三次握手四次挥手面试题(三次握手四次挥手过程)

      最后更新:2022-11-26 19:07:14 手机定位技术交流文章

      TCP和UDP分别用于什么情况,tcp三次握手四次挥手?

      tcp:提供面向连接的服务,数据传输前先建立连接,传输完毕后释放连接,提供可靠连接; udp:发送数据前不需要先建立连接,发送后也不需要释放连接,减少开销和延迟,但不保证可靠交付。 tcp建立连接的时候需要三次握手,释放连接需要4次挥手。
      TCP和UDP分别用于什么情况,tcp三次握手四次挥手?

      一文搞懂TCP的三次握手和四次挥手

      TCP的三次握手和四次挥手实质就是TCP通信的连接和断开。 三次握手:为了对每次发送的数据量进行跟踪与协商,确保数据段的发送和接收同步,根据所接收到的数据量而确认数据发送、接收完毕后何时撤消联系,并建立虚连接。四次挥手:即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。TCP三次握手、四次挥手时序图TCP协议位于传输层,作用是提供可靠的字节流服务,为了准确无误地将数据送达目的地,TCP协议采纳三次握手策略。三次握手原理:第1次握手:客户端发送一个带有SYN(synchronize)标志的数据包给服务端;第2次握手:服务端接收成功后,回传一个带有SYN/ACK标志的数据包传递确认信息,表示我收到了;第3次握手:客户端再回传一个带有ACK标志的数据包,表示我知道了,握手结束。其中:SYN标志位数置1,表示建立TCP连接;ACK标志表示验证字段。可通过以下趣味图解理解三次握手:三次握手过程详细说明:1、客户端发送建立TCP连接的请求报文,其中报文中包含seq序列号,是由发送端随机生成的,并且将报文中的SYN字段置为1,表示需要建立TCP连接。(SYN=1,seq=x,x为随机生成数值);2、服务端回复客户端发送的TCP连接请求报文,其中包含seq序列号,是由回复端随机生成的,并且将SYN置为1,而且会产生ACK字段,ACK字段数值是在客户端发送过来的序列号seq的基础上加1进行回复,以便客户端收到信息时,知晓自己的TCP建立请求已得到验证。(SYN=1,ACK=x+1,seq=y,y为随机生成数值)这里的ack加1可以理解为是确认和谁建立连接;3、客户端收到服务端发送的TCP建立验证请求后,会使自己的序列号加1表示,并且再次回复ACK验证请求,在服务端发过来的seq上加1进行回复。(SYN=1,ACK=y+1,seq=x+1)。由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。四次挥手原理:第1次挥手:客户端发送一个FIN,用来关闭客户端到服务端的数据传送,客户端进入FIN_WAIT_1状态;第2次挥手:服务端收到FIN后,发送一个ACK给客户端,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),服务端进入CLOSE_WAIT状态;第3次挥手:服务端发送一个FIN,用来关闭服务端到客户端的数据传送,服务端进入LAST_ACK状态;第4次挥手:客户端收到FIN后,客户端t进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,服务端进入CLOSED状态,完成四次挥手。其中:FIN标志位数置1,表示断开TCP连接。可通过以下趣味图解理解四次挥手:四次挥手过程详细说明:1、客户端发送断开TCP连接请求的报文,其中报文中包含seq序列号,是由发送端随机生成的,并且还将报文中的FIN字段置为1,表示需要断开TCP连接。(FIN=1,seq=x,x由客户端随机生成);2、服务端会回复客户端发送的TCP断开请求报文,其包含seq序列号,是由回复端随机生成的,而且会产生ACK字段,ACK字段数值是在客户端发过来的seq序列号基础上加1进行回复,以便客户端收到信息时,知晓自己的TCP断开请求已经得到验证。(FIN=1,ACK=x+1,seq=y,y由服务端随机生成);3、服务端在回复完客户端的TCP断开请求后,不会马上进行TCP连接的断开,服务端会先确保断开前,所有传输到A的数据是否已经传输完毕,一旦确认传输数据完毕,就会将回复报文的FIN字段置1,并且产生随机seq序列号。(FIN=1,ACK=x+1,seq=z,z由服务端随机生成);4、客户端收到服务端的TCP断开请求后,会回复服务端的断开请求,包含随机生成的seq字段和ACK字段,ACK字段会在服务端的TCP断开请求的seq基础上加1,从而完成服务端请求的验证回复。(FIN=1,ACK=z+1,seq=h,h为客户端随机生成)至此TCP断开的4次挥手过程完毕。LISTEN:等待从任何远端TCP 和端口的连接请求。SYN_SENT:发送完一个连接请求后等待一个匹配的连接请求。SYN_RECEIVED:发送连接请求并且接收到匹配的连接请求以后等待连接请求确认。ESTABLISHED:表示一个打开的连接,接收到的数据可以被投递给用户。连接的数据传输阶段的正常状态。FIN_WAIT_1:等待远端TCP 的连接终止请求,或者等待之前发送的连接终止请求的确认。FIN_WAIT_2:等待远端TCP 的连接终止请求。CLOSE_WAIT:等待本地用户的连接终止请求。CLOSING:等待远端TCP 的连接终止请求确认。LAST_ACK:等待先前发送给远端TCP 的连接终止请求的确认(包括它字节的连接终止请求的确认)TIME_WAIT:等待足够的时间过去以确保远端TCP 接收到它的连接终止请求的确认。TIME_WAIT 两个存在的理由:1.可靠的实现tcp全双工连接的终止;2.允许老的重复分节在网络中消逝。 CLOSED:不在连接状态(这是为方便描述假想的状态,实际不存在)。
      一文搞懂TCP的三次握手和四次挥手

      OSI七层模型 三次握手 四次挥手

      我们可以看到首先主机A发送一个SYN报文打算建立连接, SYN=1 ACK=0 seq=x然后主机B收到请求报文后,返回确认报文SYN=1 ACK=1 seq=y ack=x+1SYN=1代表这条不是普通报文,是一个请求或者响应报文ACK=0 请求 ACK=1响应然后主机A对报文进行确认SYN=0 ACK=1 seq=x+1 ack=y+1之前的主机A发送的SYN报文消耗一个序号 所以这里的seq=x+1为了防止已经失效的报文突然又传送到主机B这里假设一种情况,主机A发送了一个SYN报文,然后这个报文因为网络阻塞等原因,延误到报文超时失效才达到主机B。主机B误认为是A的另一次请求,则同意并返回确认报文。然而主机A因为没有发送请求报文,而不理会这个确认报文。也不向主机B发送数据,主机B一直等待,资源浪费。如果是三次握手,则刚刚主机B发生的确认报文,主机A不会发送确认。主机B没接受确认也不会建立这次连接了。我们首先看到主机A发送一个FIN报文请求释放连接FIN=1 seq=uFIN报文消耗一个序号,这里seq=u是上一次传输数据的最后一个字节的序号+1主机B收到FIN报文,返回确认报文ACK=1 ack=u+1 seq=vv也是主机B已经传送过数据最后一个字节序号+1主机B通知上层应用,A到B的连接释放,此时处于半连接状态B可能还要向A传送数据...B不再向A发送数据,上层应用通知TCP释放连接B发起一个FIN报文FIN=1 ACK=1 ack=u+1 seq=v对上一次的一端释放的确认,同时发送这一方的释放,上一次发送的ACK报文不消耗序号 seq=vA收到报文后,发送确认报文ACK=1 ack=v+1 seq=u+1FIN报文消耗一个序号seq=u+1等待超时2MSL在等待过程中若A没有再收到B的FIN报文,则代表A的确认报文没有丢失,释放连接。若有,A再重传确认报文到B等待超时。65535-20-20=65495因为IP数据报最大长度65535 TCP首部20字节 IP首部20字节,剩下的就是数据部分。数据的字节长度超过TCP报文段中的序号字段可能编出的最大序号,通过循环使用序号,仍能用TCP来传送。完全可能。设想A连续发送两个报文段:(SEQ=92,DATA共8个字节)和(SEQ=100,DATA共20字节),均正确到达B。B连续发送两个确认:(ACK=100)和(ACK=120)。但前者在传送时丢失了。于是A超时重传(SEQ=92,DATA共8字节),而B再次收到该报文段后,发送(ACK=100)。这样,在这个报文段之前发送的就是(ACK=120)。现在假设如果我们在客户端(客户端)浏览器中输入http://www.baidu.com,而 baidu.com 为要访问的服务器(服务器),下面详细分析客户端为了访问服务器而执行的一系列关于协议的操作:1)客户端浏览器通过DNS解析到www.baidu.com的IP地址220.181.27.48,通过这个IP地址找到客户端到服务器的路径。客户端浏览器发起一个HTTP会话到220.161.27.48,然后通过TCP进行封装数据包,输入到网络层。2)在客户端的传输层,把HTTP会话请求分成报文段,添加源和目的端口,如服务器使用80端口监听客户端的请求,客户端由系统随机选择一个端口如5000,与服务器进行交换,服务器把相应的请求返回给客户端的5000端口。然后使用IP层的IP地址查找目的端。3)达到IP层之后,主要做的是通过查找路由表确定如何到达服务器,期间可能经过多个路由器,这些都是由路由器来完成的工作,通过查找路由表决定通过那个路径到达服务器。4)客户端的链路层,包通过链路层发送到路由器,通过邻居协议查找给定IP地址的MAC地址,然后发送ARP请求查找目的地址,如果得到回应后就可以使用ARP的请求应答交换IP数据包,然后再根据路由表的路径再次交换,直到交换到目的地址的路由器之后,最终到达目的网络上的一个主机。这时双方就传输成功了。客户端发送IP数据包到达服务器的地址。IP地址由网络号(包括子网号)和主机号组成,网络地址的主机号为全0,网络地址代表着整个网络。比如:128.0.0.0广播地址与网络地址的主机号正好相反,广播地址中,主机号为全1。当向某个网络的广播地址发送消息时,该网络内的所有主机都能收到该广播消息。A类地址以0开头,第一个字节作为网络号,地址范围为:0.0.0.0~127.255.255.255;B类地址以10开头,前两个字节作为网络号,地址范围是:128.0.0.0~191.255.255.255;C类地址以110开头,前三个字节作为网络号,地址范围是:192.0.0.0~223.255.255.255。D类地址以1110开头,地址范围是224.0.0.0~239.255.255.255,D类地址作为组播地址(一对多的通信);E类地址以1111开头,地址范围是240.0.0.0~255.255.255.255,E类地址为保留地址,供以后使用。注:只有A,B,C有网络号和主机号之分,D类地址和E类地址没有划分网络号和主机号。A、B、C类私有地址私有地址(private address)也叫专用地址,它们不会在全球使用,只具有本地意义。A类私有地址:10.0.0.0/8,范围是:10.0.0.0~10.255.255.255B类私有地址:172.16.0.0/12,范围是:172.16.0.0~172.31.255.255 C类私有地址:192.168.0.0/16,范围是:192.168.0.0~192.168.255.255
      OSI七层模型 三次握手 四次挥手

      Go 语言自我提升 (三次握手 - 四次挥手 - TCP状态图 - udp - 网络文件传输)

      三次握手: 1. 主动发起连接请求端(客户端),发送 SYN 标志位,携带数据包、包号2. 被动接收连接请求端(服务器),接收 SYN,回复 ACK,携带应答序列号。同时,发送SYN标志位,携带数据包、包号3. 主动发起连接请求端(客户端),接收SYN 标志位,回复 ACK。被动端(服务器)接收 ACK —— 标志着 三次握手建立完成( Accept()/Dial() 返回 )四次挥手:1. 主动请求断开连接端(客户端), 发送 FIN标志,携带数据包2. 被动接受断开连接端(服务器), 发送 ACK标志,携带应答序列号。 —— 半关闭完成。3. 被动接受断开连接端(服务器), 发送 FIN标志,携带数据包4. 主动请求断开连接端(客户端), 发送 最后一个 ACK标志,携带应答序列号。—— 发送完成,客户端不会直接退出,等 2MSL时长。等 2MSL待目的:确保服务器 收到最后一个ACK滑动窗口:通知对端本地存储数据的 缓冲区容量。—— write 函数在对端 缓冲区满时,有可能阻塞。TCP状态转换:1. 主动发起连接请求端:CLOSED ——> 发送SYN ——> SYN_SENT(了解) ——> 接收ACK、SYN,回发 ACK ——> ESTABLISHED (数据通信)2. 主动关闭连接请求端:ESTABLISHED ——> 发送FIN ——> FIN_WAIT_1 ——> 接收ACK ——> FIN_WAIT_2 (半关闭、主动端)——> 接收FIN、回复ACK ——> TIME_WAIT (主动端) ——> 等 2MSL 时长 ——> CLOSED3. 被动建立连接请求端:CLOSED ——> LISTEN ——> 接收SYN、发送ACK、SYN ——> SYN_RCVD ——> 接收 ACK ——> ESTABLISHED (数据通信)4. 被动断开连接请求端:ESTABLISHED ——> 接收 FIN、发送 ACK ——> CLOSE_WAIT ——> 发送 FIN ——> LAST_ACK ——> 接收ACK ——> CLOSEDwindows下查看TCP状态转换:netstat -an | findstr  端口号Linux下查看TCP状态转换:netstat -an | grep  端口号TCP和UDP对比:TCP: 面向连接的可靠的数据包传递。 针对不稳定的 网络层,完全弥补。ACKUDP:无连接不可靠的报文传输。 针对不稳定的 网络层,完全不弥补。还原网络真实状态。优点                                                            缺点TCP:可靠、顺序、稳定                                     系统资源消耗大,程序实现繁复、速度慢UDP:系统资源消耗小,程序实现简单、速度快                          不可靠、无序、不稳定使用场景:TCP:大文件、可靠数据传输。 对数据的 稳定性、准确性、一致性要求较高的场合。UDP:应用于对数据时效性要求较高的场合。 网络直播、电话会议、视频直播、网络游戏。UDP-CS-Server实现流程:1.  创建 udp地址结构 ResolveUDPAddr(“协议”, “IP:port”) ——> udpAddr 本质 struct{IP、port}2.  创建用于 数据通信的 socket ListenUDP(“协议”, udpAddr ) ——> udpConn (socket)3.  从客户端读取数据,获取对端的地址 udpConn.ReadFromUDP() ——> 返回:n,clientAddr, err4.  发送数据包给 客户端 udpConn.WriteToUDP("数据", clientAddr)UDP-CS-Client实现流程:1.  创建用于通信的 socket。 net.Dial("udp", "服务器IP:port") ——> udpConn (socket)2.  以后流程参见 TCP客户端实现源码。UDPserver默认就支持并发!------------------------------------命令行参数: 在main函数启动时,向整个程序传参。 【重点】语法: go run xxx.go   argv1 argv2  argv3  argv4 。。。xxx.exe:  第 0 个参数。argv1 :第 1 个参数。argv2 :第 2 个参数。argv3 :第 3 个参数。argv4 :第 4 个参数。使用: list := os.Args  提取所有命令行参数。获取文件属性函数:os.stat(文件访问绝对路径) ——> fileInfo 接口fileInfo 包含 两个接口。Name() 获取文件名。 不带访问路径Size() 获取文件大小。网络文件传输 —— 发送端(客户端)1.  获取命令行参数,得到文件名(带路径)filePathlist := os.Args2.  使用 os.stat() 获取 文件名(不带路径)fileName3.  创建 用于数据传输的 socket  net.Dial("tcp", “服务器IP+port”) —— conn4.  发送文件名(不带路径)  给接收端, conn.write()5.  读取 接收端回发“ok”,判断无误。封装函数 sendFile(filePath, conn) 发送文件内容6.  实现 sendFile(filePath,  conn)1) 只读打开文件 os.Open(filePath)for {2) 从文件中读数据  f.Read(buf)3) 将读到的数据写到socket中  conn.write(buf[:n])4)判断读取文件的 结尾。 io.EOF. 跳出循环}网络文件传输 —— 接收端(服务器)1. 创建用于监听的 socket net.Listen() —— listener2. 借助listener 创建用于 通信的 socket listener.Accpet()  —— conn3. 读取 conn.read() 发送端的 文件名, 保存至本地。4. 回发 “ok”应答 发送端。5. 封装函数,接收文件内容 recvFile(文件路径)1) f = os.Create(带有路径的文件名)for {2)从 socket中读取发送端发送的 文件内容 。 conn.read(buf)3)  将读到的数据 保存至本地文件 f.Write(buf[:n])4)  判断 读取conn 结束, 代表文件传输完成。 n == 0  break}
      Go 语言自我提升 (三次握手 - 四次挥手 - TCP状态图 - udp - 网络文件传输)

      详解三次握手和四次挥手:遇到心动的女孩时,如何去把握?

      我有一个朋友,小泷,他与我倾诉:他在咖啡厅与朋友闲谈,遇到了一个让时间彷佛静止的女孩。他描述,那一刻,他的心彻底被抓住了,脑中轰然,眼睛无法再从她身上移开。 而女孩,也时不时向她望来,那是一双如秋水般清澈的明眸。小泷说,他非常非常想想把握,这一次心动。然而,自始自终,他没能迈出那一步,他不知道该怎么办。小泷的困境,是每个男孩的困境。我告诉他,如果你懂得TCP协议,就会把握一段感情了。TCP(Transmission control protocal),传输控制协议,既是机器与机器间传输信息的基础协议,也是人与人联立联系的准则。如何体面地认识她? 如果读懂她是否对你有好感? 如何给予她安全感? 如何离别时要到她的手机号? TCP协议,把一切写得清清楚楚。我对小泷说:一个女孩,不管她性格有多高冷,永远是欣然接受你的好感的。你要做的,也必须要做的,是:我告诉小泷,我也曾经在机场遇到过让我瞬间心动的女孩,我所做的,只是很自然走上去,告诉她:"你好像也坐这趟飞机? 航班号是KN5855没错吧"这对男孩是很简单的事情,因为你们出现的地点,就是共鸣。你关于这个地方,一定有一些具体信息可以分享。所以,小泷,你应走上去说:你也常来这家咖啡厅吧,他们家的焦糖玛奇朵非常棒。这样的谈话,对女孩是提供安全感的:你是一个拥有共同话题,并且会提供实质性价值的男士,而不是随随便便乱勾搭的人。 共鸣的力量是非常强大的,没有女孩会拒绝回应的,即使长相略显寒酸。说回TCP协议,它是这样规定的:(SYN是synchronization同步的简称,seq为sequcence序号的缩写。)这时,客户端的状态更改为SYN-SENT(synchronization_sent同步已发送)状态。也就是说,小泷,你耐心待着女孩回应就是了。这就是“第一次握手”。有了你提供的同步请求SYN=1和具体信息seq=x。女孩会根据这个信息做出响应。女孩这时的状态从LISTEN变为SYNC_RCVD(synchronization_recieved同步已收到)。我在机场遇到的女孩是这样回答我的:嗯嗯,我也坐这趟航班,不过没看到你。你是来深圳出差么?这样回答,是人之常情。你一定可以得到亲切友善的回应。TCP协议中是这样规定的:(ACK是acknowledgement确认的简称,小写的ack是确认编号)所以,女孩一定会认同你,并根据刚刚的信息点延展,而且会提供一个新的信息点。女孩对你不反感,但她也需要确认你是不是真对她有好感。假如我真的只是觉得航班数字很吉利呢?假如你小泷真是就喜欢喝焦糖玛奇朵呢? 她无法确认男生是不是想和她交流,所以一定提出新话题。 而且,抛出新话题才会让彼此显得不尴尬。女孩几乎一定会这样回应:所以小泷,你心动女孩几乎一定会类似的回应:嗯嗯,我喜欢榛仁玛奇朵。我住这附近,你呢?你收到这样友好的回应,心中一定,知道,以后至少可以建立起初步的友谊了。 这时,你的状态更改为ESTABLISHED。(建立连接)虽然对于你,这段男女间青涩的友谊已经建立起了。但女孩,她还在等待你的回应 —— 她也在担忧你只是随意的询问吧。快赶紧安抚这一个善良美好的女孩吧!比如我会回答:嗯是的,有几个客户在深圳需要谈。我坐的商务舱所以没看到你吧。所以,小泷,你需要对她的新话题有所回应,并且不要丢掉自己的话题。这样两个话题都可以聊下去。在TCP协议中这样规定:这对女孩是非常重要的,你对她的话也表示认同,并且也能接住她的话题,同时自己的话题也没有丢掉。——是个能照顾她感受,也坚持自我的人。这时,女孩的状态成为了ESTABLISHED。你们双方都成为了ESTABLISHED,接下来,你们就可以畅通无阻地交流了。男孩会想,我怎么表现得靠谱? TCP给出了答案,共鸣 + 具体话题。女孩心中会想: 他对我感兴趣吗?他是聊得来的人吗? 如何进行“废物测试”?TCP给出了答案:共鸣 + 同意 + 对方话题的延展 + 新具体话题。男孩心中会想,怎么给她留下有主见高情商的好印象?TCP给出了答案: 同意 + 对方话题的延展 + 继续自己话题。仔细想想,这样的方式,让双方既不显尴尬,又体面舒适,又节约了两个人的时间与精力。时间总是短暂的,你们相谈甚欢,到了离别的时候。只有一个体面的离别,才意味着未来依然可以关系持续升温。放心,TCP协议已经为你规划好了。作为主动方的男生,需要首先表示分别,千万不要拖泥带水等到女生提出,这样才能为这段邂逅留下回味与不舍。你需要这时候,是要手机号/微信号的最佳时机。TCP协议是这样规定的:(FIN的意思是finis终结的意思)你已经请求结束了,安静地等待就好。 主动而沉默,给予女生足够的空间,这是最体面的分别方式。这时你的状态是FIN-WAIT-1(终止待待1)热情的聊天突然嘎然而止。女生心中会有些小失落,这时你要微信的请求,她几乎一定会同意。这时女生会找纸张,把自己的手机号或微信号写给你。并跟你说一些其它话。比如她说:嗯是的,等我写给你。你看外面好像快下雨了。TCP协议是这样规定的:因为是你提出离开,女孩还意犹未尽。一方面会同意离开,一方面会延展你的话题。为了确认你确实想离开了,她一般会说一个新话题,比如下雨了。女孩从接到你的离开请求,到回应你这一句的时候,她处于CLOSE_WAIT状态,她会开始进行心理建设,适应你离开时的空洞感。当然,成年人的表达方式,总是隐晦而体面的。只是一句淡淡的“天快下雨了”。而你听到她说这些,只是静静不说话。你进入FIN-WAIT-2状态。你在等着她的手机号,说话可能她突然不写了呢?忍住,别回应。当女孩低头写好手机号,她也做好了离开的心理建设,知道这一次邂逅到此为止了。这时,她说:快回去吧,我写给你啦。 不知道为什么和你呆一起挺愉快的。看,TCP协议影响着你们的一个个行为模式。你不回应,她会换个话题,她会开始猜,她会开始等,她会开始留恋。TCP协议是这样规定的:说出这句话的女孩,进入了LAST_ACK(最终动作)状态——主动权在你,她等着你。你听到女孩再次说话,你会不舍,你等着些什么。你进入TIME_WAIT阶段。知道她要离开了,你的心会突然一痛。但离开已成必然,体面地对她说最后的话吧!TCP协议是这样规定的:听到你说完这句话,女孩把车门关上,车缓缓启动了。女孩进入状态CLOSED(关闭连接)。提出离别的你,却久久站在原地。等了2MSL(两次交谈响应时间那么长),你好希望车突然停下,女孩从车上下来。但一切没有发生。美好的邂逅结束了。你进入CLOSED状态。小泷,你知道吗?懂得TCP协议,也就懂得了如何去抓住属于撩拨你心弦的那个女孩。也许,这才是邂逅时应该的画面:离别时,你们会这样不舍离别:然后,她离开了。你凝望着她,一再回头,直到消失在视线外。每天,有万亿亿次TCP连接,都在为你重演着这一个画面。勇敢一点,不用担心被拒绝,万亿亿次TCP连接都成功了,你怎么会失败呢?因为TCP是网络通讯的规则,也是人类间默契的交流规则。不动声色,内心早已暗流汹涌。却只是对你说。“好巧,我也是这趟航班”几条规则,有助于你记住这一切:
      详解三次握手和四次挥手:遇到心动的女孩时,如何去把握?

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/46611.html

          热门文章

          文章分类