计算机网络tcp(计算机网络技术就业方向)

      最后更新:2023-06-05 03:56:59 手机定位技术交流文章

      如何查看电脑tcp/ip协议设置

      1、首先,双击任务右下角的“双电脑”图标,在弹出窗口中单击“属性”。2、或按“开始菜单”-“控制面板”-“网络连接”,右键单击“本地连接”,在弹出的菜单中选择“属性”。3、在打开的Properties窗口中,找到选项“TCP/IP(V4)”,然后双击该选项。4、在新打开的窗口中,如果路由器已经启动了DHCP(动态主机设置协议)服务,或者在您的计算机网络中有一个专用的DHCP服务器,则可以选择“自动获取IP地址”。5、相反,选择“UsethefollowingIPaddresses”选项并手动设置IP。
      查看电脑tcp/ip协议设置 1、开始——运行——输入CMD并回车——输入ipconfig/all并回车,显示出来的信息就是TCP/IP协议的设置了。2、鼠标右键单击桌面的网络——选择属性——单击属性对话框中的本地连接或者无线网络连接——点击属性——选择TCP/IPV4并双击。TransmissionControlProtocol/InternetProtocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。TCP/IP 定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的协议来完成自己的需求。通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因特网的每一台联网设备规定一个地址。
      右键网上邻居,上面的本地连接,右键属性,然後下面就可以看到了,
      如何查看电脑tcp/ip协议设置

      计算机网络——TCP/UDP协议

      计算机网络七层模型中,传输层有两个重要的协议:(1)用户数据报协议UDP (User Datagram Protocol)(2)传输控制协议TCP (Transmission Control Protocol)UDP 在传送数据之前不需要先建立连接。远地主机的运输层在收到UDP 报文后,不需要给出任何确认。虽然UDP 不提供可靠交付,但在某些情况下UDP 却是一种最有效的工作方式。TCP 则提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于TCP 要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销,如确认、流量控制、计时器以及连接管理等。UDP 的主要特点是:首部手段很简单,只有8 个字节,由四个字段组成,每个字段的长度都是两个字节。前面已经讲过,每条TCP 连接有两个端点,TCP 连接的端点叫做套接字(socket)或插口。套接字格式如下:套接宁socket= (IP 地址:端口号’)每一条TCP 连接唯一地被通信两端的两个端点(即两个套接宇)所确定。即:TCP 连接= {socket1, socket2} = {(IP1: port1), (IP2: port2)}3次握手链接4次握手释放链接断开连接请求可以由客户端发出,也可以由服务器端发出,在这里我们称A端向B端请求断开连接。各个状态节点解释如下:下面为了讨论问题的万便,我们仅考虑A发送数据而B 接收数据并发送确认。因此A 叫做发送方,而B 叫做接收方。“停止等待”就是每发送完一个分组就停止发送,等待对方的确认。在收到确认后再发送下一个分组。使用上述的确认和重传机制,我们就可以在不可靠的传输网络上实现可靠的通信。像上述的这种可靠传输协议常称为自动重传请求ARQ (Automatic Repeat reQuest)。意思是重传的请求是自动进行的。接收方不需要请求发送方重传某个出错的分组。滑动窗口协议比较复杂,是TCP 协议的精髓所在。这里先给出连续ARQ 协议最基本的概念,但不涉提到许多细节问题。详细的滑动窗口协议将在后面讨论。下图表示发送方维持的发送窗口,它的意义是:位于发送窗口内的5 个分组都可连续发送出去,而不需要等待对方的确认。这样,信道利用率就提高了。连续ARQ 协议规定,发送方每收到一个确认,就把发送窗口向前滑动一个分组的位置。接收方一般都是采用累积确认的方式。这就是说,接收方不必对收到的分组逐个发送确认,而是可以在收到几个分组后,对按序到达的最后一个分组发送确认,这样就表示:到这个分组为止的所有分组都己正确收到了。累积确认的优点是容易实现,即使确认丢失也不必重传。但缺点是不能向发送方反映出接收方己经正确收到的所有分组的信息。例如,如果发送方发送了前5 个分组,而中间的第3 个分组丢失了。这时接收方只能对前两个分组发出确认。发送方无法知道后面三个分组的下落,而只好把后面的三个分组都再重传一次。这就叫做Go-back-N (回退N ),表示需要再退回来重传己发送过的N 个分组。可见当通信线路质量不好时,连续ARQ 协议会带来负面的影响。TCP 的滑动窗口是以字节为单位的。现假定A 收到了B 发来的确认报文段,其中窗口是20 (字节),而确认号是31 (这表明B 期望收到的下一个序号是31 ,而序号30 为止的数据己经收到了)。根据这两个数据, A 就构造出自己的发送窗口,其位置如图所示。发送窗口表示:在没有收到B 的确认的情况下, A可以连续把窗口内的数据都发送出去。凡是己经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。发送窗口后沿的后面部分表示己发送且己收到了确认。这些数据显然不需要再保留了。而发送窗口前沿的前面部分表示不允许发送的,因为接收方都没有为这部分数据保留临时存放的缓存空间。现在假定A 发送了序号为31 ~ 41 的数据。这时发送窗口位置并未改变,但发送窗口内靠后面有11个字节(灰色小方框表示)表示己发送但未收到确认。而发送窗口内靠前面的9 个字节( 42 ~ 50 )是允许发送但尚未发送的。】再看一下B 的接收窗口。B 的接收窗口大小是20,在接收窗口外面,到30 号为止的数据是已经发送过确认,并且己经交付给主机了。因此在B 可以不再保留这些数据。接收窗口内的序号(31~50)足允许接收的。B 收到了序号为32 和33 的数据,这些数据没有按序到达,因为序号为31 的数据没有收到(也许丢失了,也许滞留在网络中的某处)。请注意, B 只能对按序收到的数据中的最高序号给出确认,因此B 发送的确认报文段中的确认号仍然是31 (即期望收到的序号)。现在假定B 收到了序号为31 的数据,并把序号为31~33的数据交付给主机,然后B删除这些数据。接着把接收窗口向前移动3个序号,同时给A 发送确认,其中窗口值仍为20,但确认号是34,这表明B 已经收到了到序号33 为止的数据。我们注意到,B还收到了序号为37, 38 和40 的数据,但这些都没有按序到达,只能先存在接收窗口。A收到B的确认后,就可以把发送窗口向前滑动3个序号,指针P2 不动。可以看出,现在A 的可用窗口增大了,可发送的序号范围是42~53。整个过程如下图:A 在继续发送完序号42-53的数据后,指针P2向前移动和P3重合。发送窗口内的序号都已用完,但还没有再收到确认。由于A 的发送窗口己满,可用窗口己减小到0,因此必须停止发送。上面已经讲到, TCP 的发送方在规定的时间内没有收到确认就要重传已发送的报文段。这种重传的概念是很简单的,但重传时间的选择却是TCP 最复杂的问题之一。TCP采用了一种自适应算法,它记录一个报文段发出的时间,以及收到相应的确认的时间。这两个时间之差就是报文段的往返时间RTT,TCP 保留了RTT的一个加权平均往返时间RTTs (这又称为平滑的往返时间, S 表示Smoothed 。因为进行的是加权平均,因此得出的结果更加平滑)。每当第一次测量到RTT样本时, RTTs值就取为所测量到的RTT样本值。但以后每测量到一个新的RTT样本,就按下式重新计算一次RTTs:新的RTTs = (1 - α)×(旧的RTTs) + α ×(新的RTT样本)α 越大表示新的RTTs受新的RTT样本的影响越大。推荐的α 值为0.125,用这种方法得出的加权平均往返时间RTTs 就比测量出的RTT值更加平滑。显然,超时计时器设置的超时重传时间RTO (RetransmissionTime-Out)应略大于上面得出的加权平均往返时间RTTs。RFC 2988 建议使用下式计算RTO:RTO = RTTs + 4 × RTTdRTTd是RTT 的偏差的加权平均值,它与RTTs和新的RTT样本之差有关。计算公式如下:新的RTTd= (1- β)×(旧的RTTd) + β × |RTTs-新的RTT样本|发现问题:如图所示,发送出一个报文段。设定的重传时间到了,还没有收到确认。于是重传报文段。经过了一段时间后,收到了确认报文段。现在的问题是:如何判定此确认报文段是对先发送的报文段的确认,还是对后来重传的报文段的确认?若收到的确认是对重传报文段的确认,但却被源主机当成是对原来的报文段的确认,则这样计算出的RTTs 和超时重传时间RTO 就会偏大。若后面再发送的报文段又是经过重传后才收到确认报文段,则按此方法得出的超时重传时间RTO 就越来越长。若收到的确认是对原来的报文段的确认,但被当成是对重传报文段的确认,则由此计算出的RTTs 和RTO 都会偏小。这就必然导致报文段过多地重传。这样就有可能使RTO 越来越短。Kam 提出了一个算法:在计算加权平均RTTs 时,只要报文段重传了就不采用其往返时间样本。这样得出的加权平均RTTs 和RTO 就较准确。新问题:设想出现这样的情况:报文段的时延突然增大了很多。因此在原来得出的重传时间内,不会收到确认报文段。于是就重传报文段。但根据Kam 算法,不考虑重传的报文段的往返时间样本。这样,超时重传时间就无法更新。解决方案:对Kam 算法进行修正,方法是z报文段每重传一次,就把超时重传时间RTO 增大一些。典型的做法是取新的重传时间为2 倍的旧的重传时间。当不再发生报文段的重传时,才根据上面给出的公式计算超时重传时间。流量控制(flow control)就是让发送方的发送速率不要太快,要让接收方来得及接收。利用滑动窗口机制可以很方便地在TCP 连接上实现对发送方的流量控制。接收方的主机B 进行了三次流量控制。第一次把窗口减小到rwnd =300,第二次又减到rwnd = 100 ,最后减到rwnd = 0 ,即不允许发送方再发送数据了。这种使发送方暂停发送的状态将持续到主机B 重新发出一个新的窗口值为止。我们还应注意到,B 向A 发送的三个报文段都设置了ACK=1,只有在ACK=1 时确认号字段才有意义。发生死锁:现在我们考虑一种情况。上图中, B 向A 发送了零窗口的报文段后不久, B 的接收缓存又有了一些存储空间。于是B 向A 发送了rwnd = 400 的报文段。然而这个报文段在传送过程中丢失了。A 一直等待收到B 发送的非零窗口的通知,而B 也一直等待A 发送的数据。如果没有其他措施,这种互相等待的死锁局面将一直延续下去。解决方案:TCP 为每一个连接设有一个持续计时器(persistence timer)。只要TCP 连接的一方收到对方的零窗口通知,就启动持续计时器。若持续计时器设置的时间到期,就发送一个零窗口探测报文段(仅携带1 宇节的数据),而对方就在确认这个探测报文段时给出了现在的窗口值。1 TCP连接时是三次握手,那么两次握手可行吗?在《计算机网络》中是这样解释的:已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送ACK包。这样就会白白浪费资源。而经过三次握手,客户端和服务器都有应有答,这样可以确保TCP正确连接。2 为什么TCP连接是三次,挥手确是四次?在TCP连接中,服务器端的SYN和ACK向客户端发送是一次性发送的,而在断开连接的过程中,B端向A端发送的ACK和FIN是是分两次发送的。因为在B端接收到A端的FIN后,B端可能还有数据要传输,所以先发送ACK,等B端处理完自己的事情后就可以发送FIN断开连接了。3 为什么在第四次挥手后会有2个MSL的延时?MSL是Maximum Segment Lifetime,最大报文段生存时间,2个MSL是报文段发送和接收的最长时间。假定网络不可靠,那么第四次发送的ACK可能丢失,即B端无法收到这个ACK,如果B端收不到这个确认ACK,B端会定时向A端重复发送FIN,直到B端收到A的确认ACK。所以这个2MSL就是用来处理这个可能丢失的ACK的。1 文件传送协议文件传送协议FTP (File Transfer Protocol) [RFC 959]是因特网上使用得最广泛的文件传送协议,底层采用TCP协议。盯P 使用客户服务器方式。一个FTP 服务器进程可同时为多个客户进程提供服务。FTP的服务器进程由两大部分组成:一个主进程,负责接受新的请求:另外有若干个从属进程,负责处理单个请求。在进行文件传输时,客户和服务器之间要建立两个并行的TCP 连接:“控制连接”(21端口)和“数据连接”(22端口)。控制连接在整个会话期间一直保持打开, FTP 客户所发出的传送请求,通过控制连接发送给服务器端的控制进程,但控制连接并不用来传送文件。实际用于传输文件的是“数据连接”。服务器端的控制进程在接收到FTP 客户发送来的文件传输请求后就创建“数据传送进程”和“数据连接”,用来连接客户端和服务器端的数据传送进程。2 简单文件传送协议TFTPTCP/IP 协议族中还有一个简单文件传送协议TFfP (Trivial File Transfer Protocol),它是一个很小且易于实现的文件传送协议,端口号69。TFfP 也使用客户服务器方式,但它使用UDP 数据报,因此TFfP 需要有自己的差错改正措施。TFfP 只支持文件传输而不支持交耳。3 TELNETTELNET 是一个简单的远程终端协议,底层采用TCP协议。TELNET 也使用客户服务器方式。在本地系统运行TELNET 客户进程,而在远地主机则运行TELNET 服务器进程,占用端口23。4 邮件传输协议一个电子邮件系统应具如图所示的三个主要组成构件,这就是用户代理、邮件服务器,以及邮件发送协议(如SMTP )和邮件读取协议(如POP3), POP3 是邮局协议(Post Office Protocol)的版本3 。SMTP 和POP3 (或IMAP )都是在TCP 连接的上面传送邮件,使用TCP 的目的是为了使邮件的传送成为可靠的。
      计算机网络——TCP/UDP协议

      什么是“TCP/IP协议”?TCP和IP各有什么作用?

      TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/网际协议)是指能够在多个不同网络间实现信息传输的协议簇。TCP/IP协议不仅仅指的是TCP 和IP两个协议,而是指一个由FTP、SMTP、TCP、UDP、IP等协议构成的协议簇,只是因为在TCP/IP协议中TCP协议和IP协议最具代表性,所以被称为TCP/IP协议。TCP作用:当应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,TCP则把数据流分割成适当长度的报文段,最大传输段大小(MSS)通常受该计算机连接的网络的数据链路层的最大传送单元(MTU)限制。之后TCP把数据包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。IP作用:IP信息包的传送。P信息包的分割与重组。TCP/IP协议缺陷(1)该模型没有明显地区分服务、接口和协议的概念。因此,对于使用新技术来设计新网络,TCP/IP模型不是一个太好的模板。(2)TCP/IP模型完全不是通用的,并且不适合描述除TCP/IP模型之外的任何协议栈。(3)链路层并不是通常意义上的一层。它是一个接口,处于网络层和数据链路层之间。接口和层间的区别是很重要的。以上内容参考百度百科-IP以上内容参考百度百科-TCP以上内容参考百度百科-TCP/IP协议
      TCP/IP协议叫做传输控制/网际协议,它是Internet国际互联网络的基础。TCP/IP是网络中使用的基本的通信协议。 虽然从名字上看TCP/IP包括两个协议,传输控制协议(TCP)和网际协议(IP),但TCP/IP实际上是一组协议,它包括上百个各种功能的协议,如:远程登录、文件传输和电子邮件等,而TCP协议和IP协议是保证数据完整传输的两个基本的重要协议。通常说TCP/IP是Internet协议族,而不单单是TCP和IP。 TCP/IP协议的基本传输单位是数据包(datagram),TCP协议负责把数据分成若干个数据包,并给每个数据包加上包头(就像给一封信加上信封),包头上有相应的编号,以保证在数据接收端能将数据还原为原来的格式,IP协议在每个包头上再加上接收端主机地址,这样数据找到自己要去的地方,如果传输过程中出现数据丢失、数据失真等情况,TCP协议会自动要求数据重新传输,并重新组包。总之,IP协议保证数据的传输,TCP协议保证数据传输的质量。TCP/IP协议数据的传输基于TCP/IP协议的四层结构:应用层、传输层、网络层、接口层,数据在传输时每通过一层就要在数据上加个包头,其中的数据供接收端同一层协议使用,而在接收端,每经过一层要把用过的包头去掉,这样来保证传输数据的格式完全一致。
      第一步:下载兔子IP转换器,安装到你的电脑上。 第二步:注册账号第三步:登录软件,连接你要修改的城市IP节点第四步:打开浏览器查询IP是修改之后的IP了就可以解决你的问题了。动态和静态线路比较多,可以随意切换 解决网络卡顿

      什么是“TCP/IP协议”?TCP和IP各有什么作用?

      tcp/ip网络协议中的tcp是指什么

      TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能,用户数据报协议(UDP)是同一层内另一个重要的传输协议。在因特网协议族(Internet protocol suite)中,TCP层是位于IP层之上,应用层之下的中间层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。在TCP/IP协议族中,有两个互不相同的传输协议: TCP(传输控制协议)和UDP(用户数据报文协议)。TCP为两台主机提供高可靠性的数据通信。它所做的工作包括把应用程序交给它的数据分成合适的小块交给下面的网络层,确认接收到的分组,设置发送最后确认分组的超时时钟等。由于运输层提供了高可靠性的端到端的通信,因此应用层可以忽略所有这些细节。而另一方面, UDP则为应用层提供一种非常简单的服务。它只是把称作数据包的分组从一台主机发送到另一台主机,但并不保证该数据报能到达另一端。任何必需的可靠性必须由应用层来提供。扩展资料在数据传送中,可以形象地理解为有两个信封,TCP和IP就像是信封,要传递的信息被划分成若干段,每一段塞入一个TCP信封,并在该信封面上记录有分段号的信息,再将TCP信封塞入IP大信封,发送上网。在接受端,一个TCP软件包收集信封,抽出数据,按发送前的顺序还原,并加以校验,若发现差错,TCP将会要求重发。因此,TCP/IP在INTERNET中几乎可以无差错地传送数据。 对普通用户来说,并不需要了解网络协议的整个结构,仅需了解IP的地址格式,即可与世界各地进行网络通信。参考资料:百度百科 - TCP

      TCP/IP 指传输控制协议/因特网互联协议(Transmission Control Protocol / Internet Protocol),又名网络通讯协议
      TCP是OSI模型的安全连接的端口层。
      传输控制协议:TCP(Transmission Control Protocol)TCP之所以称为可靠的传输方式,是因为在使用TCP传递数据之前,会双方各自建立一条相互信任的通道,用来传递数据。比如:A、B使用TCP作为传输层传输方式传递数据,流程大致概括如下:A向B打一个招呼,说:你好,我想跟你建立一个tcp的连接,可以吗?B接收到A的招呼,如果愿意建立连接,会说:你好,可以的。A给B发的连接就建立成功了。B在向A回答的时候,也会同时向A提出建立连接的申请(因为TCP是全双工的,双向的):B会向A说:你好,我也想跟你建立一个TCP的连接,可以吗?A除了之前接收到B给自己的确认,还会接收到B发过来的申请,A收到这个申请后,会向B发出一个确认。这时,B与A的连接也建立成功了。这个过程叫做“TCP三次握手”,当双方都确认建立这个连接之后,就开始传递数据了。。这就是可靠的传输方式。
      tcp/ip网络协议中的tcp是指什么

      计算机网络自学笔记:TCP

      如果你在学习这门课程,仅仅为了理解网络工作原理,那么只要了解TCP是可靠传输,数据传输丢失时会重传就可以了。如果你还要参加研究生考试或者公司面试等,那么下面内容很有可能成为考查的知识点,主要的重点是序号/确认号的编码、超时定时器的设置、可靠传输和连接的管理。 1 TCP连接TCP面向连接,在一个应用进程开始向另一个应用进程发送数据之前,这两个进程必须先相互“握手”,即它们必须相互发送某些预备报文段,以建立连接。连接的实质是双方都初始化与连接相关的发送/接收缓冲区,以及许多TCP状态变量。这种“连接”不是一条如电话网络中端到端的电路,因为它们的状态完全保留在两个端系统中。TCP连接提供的是全双工服务 ,应用层数据就可在从进程B流向进程A的同时,也从进程A流向进程B。TCP连接也总是点对点的 ,即在单个发送方与单个接收方之间建立连接。一个客户机进程向服务器进程发送数据时,客户机进程通过套接字传递数据流。客户机操作系统中运行的 TCP软件模块首先将这些数据放到该连接的发送缓存里 ,然后会不时地从发送缓存里取出一块数据发送。TCP可从缓存中取出并放入报文段中发送的数据量受限于最大报文段长MSS,通常由最大链路层帧长度来决定(也就是底层的通信链路决定)。 例如一个链路层帧的最大长度1500字节,除去数据报头部长度20字节,TCP报文段的头部长度20字节,MSS为1460字节。报文段被往下传给网络层,网络层将其封装在网络层IP数据报中。然后这些数据报被发送到网络中。当TCP在另一端接收到一个报文段后,该报文段的数据就被放人该连接的接收缓存中。应用程序从接收缓存中读取数据流(注意是应用程序来读,不是操作系统推送)。TCP连接的每一端都有各自的发送缓存和接收缓存。因此TCP连接的组成包括:主机上的缓存、控制变量和与一个进程连接的套接字变量名,以及另一台主机上的一套缓存、控制变量和与一个进程连接的套接字。在这两台主机之间的路由器、交换机中,没有为该连接分配任何缓存和控制变量。2报文段结构TCP报文段由首部字段和一个数据字段组成。数据字段包含有应用层数据。由于MSS限制了报文段数据字段的最大长度。当TCP发送一个大文件时,TCP通常是将文件划分成长度为MSS的若干块。TCP报文段的结构。首部包括源端口号和目的端口号,它用于多路复用/多路分解来自或送至上层应用的数据。另外,TCP首部也包括校验和字段。报文段首部还包含下列字段:32比特的序号字段和32比特的确认号字段。这些字段被TCP发送方和接收方用来实现可靠数据传输服务。16比特的接收窗口字段,该字段用于流量控制。该字段用于指示接收方能够接受的字节数量。4比特的首部长度字段,该字段指示以32比特的字为单位的TCP首部长度。一般TCP首部的长度就是20字节。可选与变长的选项字段,该字段用于当发送方与接收方协商最大报文段长度,或在高速网络环境下用作窗口调节因子时使用。标志字段ACK比特用于指示确认字段中的ACK值的有效性,即该报文段包括一个对已被成功接收报文段的确认。 SYN和FIN比特用于连接建立和拆除。 PSH、URG和紧急指针字段通常没有使用。•序号和确认号TCP报文段首部两个最重要的字段是序号字段和确认号字段。TCP把数据看成一个无结构的但是有序的字节流。TCP序号是建立在传送的字节流之上,而不是建立在传送的报文段的序列之上。一个报文段的序号是该报文段首字节在字节流中的编号。例如,假设主机A上的一个进程想通过一条TCP连接向主机B上的一个进程发送一个数据流。主机A中的TCP将对数据流中的每一个字节进行编号。假定数据流由一个包含4500字节的文件组成(可以理解为应用程序调用send函数传递过来的数据长度),MSS为1000字节(链路层一次能够传输的字节数),如果主机决定数据流的首字节编号是7。TCP模块将为该数据流构建5个报文段(也就是分5个IP数据报)。第一个报文段的序号被赋为7;第二个报文段的序号被赋为1007,第三个报文段的序号被赋为2007,以此类推。前面4个报文段的长度是1000,最后一个是500。确认号要比序号难理解一些。前面讲过,TCP是全双工的,因此主机A在向主机B发送数据的同时,也可能接收来自主机B的数据。从主机B到达的每个报文段中的序号字段包含了从B流向A的数据的起始位置。 因此主机B填充进报文段的确认号是主机B期望从主机A收到的下一报文段首字节的序号。假设主机B已收到了来自主机A编号为7-1006的所有字节,同时假设它要发送一个报文段给主机A。主机B等待主机A的数据流中字节1007及后续所有字节。所以,主机B会在它发往主机A的报文段的确认号字段中填上1007。再举一个例子,假设主机B已收到一个来自主机A的包含字节7-1006的报文段,以及另一个包含字节2007-3006的报文段。由于某种原因,主机A还没有收到字节1007-2006的报文段。在这个例子中,主机A为了重组主机B的数据流,仍在等待字节1007。因此,A在收到包含字节2007-3006的报文段时,将会又一次在确认号字段中包含1007。 因为TCP只确认数据流中至第一个丢失报文段之前的字节数据,所以TCP被称为是采用累积确认。TCP的实现有两个基本的选择:1接收方立即丢弃失序报文段;2接收方保留失序的字节,并等待缺少的字节以填补该间隔。一条TCP连接的双方均可随机地选择初始序号。 这样做可以减少将那些仍在网络中的来自两台主机之间先前连接的报文段,误认为是新建连接所产生的有效报文段的可能性。•例子telnetTelnet由是一个用于远程登录的应用层协议。它运行在TCP之上,被设计成可在任意一对主机之间工作。假设主机A发起一个与主机B的Telnet会话。因为是主机A发起该会话,因此主机A被标记为客户机,主机B被标记为服务器。用户键入的每个字符(在客户机端)都会被发送至远程主机。远程主机收到后会复制一个相同的字符发回客户机,并显示在Telnet用户的屏幕上。这种“回显”用于确保由用户发送的字符已经被远程主机收到并处理。因此,在从用户击键到字符显示在用户屏幕上之间的这段时间内,每个字符在网络中传输了两次。现在假设用户输入了一个字符“C”,假设客户机和服务器的起始序号分别是42和79。前面讲过,一个报文段的序号就是该报文段数据字段首字节的序号。因此,客户机发送的第一个报文段的序号为42,服务器发送的第一个报文段的序号为79。前面讲过,确认号就是主机期待的数据的下一个字节序号。在TCP连接建立后但没有发送任何数据之前,客户机等待字节79,而服务器等待字节42。如图所示,共发了3个报文段。第一个报文段是由客户机发往服务器,其数据字段里包含一字节的字符“C”的ASCII码,其序号字段里是42。另外,由于客户机还没有接收到来自服务器的任何数据,因此该报文段中的确认号字段里是79。第二个报文段是由服务器发往客户机。它有两个目的:第一个目的是为服务器所收到的数据提供确认。服务器通过在确认号字段中填入43,告诉客户机它已经成功地收到字节42及以前的所有字节,现在正等待着字节43的出现。第二个目的是回显字符“C”。因此,在第二个报文段的数据字段里填入的是字符“C”的ASCII码,第二个报文段的序号为79,它是该TCP连接上从服务器到客户机的数据流的起始序号,也是服务器要发送的第一个字节的数据。这里客户机到服务器的数据的确认被装载在一个服务器到客户机的数据的报文段中,这种确认被称为是捎带确认.第三个报文段是从客户机发往服务器的。它的唯一目的是确认已从服务器收到的数据。3往返时延的估计与超时TCP如同前面所讲的rdt协议一样,采用超时/重传机制来处理报文段的丢失问题。最重要的一个问题就是超时间隔长度的设置。显然,超时间隔必须大于TCP连接的往返时延RTT,即从一个报文段发出到收到其确认时。否则会造成不必要的重传。•估计往返时延TCP估计发送方与接收方之间的往返时延是通过采集报文段的样本RTT来实现的,就是从某报文段被发出到对该报文段的确认被收到之间的时间长度。也就是说TCP为一个已发送的但目前尚未被确认的报文段估计sampleRTT,从而产生一个接近每个RTT的采样值。但是,TCP不会为重传的报文段计算RTT。为了估计一个典型的RTT,采取了某种对RTT取平均值的办法。TCP据下列公式来更新EstimatedRTT=(1-)*EstimatedRTT+*SampleRTT即估计RTT的新值是由以前估计的RTT值与sampleRTT新值加权组合而成的。参考值是a=0.125,因此是一个加权平均值。显然这个加权平均对最新样本赋予的权值要大于对老样本赋予的权值。因为越新的样本能更好地反映出网络当前的拥塞情况。从统计学观点来讲,这种平均被称为指数加权移动平均除了估算RTT外,还需要测量RTT的变化,RTT偏差的程度,因为直接使用平均值设置计时器会有问题(太灵敏)。DevRTT=(1-β)*DevRTT+β*|SampleRTT-EstimatedRTT|RTT偏差也使用了指数加权移动平均。B取值0.25.•设置和管理重传超时间隔假设已经得到了估计RTT值和RTT偏差值,那么TCP超时间隔应该用什么值呢?TCP将超时间隔设置成大于等于估计RTT值和4倍的RTT偏差值,否则将造成不必要的重传。但是超时间隔也不应该比估计RTT值大太多,否则当报文段丢失时,TCP不能很快地重传该报文段,从而将给上层应用带来很大的数据传输时延。因此,要求将超时间隔设为估计RTT值加上一定余量。当估计RTT值波动较大时,这个余最应该大些;当波动比较小时,这个余量应该小些。因此使用4倍的偏差值来设置重传时间。TimeoutInterval=EstimatedRTT+4*DevRTT4可信数据传输因特网的网络层服务是不可靠的。IP不保证数据报的交付,不保证数据报的按序交付,也不保证数据报中数据的完整性。TCP在IP不可靠的尽力而为服务基础上建立了一种可靠数据传输服务。TCP提供可靠数据传输的方法涉及前面学过的许多原理。TCP采用流水线协议、累计确认。TCP推荐的定时器管理过程使用单一的重传定时器,即使有多个已发送但还未被确认的报文段也一样。重传由超时和多个ACK触发。在TCP发送方有3种与发送和重传有关的主要事件:从上层应用程序接收数据,定时器超时和收到确认ACK。从上层应用程序接收数据。一旦这个事件发生,TCP就从应用程序接收数据,将数据封装在一个报文段中,并将该报文段交给IP。注意到每一个报文段都包含一个序号,这个序号就是该报文段第一个数据字节的字节流编号。如果定时器还没有计时,则当报文段被传给IP时,TCP就启动一个该定时器。第二个事件是超时。TCP通过重传引起超时的报文段来响应超时事件。然后TCP重启定时器。第三个事件是一个来自接收方的确认报文段(ACK)。当该事件发生时,TCP将ACK的值y与变量SendBase(发送窗口的基地址)进行比较。TCP状态变量SendBase是最早未被确认的字节的序号。就是指接收方已正确按序接收到数据的最后一个字节的序号。TCP采用累积确认,所以y确认了字节编号在y之前的所有字节都已经收到。如果Y>SendBase,则该ACK是在确认一个或多个先前未被确认的报文段。因此发送方更新其SendBase变量,相当于发送窗口向前移动。另外,如果当前有未被确认的报文段,TCP还要重新启动定时器。快速重传超时触发重传存在的另一个问题是超时周期可能相对较长。当一个报文段丢失时,这种长超时周期迫使发送方等待很长时间才重传丢失的分组,因而增加了端到端时延。所以通常发送方可在超时事件发生之前通过观察冗余ACK来检测丢包情况。冗余ACK就是接收方再次确认某个报文段的ACK,而发送方先前已经收到对该报文段的确认。当TCP接收方收到一个序号比所期望的序号大的报文段时,它认为检测到了数据流中的一个间隔,即有报文段丢失。这个间隔可能是由于在网络中报文段丢失或重新排序造成的。因为TCP使用累计确认,所以接收方不向发送方发回否定确认,而是对最后一个正确接收报文段进行重复确认(即产生一个冗余ACK)如果TCP发送方接收到对相同报文段的3个冗余ACK.它就认为跟在这个已被确认过3次的报文段之后的报文段已经丢失。一旦收到3个冗余ACK,TCP就执行快速重传 ,即在该报文段的定时器过期之前重传丢失的报文段。5流量控制前面讲过,一条TCP连接双方的主机都为该连接设置了接收缓存。当该TCP连接收到正确、按序的字节后,它就将数据放入接收缓存。相关联的应用进程会从该缓存中读取数据,但没必要数据刚一到达就立即读取。事实上,接收方应用也许正忙于其他任务,甚至要过很长时间后才去读取该数据。如果应用程序读取数据时相当缓慢,而发送方发送数据太多、太快,会很容易使这个连接的接收缓存溢出。TCP为应用程序提供了流量控制服务以消除发送方导致接收方缓存溢出的可能性。因此,可以说 流量控制是一个速度匹配服务,即发送方的发送速率与接收方应用程序的读速率相匹配。前面提到过,TCP发送方也可能因为IP网络的拥塞而被限制,这种形式的发送方的控制被称为拥塞控制(congestioncontrol)。TCP通过让接收方维护一个称为接收窗口的变量来提供流量控制。接收窗口用于告诉发送方,该接收方还有多少可用的缓存空间。因为TCP是全双工通信,在连接两端的发送方都各自维护一个接收窗口变量。 主机把当前的空闲接收缓存大小值放入它发给对方主机的报文段接收窗口字段中,通知对方它在该连接的缓存中还有多少可用空间。6 TCP连接管理客户机中的TCP会用以下方式与服务器建立一条TCP连接:第一步: 客户机端首先向服务器发送一个SNY比特被置为1报文段。该报文段中不包含应用层数据,这个特殊报文段被称为SYN报文段。另外,客户机会选择一个起始序号,并将其放置到报文段的序号字段中。为了避免某些安全性攻击,这里一般随机选择序号。第二步: 一旦包含TCP报文段的用户数据报到达服务器主机,服务器会从该数据报中提取出TCPSYN报文段,为该TCP连接分配TCP缓存和控制变量,并向客户机TCP发送允许连接的报文段。这个允许连接的报文段还是不包含应用层数据。但是,在报文段的首部却包含3个重要的信息。首先,SYN比特被置为1。其次,该 TCP报文段首部的确认号字段被置为客户端序号+1最后,服务器选择自己的初始序号,并将其放置到TCP报文段首部的序号字段中。 这个允许连接的报文段实际上表明了:“我收到了你要求建立连接的、带有初始序号的分组。我同意建立该连接,我自己的初始序号是XX”。这个同意连接的报文段通常被称为SYN+ACK报文段。第三步: 在收到SYN+ACK报文段后,客户机也要给该连接分配缓存和控制变量。客户机主机还会向服务器发送另外一个报文段,这个报文段对服务器允许连接的报文段进行了确认。因为连接已经建立了,所以该ACK比特被置为1,称为ACK报文段,可以携带数据。一旦以上3步完成,客户机和服务器就可以相互发送含有数据的报文段了。为了建立连接,在两台主机之间发送了3个分组,这种连接建立过程通常被称为 三次握手(SNY、SYN+ACK、ACK,ACK报文段可以携带数据) 。这个过程发生在客户机connect()服务器,服务器accept()客户连接的阶段。假设客户机应用程序决定要关闭该连接。(注意,服务器也能选择关闭该连接)客户机发送一个FIN比特被置为1的TCP报文段,并进人FINWAIT1状态。当处在FINWAIT1状态时,客户机TCP等待一个来自服务器的带有ACK确认信息的TCP报文段。当它收到该报文段时,客户机TCP进入FINWAIT2状态。当处在FINWAIT2状态时,客户机等待来自服务器的FIN比特被置为1的另一个报文段,收到该报文段后,客户机TCP对服务器的报文段进行ACK确认,并进入TIME_WAIT状态。TIME_WAIT状态使得TCP客户机重传最终确认报文,以防该ACK丢失。在TIME_WAIT状态中所消耗的时间是与具体实现有关的,一般是30秒或更多时间。 经过等待后,连接正式关闭,客户机端所有与连接有关的资源将被释放。 因此TCP连接的关闭需要客户端和服务器端互相交换连接关闭的FIN、ACK置位报文段。
      计算机网络自学笔记:TCP

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/112559.html

          热门文章

          文章分类