TCP 头是32 位的整数倍。标志控制功能URG:紧急标志紧急(The urgent pointer) 标志有效。紧急标志置位,ACK:确认标志确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。TCP 报头内的确认编号栏内包含的确认编号(w+1,Figure:1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。PSH:推标志该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用处理。在处理telnet 或rlogin 等交互模式的连接时,该标志总是置位的。RST:复位标志复位标志有效。用于复位相应的TCP 连接。SYN:同步标志同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立TCP 连接时有效。它提示TCP 连接的服务端检查序列编号,该序列编号为TCP 连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP 序列编号看作是一个范围从0 到4,294,967,295 的32 位计数器。通过TCP 连接交换的数据中每一个字节都经过序列编号。在TCP 报头中的序列编号栏包括了TCP 分段中第一个字节的序列编号。FIN:结束标志带有该标志置位的数据包用来结束一个TCP 回话,但对应端口仍处于开放状态,准备接收后续数据。服务端处于监听状态,客户端用于建立连接请求的数据包(IP packet)按照TCP/IP协议堆栈组合成为TCP 处理的分段(segment)。分析报头信息: TCP 层接收到相应的TCP 和IP 报头,将这些信息存储到内存中。检查TCP 校验和(checksum):标准的校验和位于分段之中(Figure:2)。如果检验失败,不返回确认,该分段丢弃,并等待客户端进行重传。查找协议控制块(PCB{}):TCP 查找与该连接相关联的协议控制块。如果没有找到,TCP 将该分段丢弃并返回RST。(这就是TCP 处理没有端口监听情况下的机制) 如果该协议控制块存在,但状态为关闭,服务端不调用connect()或listen()。该分段丢弃,但不返回RST。客户端会尝试重新建立连接请求。建立新的socket:当处于监听状态的socket 收到该分段时,会建立一个子socket,同时还有socket{},tcpcb{}和pub{}建立。这时如果有错误发生,会通过标志位来拆除相应的socket 和释放内存,TCP 连接失败。如果缓存队列处于填满状态,TCP 认为有错误发生,所有的后续连接请求会被拒绝。这里可以看出SYN Flood 攻击是如何起作用的。丢弃:如果该分段中的标志为RST 或ACK,或者没有SYN 标志,则该分段丢弃。并释放相应的内存。发送序列变量SND.UNA : 发送未确认SND.NXT : 发送下一个SND.WND : 发送窗口SND.UP : 发送优先指针SND.WL1 : 用于最后窗口更新的段序列号SND.WL2 : 用于最后窗口更新的段确认号ISS : 初始发送序列号接收序列号RCV.NXT : 接收下一个RCV.WND : 接收下一个RCV.UP : 接收优先指针IRS : 初始接收序列号当前段变量SEG.SEQ : 段序列号SEG.ACK : 段确认标记SEG.LEN : 段长SEG.WND : 段窗口SEG.UP : 段紧急指针SEG.PRC : 段优先级CLOSED 表示没有连接,各个状态的意义如下:LISTEN : 监听来自远方TCP 端口的连接请求。SYN-SENT : 在发送连接请求后等待匹配的连接请求。SYN-RECEIVED : 在收到和发送一个连接请求后等待对连接请求的确认。ESTABLISHED : 代表一个打开的连接,数据可以传送给用户。FIN-WAIT-1 : 等待远程TCP 的连接中断请求,或先前的连接中断请求的确认。FIN-WAIT-2 : 从远程TCP 等待连接中断请求。CLOSE-WAIT : 等待从本地用户发来的连接中断请求。CLOSING : 等待远程TCP 对连接中断的确认。LAST-ACK : 等待原来发向远程TCP 的连接中断请求的确认。TIME-WAIT : 等待足够的时间以确保远程TCP 接收到连接中断请求的确认。CLOSED : 没有任何连接状态。TCP 连接过程是状态的转换,促使发生状态转换的是用户调用:OPEN,SEND,RECEIVE,CLOSE,ABORT 和STATUS。传送过来的数据段,特别那些包括以下标记的数据段SYN,ACK,RST 和FIN。还有超时,上面所说的都会时TCP 状态发生变化。序列号请注意,我们在TCP 连接中发送的字节都有一个序列号。因为编了号,所以可以确认它们的收到。对序列号的确认是累积性的。TCP 必须进行的序列号比较操作种类包括以下几种:①决定一些发送了的但未确认的序列号。②决定所有的序列号都已经收到了。③决定下一个段中应该包括的序列号。对于发送的数据TCP 要接收确认,确认时必须进行的:SND.UNA = 最老的确认了的序列号。SND.NXT = 下一个要发送的序列号。SEG.ACK = 接收TCP 的确认,接收TCP 期待的下一个序列号。SEG.SEQ = 一个数据段的第一个序列号。SEG.LEN = 数据段中包括的字节数。SEG.SEQ+SEG.LEN-1 = 数据段的最后一个序列号。如果一个数据段的序列号小于等于确认号的值,那么整个数据段就被确认了。而在接收数据时下面的比较操作是必须的:RCV.NXT = 期待的序列号和接收窗口的最低沿。RCV.NXT+RCV.WND:1 = 最后一个序列号和接收窗口的最高沿。SEG.SEQ = 接收到的第一个序列号。 SEG.SEQ+SEG.LEN:1 = 接收到的最后一个序列号。
这是一个很复杂的过程,还是找本书看一下,或者在网上看一下吧,三言两语很难说得清楚。

【网络协议笔记】第四层:传输层(Transport)TCP协议简介(1)
TCP有以下几个知识点。图片备用地址图片备用地址TCP的几个要点:可靠传输、流量控制、拥塞控制、连接管理(建立和释放连接)。也正因为这几点使得首部变得很复杂。占4位,取值范围是0x0101 ~ 0x1111。乘以4就是首部长度(Header Length)。所以取值范围是5 ~ 60字节,由于首部固定部分占用20字节,所以可选部分至多占用40字节(和网络层首部一样)。为什么叫数据偏移?因为相对TCP报文向右偏移首部长度后就是数据部分。UDP的首部中有个16位的字段记录了整个UDP报文段的长度(首部 + 数据)。但是,TCP的首部中仅仅有个4位的字段记录了TCP报文段的首部长度,并没有字段记录TCP报文段的数据长度。分析:UDP首部中占16位的长度字段是冗余的,纯粹是为了保证首部是32bit对齐。TCP/UDP的数据长度,完全可以由IP数据包的首部推测出来,传输层的数据长度 = 网络层的总长度 - 网络层的首部长度 - 传输层的首部长度。占6位,目前全为0。与UDP一样,TCP检验和的计算内容:伪首部 + 首部 + 数据。伪首部占用12字节,仅在计算检验和时起作用,并不会传递给网络层。图片备用地址一共占6位或9位。有些资料中,TCP首部的保留(Reserved)字段占3位,标志(Flags)字段占9位。Wireshark中也是如此。是因为标志位中的前3位是无用的,所以两种说法都不能说是错的。图片备用地址图片备用地址意思:紧急。当URG=1时,紧急指针字段才有效。表明当前报文段中有紧急数据,应优先尽快传送。紧急指针存放的是长度值,表示TCP的前多少字节是需要紧急优先处理的。意思:确认。当ACK=1时,确认号字段才有效。意思:推。一般用在交互式网络中。PUSH标志位所表达的是发送方通知接收方传输层应该尽快的将这个报文段交给应用层。意思:重置。当RST=1时,表明连接中出现严重差错,必须释放连接,然后再重新建立连接。意思:同步。当SYN=1 & ACK=0时,表明这是一个建立连接的请求。若对方同意建立连接,则回复SYN=1 & ACK=1。请求方再发送SYN=0 & ACK=1时表明开始传输数据。这也是三次握手的流程。意思:完成。表明数据已经发送完毕,要求释放连接。占4字节。首先,传输的每一个字节都会有一个编号(连续的字节编号也是连续的)。在建立连接后,序号代表这一次传给对方的TCP数据部分的第一个字节的编号。占4字节。在建立连接后,确认号代表期望对方下一次传过来的TCP数据部分的第一个字节的编号。占2字节。这个字段有流量控制功能,用以告知对方下一次允许发送的数据大小(字节为单位)。ARQ(Automatic Repeat-reQuest), 自动重传请求。图片备用地址无差错情况A发送数据M1到B,B收到数据M1后向A发送确认信号M1;A收到确认信号M1后,继续向B发送数据M2,B接收后向A发送确认信号M2。超时重传A发送数据M1到B,A在发送数据途中丢包或B发现数据M1有错误直接丢掉,导致B无法向A发送确认信号M1;A在一定时间间隔后发现没有收到B发送的确认信号M1,A会继续向B发送数据M1;B收到数据M1后向A发送确认信号M1,A收到确认信号M1后,继续向B发送M2数据。通过确认与超时重传机制实现可靠传输,在发送完一个分组后,必须暂时保留已发送的分组的副本。分组和确认分组都必须进行编号。超时计时器的重传时间应当比数据在分组传输的平均往返时间更长一些。图片备用地址确认丢失A发送数据M1到B,B接收到数据M1后,向A发送确认信号M1;B在向A发送确认信号M1中途丢包,此时A在一定时间间隔后发现没有收到B发送的确认信号M1,A会继续向B发送数据M1;B收到数据M1后会丢弃重复的数据M1(之前已经收到数据M1,只是A不知道),继续向A发送确认信号M1;A收到确认信号M1后,继续开始发送M2数据。确认迟到A发送数据M1到B,B接收到数据M1后,向A发送确认信号M1;B在向A发送确认信号M1时,由于网络延迟等原因导致A在一定时间段内未收到确认信号;A会继续向B发送数据M1,B收到数据M1后丢弃重复的数据M1,并向A发送确认信号M1;A收到确认信号M1后,继续开始发送M2数据,M2数据刚发送出去,此时A刚好接收到B在第一次发送的确认信号M1,但由于之前已经成功接收并处理了第二次的确认信号M1,所以A在收到确认信号后什么也不做。出现差错或丢失的时候,发送方会将自己备份的副本再重传一次,直到收到接收的确认信息。当接收方收到重复的数据时,会直接丢弃,但是会给发送方请确认自己已经收到了。上面的停止等待协议每发送一组数据就必须等到接收方回复确认后,再发起第二组数据,如果出现超时重传的话,效率更低。因此为了提高传输的效率,改进了等待传输协议。连续ARQ协议和滑动窗口协议的机制是以接收方回复确认为单位,每次连续发送一个滑动窗口指定的数据组。图片备用地址A发送数据给B时,一次性发送M1~M4(A和B建立连接时,B告诉A自己的缓存池可以容纳多少字节数据,A根据这个缓存池的大小构建一个同大小的发送窗口–也可以理解为发送缓存池),此时A开始等待确认,B收到全部数据后会向A发送确认信号M4(以最后一个编号为准);A收到确认信号后,继续向B发送M5 M8(A把之前构建的窗口滑动并锁定到对应大小的数据段上,即M5 M8),以此往复直到数据传输完毕。如果接收窗口最多能接收4个包(窗口大小),但发送方只发了2个包,接收方如何确定后面还有没有2个包?答案:接收方会在等待一定时间后发现没有第3个包,就会返回收到2个包的确认信号给发送方。滑动窗口是由发送方维护的类似指针的变量,在每收到一个接收方的确认消息后,该指针向前移动并发送数据,到窗口指定大小的数据组时停下,等待接收方的确认。图片备用地址累积确认机制: 发送方不对收到的分组逐个发送确认,而是对按序到达的最后一个分组发送确认,这样就表示:到这个分组为止的所有分组都已正确收到了。优点:容易实现,即使确认丢失也不必重传。缺点:不能向发送方反映出接收方已经正确收到的所有分组的信息。Go-back-N(回退 N): 为了解决上述同一窗口中数据组不能完整确认的问题,连续ARQ协议采用了回退机制。比如说:发送方发送了前5个分组,而中间的第3个分组丢失了。这时接收方只能对前两个分组发出确认。发送方无法知道后面三个分组的下落,而只好把后面的三个分组都再重传一次。这就叫做 Go-back-N(回退 N),表示需要再退回来重传已发送过的N个分组。结论:当通信线路质量不好时,连续ARQ协议会带来负面的影响。可能还不如传统的停止等待协议。TCP连接的每一端都必须设有两个窗口——一个发送窗口和一个接收窗口。TCP的可靠传输机制用字节的序号进行控制。TCP所有的确认都是基于序号而不是基于报文段。TCP两端的四个窗口经常处于动态变化之中。TCP连接的往返时间RTT也不是固定不变的。需要使用特定的算法估算较为合理的重传时间。滑动窗口是面向字节流的,为了方便记住每个分组的序号,现在假设有一个1200字节的数据,分12组,每一组数据是100个字节,代表一个数据段的数据(每一个数据都有自己的TCP首部),每一组给一个编号(1~12)。图片备用地址图片备用地址TCP通信时,如果发送序列中间某个数据包丢失,TCP会通过重传最后确认的分组后续的分组,这样原先已经正确传输的分组也可能重复发送,降低了TCP性能。SACK(Selective Acknowledgment,选择确认)技术,使TCP只重新发送丢失的包,不用发送后续所有的分组,而且提供相应机制使接收方能告诉发送方哪些数据丢失,哪些数据已经提前收到等。在建立TCP连接时,就要在TCP首部的选项中加上“允许SACK”的选项,而双方必须都事先商定好。原来首部中的“确认号字段”的用法仍然不变。只是以后在TCP报文段的首部中都增加了SACK选项,以便报告收到的不连续的字节块的边界。图片备用地址Kind:占1个字节,值为5代表这是SACK选项。Length:占1个字节,表明SACK选项一共占用多少字节。Left Edge:占4个字节,左边界。Right Edge:占4个字节,右边界。图片备用地址上图的着色模块代表已接收数据,空白代表未接收数据。左右边界意思是会把未接收完毕的TCP数据包的已接收数据进行左右标记。由于TCP的选项不能超过40个字节,去除Kind和Length占用的2个字节,还剩下38个字节给左右边界使用。一组边界占用8个字节(左右边界各占4个字节),所以边界不能超过4组。也能够因此推断出SACK选项的最大占用字节数是4 * 8 + 2 = 34。思考:超过选项边界的数据怎么办?超过边界的数据需要重新传输,但这已经很大程度提高了传输效率。重传机制是TCP中最重要和最复杂的问题之一。TCP每发送一个报文段,就对这个报文段设置一次计时器。只要计时器设置的重传时间到但还没有收到确认,就要重传这一报文段。那么这个重传时间到底应该设置多少呢?建议跳过,有兴趣的可以去查阅相关资料。图片备用地址为什么选择在传输层就将数据分割成多个段,而不是等到网络层再分片传递给数据链路层?-->网络层没有可靠传输协议,丢包无法只发送一个报文段,所以需要分割成多个段。如果在传输层不分段,一旦出现数据丢失,整个传输层的数据都得重传如果在传输层分段了,一旦出现数据丢失,只需要重传丢失的那些段即可欢迎大家的意见和交流email: li_mingxie@163.com

简述tcp协议的工作过程
TCP/IP协议(又名:网络通讯协议)即传输控制协议/互联网协议,是一个网络通信模型,以及一整个网络传输协议家族。这一模型是Internet最基本的协议,也是Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。 其定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。TCP负责发现传输的问题,而IP是给因特网的每一台联网设备规定一个地址。 为了减少网络设计的复杂性,大多数网络都采用分层结构。对于不同的网络,层的数量、名字、内容和功能都不尽相同。在相同的网络中,一台机器上的第N层与另一台机器上的第N层可利用第N层协议进行通信,协议基本上是双方关于如何进行通信所达成的一致。不同机器中包含的对应层的实体叫做对等进程。在对等进程利用协议进行通信时,实际上并不是直接将数据从一台机器的第N层传送到另一台机器的第N层,而是每一层都把数据连同该层的控制信息打包交给它的下一层,它的下一层把这些内容看做数据,再加上它这一层的控制信息一起交给更下一层,依此类推,直到最下层。最下层是物理介质,它进行实际的通信。相邻层之间有接口,接口定义下层向上层提供的原语操作和服务。相邻层之间要交换信息,对等接口必须有一致同意的规则。层和协议的集合被称为网络体系结构。每一层中的活动元素通常称为实体,实体既可以是软件实体,也可以是硬件实体。第N层实体实现的服务被第N+1层所使用。在这种情况下,第N层称为服务提供者,第N+1层称为服务用户。服务是在服务接入点提供给上层使用的。服务可分为面向连接的服务和面向无连接的服务,它在形式上是由一组原语来描述的。这些原语可供访问该服务的用户及其他实体使用。TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。 面向连接的服务(例如 Telnet、 FTP、 rlogin、 X Windows和 SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收 域名数据库),但使用UDP传送有关单个主机的信息。

怎么实现tcp通信
“面向连接”就是在正式通信前必须要与对方建立起连接。比如你给别人打电话,必须等线路接通了、对方拿起话筒才能相互通话。 TCP(Transmission Control Protocol,传输控制协议)是基于连接的协议,也就是说,在正式收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,我们这里只做简单、形象的介绍,你只要做到能够理解这个过程即可。我们来看看这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。TCP协议能为应用程序提供可靠的通信连接,使一台计算机发出的字节流无差错地发往网络上的其他计算机,对可靠性要求高的数据通信系统往往使用TCP协议传输数据。面向非连接的UDP协议“面向非连接”就是在正式通信前不必与对方先建立连接,不管对方状态就直接发送。这与现在风行的手机短信非常相似:你在发短信的时候,只需要输入对方手机号就OK了。UDP(User Data Protocol,用户数据报协议)是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去!UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。比如,我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。例如,在默认状态下,一次“ping”操作发送4个数据包(如图2所示)。大家可以看到,发送的数据包数量是4包,收到的也是4包(因为对方主机收到后会发回一个确认收到的数据包)。这充分说明了UDP协议是面向非连接的协议,没有建立连接的过程。正因为UDP协议没有连接的过程,所以它的通信效果高;但也正因为如此,它的可靠性不如TCP协议高。QQ就使用UDP发消息,因此有时会出现收不到消息的情况。 TCP协议和UDP协议各有所长、各有所短,适用于不同要求的通信环境。

TCP/IP通信建立的过程怎样
TCP/IP通信过程,简单为,三次建立,四次断开。具体如下:三次建立:主机A发送SYN(seq=x)报文给主机B,主机A进入SYN_SEND状态 ;主机B收到SYN报文,回应一个SYN(seq=y)ACK(ACK=x+1)报文,主机B进入SYN_RECV状态;主机A收到主机B的SYN报文,回应一个ACK(ACK=y+1)报文,主机A进入established状态。三次握手完成,主机A和主机B已经建立连接。四次断开:某个应用进程先调用close,称该端执行“主动关闭”(active close)。该端的TCP发送一个FIN分节,表示数据发送完毕;接收到这个FIN的对端执行“被动关闭”(passive close),这个FIN由TCP确认。一段时间的等待后,接收到这个文件结束符的应用进程将调用close关闭它的套接字,所以它的TCP也发送一个FIN。接收到这个最终FIN的原发送端TCP(主动要求关闭连接的那一端)确认这个FIN。因为每个方向都需要一个FIN和ACK,所以断开需要4个次连接。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/45732.html。