传输层协议(TCP, UDP)
传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram Protocol)。为了简化问题说明,本课程以Telnet为例描述相关技术。设备支持通过Telnet协议和Stelnet协议登录。使用Telnet,Stelnet v1协议存在安全风险,建议你使用STelnet v2登录设备。为了简化问题说明,本课程以FTP为例来描述相关技术。设备支持通过FTP协议,TFTP以及SFTP传输文件。使用FTP,TFTP,SFTP v1协议存在风险,建议使用SFTP v2方式进行文件操作。TCP是一种面向连接的传输层协议,提供可靠的传输服务。TCP是一种面向连接的端到端协议。TCP作为传输控制协议,可以为主机提供可靠的数据传输。TCP需要依赖网络协议为主机提供可用的传输路径。TCP允许一个主机同事运行多个应用进程。每台主机可以拥有多个应用端口,没对端口号,源和目标IP地址的组合唯一地标识了一个会话。端口分为知名端口和动态端口。有些网络服务会使用固定的端口,这类端口称为知名端口,端口号范围为 0~1023 。比如:FTP,HTTP,Telnet,SNMP服务均使用知名端口。动态端口范围 1024~65535 ,这些端口号一般不会固定分配给某个服务,也就是说许多服务都可以使用这些端口。只要运行的程序向系统提出访问网络的申请,那么系统就可以从这些端口号中分配一个供该程序使用。TCP通常使用IP作为网络层协议,这是TCP数据被封装在IP数据包内。TCP数据段由TCP Header(头部)和TCP Data(数据)组成。TCP最多可以有60个字节的头部,如果没有Options字段,正常的长度是20字节。TCP Header是由如上图标识一些字段组成,这里列出几个常用字段。注意:1)主机A(通常也叫客户端)发送一个标识了SYN数据段,标识期望与服务器A建立连接,此数据段的序列号(seq)为a;2)服务器A回复标识了SYN+ACK的数据段,此数据段的序列号(seq)为b,确认序列号为主机A的序列号加1(a+1),以此作为对主机A的SYN报文的确认。3)主机A发送一个标识了ACK的数据段,此数据段的序列号(seq)为a+1,确认序列号为服务器A的序列号加1(b+1),以此作为对服务器A的SYN报文段的确认。TCP是一种可靠的,面向连接的全双工传输层协议。TCP连接的简历是一个三次握手的过程。TCP的可靠传输还提现在TCP使用了确认技术来确保目的设备收到了从源设备发来的数据,并且是准确无误的。确认技术的工作原理如下:目的设备接收到源设备发送的数据段时,会向源端发送确认报文,源设备收到确认报文后,继续发送数据段,如此重复。如图所示,主机A向服务器A发送TCP数据段,为描述方便假设每个数据段的长度都是500个字节。当服务器A成功收到序列号是M+1499的字节以及之前的所有字节时,会以序列号M+1400+1=M+1500进行确认。另外,由于数据段N+3传输失败,所以服务器A未能收到序列号为M+1500的字节,因此服务器A还会再次以序列号M+1500进行确认。注意:上面说到,数据段 N+3 传输失败,那么第二次确认号M+1500,主机A会将N+3,N+4,N+5全部发送一次。TCP滑动窗口技术通过动态改变窗口大小来实现对端到端设备之间的数据传输进行流量控制。如图所示,主机A和服务器A之间通过滑动窗口来实现流量控制。为了方便理解,此例中只考虑主机A发送数据给服务器A时,服务器A通过滑动窗口进行流量控制。例子中:主机A向服务器发送4个长度为1024字节的数据段,其中主机的窗口大小为4096个字节。服务器A收到第3个字节之后,缓存区满,第4个数据段被丢弃。服务器以ACK3073(1024*3=3072)响应,窗口大小调整为3072,表明服务器的缓冲区只能处理3072个字节的数据段。于是主机A改变其发送速率,发送窗口大小为3072的数据段。主机在关闭连接之前,要确认收到来自对方的ACK。TCP支持全双工模式传输数据,这意味着统一时刻两个方向都可以进行数据的传输。在传输数据之前,TCP通过三次握手建立的实际上是两个方向的连接,一次在传输完毕后,两个方向的连接必须都关闭。TCP连接的建立是一个三次握手过程,而TCP连接的终止则要经过四次挥别。如图:1.主机A想终止连接,于是发送一个标识了FIN,ACK的数据段,序列号为a,确认序列号为b。2.服务器A回应一个标识了ACK的数据段,序列号为b,确认序号为a+1,作为对主机A的FIN报文的确认。3.服务器A想终止连接,于是向主机A发送一个标识了FIN,ACK的数据段,序列号为b,确认好为a+1。4.主机A回应一个标识了ACK的数据段,序列号为a+1,确认序号为b+1,作为对服务器A的FIN报文的确认。以上四次交互完成了两个方向连接的关闭。TCP断开连接的步骤,这个比较详细:https://blog.csdn.net/ctrl_qun/article/details/52518479UDP是一种面向无连接的传输层协议,传输可靠性没有保证。当应用程序对传输的可靠性要求不高时,但是对传输速度和延迟要求较高时,可以用UDP协议来替代TCP协议在传输层控制数据的转发。UDP将数据从源端发送到目的端时,无需事先建立连接。UDP采用了简单,容易操作的机制在应用程序间传输数据,没有使用TCP中的确认技术或滑动窗口机制,因此UDP不能保证数据传输的可靠性,也无法避免接受到重复数据的情况。UDP头部仅占8个字节,传输数据时没有确认机制(注意,但是有校验和)。UDP报文分为UDP报文头和UDP数据区域两个部分。报头由源端口,目的端口,报文长度以及校验和组成。UDP适合于实时数据传输,比如语音和视频通信。相比TCP,UDP的传输效率更高,开销更小,但是无法保证数据传输可靠性。UDP头部的标识如下:1)16位源端口号:源主机的应用程序使用的端口号。2)16位目的端口号:目的主机的应用程序使用的端口号。3)16位UDP长度:是指UDP头部和UDP数据的字节长度。因为UDP头部长度是8字节,所以字段的最小值为8。4)16位UDP校验和:该字段提供了与TCP校验字段同样的功能;该字段是可选的。使用UDP传输数据时,由应用程序根据需要提供报文到达确认,排序,流量控制等功能。主机A发送数据包时,这些数据包是以有序的方式发送到网络中的,每个数据包独立地在网络中被发送,所以不同的数据包可能会通过不同的网路径叨叨主机B。这样的情况下,先发送的数据包不一定先到达主机B。因为UDP数据包没有序号,主机B将无法通过UDP协议将数据包按照原来的顺序重新组合,所以此时需要应用程序提供报文的到达确认,排序和流量控制等功能(也就是说UDP报文的到达确认,排序和流量控制是应用程序来确定的)。通常情况下,UDP采用实时传输机制和时间戳来传输语音和视频数据。UDP适合传输对延迟敏感的流量,如语音和视频。在使用TCP协议传输数据时,如果一个数据段丢失或者接受端对某个数据段没有确认,发送端会重新发送该数据段。TCP重新发送数据会带来传输延迟和重复数据,降低了用户的体验。对于延迟敏感的应用,少量的数据丢失一般可以被忽略,这是使用UDP传输能够提升用户的体验。总结:1.TCP头部中的确认标识位有什么作用呢?TCP报文头中的ACK标识位用于目的端对已接受到数据的确认。目的端成功收到序列号为x的字节后,会以序列号x+1进行确认。2.TCP头部中有哪些标识位参与TCP三次握手?在TCP三次握手过程中,要使用SYN和ACK标识位来请求建立连接和确认建立连接。

22TCP IP 网络协议基础入门--传输层:UDP协议
通信的两端是两台主机,IP 数据报首部就标明了这两台主机的 IP 地址。但是从传输层来看,是发送方主机中的一个进程与接收方主机中的一个进程在交换数据,因此严格地讲,通信双方不是主机,而是主机中的进程。主机中常常有多个应用进程同时在与外部通信(比如你的浏览器和 QQ 在同时运行),下图中,A 主机的 AP1 进程在与 B 主机的 AP3 进程通信,同时主机 A 的 AP2 进程也在与 B 主机的 AP4 进程通信。两个主机的传输层之间有一个灰色双向箭头,写着“传输层提供应用进程间的逻辑通信”。逻辑通信:看起来数据似乎是沿着双向箭头在传输层水平传输的,但实际上是沿图中的虚线经多个协议层次而传输。TCP/IP 协议栈传输层有两个重要协议——UDP 和 TCP,不同的应用进程在传输层使用 TCP 或 UDP 之一。在第一节我们已经了解过端口的概念,端口的作用体现在传输层。刚才的图中,AP1 与 AP3 的通信与 AP2 与 AP4 的通信可以使用同一个传输层协议来传输(TCP 或 UDP),根据 IP 地址或 MAC 地址都只能把数据传到正确的主机,但具体需要传到哪一个进程,是通过端口来辨认的。比如同时使用浏览器和 QQ,浏览器占用 80 端口,而 QQ 占用 4000 端口,那么发送过来的 QQ 消息便会通过 4000 端口显示在 QQ 客户端,而不会错误地显示在浏览器上。端口号有 0 ~ 65535 的编号,其中:编号 0 ~ 1023 为系统端口号,这些端口号可以在网址www.iana.org查询到,它们被指派给了 TCP/IP 最重要的一些应用程序,以下是一些常见的系统端口号:下面使用 netstat -luant 命令列出了监听中的端口:可以看到都是 TCP 协议的。不过后面我们会编写一个程序来模拟发送 UDP 报文,并使用 tcpdump 工具抓包,来帮助大家理解 UDP 协议。UDP(User Datagram Protocol)用户数据报协议,它只在 IP 数据报服务之上增加了很少一点功能,它的主要特点有:UDP 是无连接的,发送数据之前不需要建立连接(而 TCP 需要),减少了开销和时延。UDP尽最大努力交付,不保证交付可靠性。UDP 是面向报文的,对于从应用层交付下来的 IP 数据报,只做很简单的封装(8 字节 UDP 报头),首部开销小。UDP 没有拥塞控制,出现网络拥塞时发送方也不会降低发送速率。这种特性对某些实时应用是很重要的,比如 IP 电话,视频会议等,它们允许拥塞时丢失一些数据,因为如果不抛弃这些数据,极可能造成时延的累积。UDP 支持一对一、一对多、多对一和多对多的交互通信。从应用层到传输层,再到网络层的各层次封装:UDP 数据报可分为两部分:UDP 报头和数据部分。其中数据部分是应用层交付下来的数据。UDP 报头总共 8 字节,而这 8 字节又分为 4 个字段:这个 C 程序会向 IP 地址 192.168.1.1 的 7777 端口发送一条 "hello" 消息。你可以用编辑器修改程序,向不同的 IP 发送不同的内容。编译完成后先别运行,我们还需要使用一个知名的抓包工具 tcpdump,依次输入以下命令安装,并运行 tcpdump:新开一个终端,输入以下命令运行刚才编译好的 C 程序 test:test 程序运行结束,返回刚才运行 tcpdump 的终端查看抓包结果:蓝色框为 16 进制目的端口,绿色框为 16 进制目的 IP,红色框为 20 字节 IP 报头,橘色下划线为 8 字节 UDP 报头,红色下划线为 hello 的 ASCII 码。从 4500 到 0101 都是 IP 报头,IP 报文在之前已经讲过,这里就不赘述了。后面的部分就是 UDP 报文。我们知道 UDP 报头一共 8 字节,所以从 eb39 到 ac82 是 UDP 报头的部分。eb39:源端口,2 字节,换成十进制也就是 328301e61:目的端口,2 字节,十进制为 7777001c:包长度,单位为字节,换为十进制可知包长度为 28 字节ac82:校验和后面的就是数据内容的 ASCII 码。使用 tcpdump 抓取 UDP 数据报,解读报文。修改 C 程序,向不同的 IP、不同的端口发送不同的内容。

UDP协议 是什么?
UDP协议一般指UDPUDP 是User Datagram Protocol的简称, 中文名是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务,IETF RFC 768是UDP的正式规范。UDP在IP报文的协议号是17。Internet 协议集支持一个无连接的传输协议,该协议称为用户数据报协议(UDP,User Datagram Protocol)。UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据报的方法。RFC 768 描述了 UDP。扩展资料:UDP协议与TCP协议一样用于处理数据包,在OSI模型中,两者都位于传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。UDP用来支持那些需要在计算机之间传输数据的网络应用。包括网络视频会议系统在内的众多的客户/服务器模式的网络应用都需要使用UDP协议。UDP协议从问世至今已经被使用了很多年,虽然其最初的光彩已经被一些类似协议所掩盖,但即使在今天UDP仍然不失为一项非常实用和可行的网络传输层协议。参考资料来源:百度百科-UDP协议参考资料来源:百度百科-TCP
UDP(User Data Protocol,用户数据报协议)是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去! UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。比如,我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。例如,在默认状态下,一次“ping”操作发送4个数据包(如图2所示)。大家可以看到,发送的数据包数量是4包,收到的也是4包(因为对方主机收到后会发回一个确认收到的数据包)。这充分说明了UDP协议是面向非连接的协议,没有建立连接的过程。正因为UDP协议没有连接的过程,所以它的通信效果高;但也正因为如此,它的可靠性不如TCP协议高。QQ就使用UDP发消息,因此有时会出现收不到消息的情况。 TCP协议和UDP协议各有所长、各有所短,适用于不同要求的通信环境。

UDP是什么,UDP协议及优缺点
UDP,全称 User Datagram Protocol,中文名称为用户数据报协议,主要用来支持那些需要在计算机之间传输数据的网络连接。UDP协议从问世至今已经被使用了很多年,虽然目前 UDP 协议的应用不如 TCP 协议广泛,但 UDP 依然是一种非常实用和可行的网络传输层协议。尤其是在一些实时性很强的应用场景中,比如网络游戏、视频会议等,UDP 协议的快速能力更具有独特的魅力。UDP 是一种面向非连接的协议,面向非连接指的是在正式通信前不必与对方先建立连接,不管对方状态就直接发送数据。至于对方是否可以接收到这些数据,UDP 协议无法控制,所以说 UDP 是一种不可靠的协议。UDP 协议适用于一次只传送少量数据、对可靠性要求不高的应用环境。与前面介绍的 TCP 协议一样,UDP 协议直接位于 IP 协议之上。实际上,IP 协议属于 OSI 参考模型的网络层协议,而 UDP 协议和 TCP 协议都属于传输层协议。因为 UDP 是面向非连接的协议,没有建立连接的过程,因此它的通信效率很高,但也正因为如此,它的可靠性不如 TCP 协议。UDP 协议的主要作用是完成网络数据流和数据报之间的转换在信息的发送端,UDP 协议将网络数据流封装成数据报,然后将数据报发送出去;在信息的接收端,UDP 协议将数据报转换成实际数据内容。可以认为 UDP 协议的 socket 类似于码头,数据报则类似于集装箱。码头的作用就是负责友送、接收集装箱,而 socket 的作用则是发送、接收数据报。因此,对于基于 UDP 协议的通信双方而言,没有所谓的客户端和服务器端的概念。UDP 协议和 TCP 协议简单对比如下:TCP 协议:可靠,传输大小无限制,但是需要连接建立时间,差错控制开销大。UDP 协议:不可靠,差错控制开销较小,传输大小限制在 64 KB以下,不需要建立连接。?相比较 TCP,UDP 是一种不可靠的网络协议,它在通信实例的两端各建立一个 socket,但这两个 socket 之间并没有虚拟链路,它们只是发送、接收数据报的对象。

详解基于UDP的低延时网络传输层协议——QUIC
Quic 全称 quick udp internet connection [1],“快速 UDP 互联网连接”,(和英文 quick 谐音,简称“快”)是由 Google 提出的使用 udp 进行多路并发传输的协议。 Quic 相比现在广泛应用的 http2+tcp+tls 协议有如下优势 [2]:减少了 TCP 三次握手及 TLS 握手时间;改进的拥塞控制;避免队头阻塞的多路复用;连接迁移;前向冗余纠错。从上个世纪 90 年代互联网开始兴起一直到现在,大部分的互联网流量传输只使用了几个网络协议。使用 IPv4 进行路由,使用 TCP 进行连接层面的流量控制,使用 SSL/TLS 协议实现传输安全,使用 DNS 进行域名解析,使用 HTTP 进行应用数据的传输。而且近三十年来,这几个协议的发展都非常缓慢。TCP 主要是拥塞控制算法的改进,SSL/TLS 基本上停留在原地,几个小版本的改动主要是密码套件的升级,TLS1.3[3] 是一个飞跃式的变化,但截止到今天,还没有正式发布。IPv4 虽然有一个大的进步,实现了 IPv6,DNS 也增加了一个安全的 DNSSEC,但和 IPv6 一样,部署进度较慢。随着移动互联网快速发展以及物联网的逐步兴起,网络交互的场景越来越丰富,网络传输的内容也越来越庞大,用户对网络传输效率和 WEB 响应速度的要求也越来越高。一方面是历史悠久使用广泛的古老协议,另外一方面用户的使用场景对传输性能的要求又越来越高。如下几个由来已久的问题和矛盾就变得越来越突出:协议历史悠久导致中间设备僵化;依赖于操作系统的实现导致协议本身僵化;建立连接的握手延迟大;队头阻塞。可能是 TCP 协议使用得太久,也非常可靠。所以我们很多中间设备,包括防火墙、NAT 网关,整流器等出现了一些约定俗成的动作。比如有些防火墙只允许通过 80 和 443,不放通其他端口。NAT 网关在转换网络地址时重写传输层的头部,有可能导致双方无法使用新的传输格式。整流器和中间代理有时候出于安全的需要,会删除一些它们不认识的选项字段。TCP 协议本来是支持端口、选项及特性的增加和修改。但是由于 TCP 协议和知名端口及选项使用的历史太悠久,中间设备已经依赖于这些潜规则,所以对这些内容的修改很容易遭到中间环节的干扰而失败。而这些干扰,也导致很多在 TCP 协议上的优化变得小心谨慎,步履维艰。TCP 是由操作系统在内核西方栈层面实现的,应用程序只能使用,不能直接修改。虽然应用程序的更新迭代非常快速和简单。但是 TCP 的迭代却非常缓慢,原因就是操作系统升级很麻烦。现在移动终端更加流行,但是移动端部分用户的操作系统升级依然可能滞后数年时间。PC 端的系统升级滞后得更加严重,windows xp 现在还有大量用户在使用,尽管它已经存在快 20 年。服务端系统不依赖用户升级,但是由于操作系统升级涉及到底层软件和运行库的更新,所以也比较保守和缓慢。这也就意味着即使 TCP 有比较好的特性更新,也很难快速推广。比如 TCP Fast Open。它虽然 2013 年就被提出了,但是 Windows 很多系统版本依然不支持它。 即时通讯聊天软件开发可以咨询蔚可云。不管是 HTTP1.0/1.1 还是 HTTPS,HTTP2,都使用了 TCP 进行传输。HTTPS 和 HTTP2 还需要使用 TLS 协议来进行安全传输。这就出现了两个握手延迟:1)TCP 三次握手导致的 TCP 连接建立的延迟;2)TLS 完全握手需要至少 2 个 RTT 才能建立,简化握手需要 1 个 RTT 的握手延迟。对于很多短连接场景,这样的握手延迟影响很大,且无法消除。队头阻塞主要是 TCP 协议的可靠性机制引入的。TCP 使用序列号来标识数据的顺序,数据必须按照顺序处理,如果前面的数据丢失,后面的数据就算到达了也不会通知应用层来处理。另外 TLS 协议层面也有一个队头阻塞,因为 TLS 协议都是按照 record 来处理数据的,如果一个 record 中丢失了数据,也会导致整个 record 无法正确处理。概括来讲,TCP 和 TLS1.2 之前的协议存在着结构性的问题,如果继续在现有的 TCP、TLS 协议之上实现一个全新的应用层协议,依赖于操作系统、中间设备还有用户的支持。部署成本非常高,阻力非常大。所以 QUIC 协议选择了 UDP,因为 UDP 本身没有连接的概念,不需要三次握手,优化了连接建立的握手延迟,同时在应用程序层面实现了 TCP 的可靠性,TLS 的安全性和 HTTP2 的并发性,只需要用户端和服务端的应用程序支持 QUIC 协议,完全避开了操作系统和中间设备的限制。0RTT 建连可以说是 QUIC 相比 HTTP2 最大的性能优势。那什么是 0RTT 建连呢?这里面有两层含义:传输层 0RTT 就能建立连接;加密层 0RTT 就能建立加密连接。TCP 的拥塞控制实际上包含了四个算法:慢启动,拥塞避免,快速重传,快速恢复 [22]。QUIC 协议当前默认使用了 TCP 协议的 Cubic 拥塞控制算法 [6],同时也支持 CubicBytes, Reno, RenoBytes, BBR, PCC 等拥塞控制算法。从拥塞算法本身来看,QUIC 只是按照 TCP 协议重新实现了一遍,那么 QUIC 协议到底改进在哪些方面呢?主要有如下几点。【可插拔】:什么叫可插拔呢?就是能够非常灵活地生效,变更和停止。体现在如下方面:1)应用程序层面就能实现不同的拥塞控制算法,不需要操作系统,不需要内核支持。这是一个飞跃,因为传统的 TCP拥塞控制,必须要端到端的网络协议栈支持,才能实现控制效果。而内核和操作系统的部署成本非常高,升级周期很长,这在产品快速迭代,网络爆炸式增长的今天,显然有点满足不了需求;2)即使是单个应用程序的不同连接也能支持配置不同的拥塞控制。就算是一台服务器,接入的用户网络环境也千差万别,结合大数据及人工智能处理,我们能为各个用户提供不同的但又更加精准更加有效的拥塞控制。比如 BBR 适合,Cubic 适合;3)应用程序不需要停机和升级就能实现拥塞控制的变更,我们在服务端只需要修改一下配置,reload 一下,完全不需要停止服务就能实现拥塞控制的切换。STGW 在配置层面进行了优化,我们可以针对不同业务,不同网络制式,甚至不同的 RTT,使用不同的拥塞控制算法。【单调递增的 Packet Number】:TCP 为了保证可靠性,使用了基于字节序号的 Sequence Number 及 Ack 来确认消息的有序到达。QUIC 同样是一个可靠的协议,它使用 Packet Number 代替了 TCP 的 sequence number,并且每个 Packet Number 都严格递增,也就是说就算 Packet N 丢失了,重传的 Packet N 的 Packet Number 已经不是 N,而是一个比 N 大的值。而 TCP 呢,重传 segment 的 sequence number 和原始的 segment 的 Sequence Number 保持不变,也正是由于这个特性,引入了 Tcp 重传的歧义问题。QUIC 的流量控制 [22] 类似 HTTP2,即在 Connection 和 Stream 级别提供了两种流量控制。为什么需要两类流量控制呢?主要是因为 QUIC 支持多路复用。Stream 可以认为就是一条 HTTP 请求。Connection 可以类比一条 TCP 连接。多路复用意味着在一条 Connetion 上会同时存在多条 Stream。既需要对单个 Stream 进行控制,又需要针对所有 Stream 进行总体控制。QUIC 实现流量控制的原理比较简单:通过 window_update 帧告诉对端自己可以接收的字节数,这样发送方就不会发送超过这个数量的数据。通过 BlockFrame 告诉对端由于流量控制被阻塞了,无法发送数据。QUIC 的流量控制和 TCP 有点区别,TCP 为了保证可靠性,窗口左边沿向右滑动时的长度取决于已经确认的字节数。如果中间出现丢包,就算接收到了更大序号的 Segment,窗口也无法超过这个序列号。但 QUIC 不同,就算此前有些 packet 没有接收到,它的滑动只取决于接收到的最大偏移字节数。QUIC 的多路复用和 HTTP2 类似。在一条 QUIC 连接上可以并发发送多个 HTTP 请求 (stream)。但是 QUIC 的多路复用相比 HTTP2 有一个很大的优势。QUIC 一个连接上的多个 stream 之间没有依赖。这样假如 stream2 丢了一个 udp packet,也只会影响 stream2 的处理。不会影响 stream2 之前及之后的 stream 的处理。 这也就在很大程度上缓解甚至消除了队头阻塞的影响。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/46106.html。