tcp协议工作原理(tcp/ip协议及其分层模型的工作原理)

      最后更新:2023-06-05 04:07:08 手机定位技术交流文章

      简述TCP/IP工作原理

      TCP/IP模型包括:● 网络层● 网际层● 传输层● 应用层一、网络层是模型的最低层,负责将帧放进线路,或从线路中取下帧。TCP/IP的网络层对应着OSI的物理层和数据链路层。这也就是为什么这一层包含物理通信介质和在这些介质上传送帧的通信协议。二、网际层网际层(互联网层):负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。● ICMP网际控制消息协议:问题出现时向IP发送错误报告。我们平时用的ping用它。● IGMP网际分组管理协议:向路由器通知多播组成员的存在。广播不能跨路由器,路由器是隔离广播的,但它隔离不了多播,它可以跨路由器。● ARP地址解析协议:判断主机的硬件地址。三、传输层传输层是TCP/IP模型中非常特殊和重要的一层,它包括了OSI传输层、会话层、表示层和应用层的各部分功能,包括两个传输协议(TCP协议和UDP协议)在计算机之间提供通信对话。四、应用层应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。
      以下非原创,仅供参考! 下面以采用TCP/IP协议传送文件为例,说明TCP/IP的工作原理,其中应用层传输文件采用文件传输协议(FTP)。TCP/IP协议的工作流程如下:1.在源主机上,应用层将一串应用数据流传送给传输层。2.传输层将应用层的数据流截成分组,并加上TCP报头形成TCP段,送交网络层。3.在网络层给TCP段加上包括源、目的主机IP地址的IP报头,生成一个IP数据包,并将IP数据包送交链路层。4.链路层在其MAC帧的数据部分装上IP数据包,再加上源、目的主机的MAC地址和帧头,并根据其目的MAC地址,将MAC帧发往目的主机或IP路由器。5.在目的主机,链路层将MAC帧的帧头去掉,并将IP数据包送交网络层。6.网络层检查IP报头,如果报头中校验和与计算结果不一致,则丢弃该IP数据包;若校验和与计算结果一致,则去掉IP报头,将TCP段送交传输层。7.传输层检查顺序号,判断是否是正确的TCP分组,然后检查TCP报头数据。若正确,则向源主机发确认信息;若不正确或丢包,则向源主机要求重发信息。8.在目的主机,传输层去掉TCP报头,将排好顺序的分组组成应用数据流送给应用程序。这样目的主机接 收到的来自源主机的字节流,就像是直接接收来自源主机的字节流一样。
      IP协议的工作原理: 三次握手原理 :TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。第一次握手:建立连接时,客户端发送syn包到服务器,并进入SYN_SEND状态,等待服务器确认;第二次握手:服务器收到syn包,必须确认客户的SYN,同时自己也发送一个SYN包,即SYN+ACK包,此 时服务器进入SYN_RECV状态; 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK,此包发送完毕,客户端和服务器进入 ESTABLISHED状态,完成三次握手。

      在互联网上源主机的协议层与目的主机的同层协议通过下层提供的服务实现对话。在源和目的主机的同层实体称为对等实体(Peer entities)或叫对等进程,它们之间的对话实际上是在源主机上从上到下然后穿越网络到达目的主机后再从下到上到达相应层。下面以使用TCP协议传送文件(如FTP应用程序)为例说明了TCP/IP的工作原理。(1) 在源主机上应用层将一串字节流传给传输层;(2) 传输层将字节流分成TCP段,加上TCP包头交给互联网络(IP)层;(3) IP层生成一个包,将TCP段放人其数据域,并加上源和目的主机的IPIP包交给数据链路层;(4) 数据链路层在其帧的数据部分装IP包,发往日的主机或IP路由器;(5) 在目的主机,数据链路层将数据链路层帧头去掉,将IP包交给互联网层;(6) IP层检查IP包头,如果包头中的校验和与计算出来的不一致,则丢弃该包;(7) 如果校验和一致,IP层去掉IP头,将TCP段交给TCP层,TCP层检查顺序号来判断是否为正确的TCP段;(8) TCP层为TCP包头计算TCP头和数据。如果不对,TCP层丢弃这个包,若对,则向源主机发送确认;(9) 在目的主机,T
      简述TCP/IP工作原理

      TCP协议解析

      主要特点:面向连接、面向字节流、全双工通信、通信可靠。优缺点:应用场景:要求通信数据可靠时,即 数据要准确无误地传递给对方。如:传输文件:HTTP、HTTPS、FTP等协议;传输邮件:POP、SMTP等协议ps:首部的前 20 个字节固定,后面有 4n 字节根据需要增加。故 TCP首部最小长度 = 20字节(最大60个字节)。TCP报头中的源端口号和目的端口号同IP数据报中的源IP与目的IP唯一确定一条TCP连接。重要字段:客户端与服务器来回共发送三个TCP报文段来建立运输连接,三个TCP报文段分别为:(1)客户端A向服务器B发送的TCP请求报段“SYN=1,seq=x”;(2)服务器B向客户端A发送的TCP确认报文段“SYN=1,ACK=1,seq=y,ack=x+1”;(3)客户端A向服务器B发送的TCP确认报文段“ACK=1,seq=x+1,ack=y+1”。ps:在建立TCP连接之前,客户端和服务器都处于关闭状态(CLOSED),直到客户端主动打开连接,服务器才被动打开连接(处于监听状态 = LISTEN),等待客户端的请求。TCP 协议是一个面向连接的、安全可靠的传输层协议,三次握手的机制是为了保证能建立一个安全可靠的连接。通过上述三次握手,双方确认自己与对方的发送与接收是正常的,就建立起一条TCP连接,即可传送应用层数据。ps:因 TCP提供的是全双工通信,故通信双方的应用进程在任何时候都能发送数据;三次握手期间,任何1次未收到对面的回复,则都会重发。为什么两次握手不行呢?结论:防止服务器接收了早已经失效的连接请求报文,服务器同意连接,从而一直等待客户端请求,最终导致形成死锁、浪费资源。ps:SYN洪泛攻击:(具体见下文)为什么不需要四次握手呢?SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK确认序号标志消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。如何来解决半连接攻击?如何来解决全连接攻击?请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,客户端才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果服务器一收到 客户端的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,服务器结束 TCP 连接的时间要早于客户端。TCP是全双工的连接,必须两端同时关闭连接,连接才算真正关闭。简言之,客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器才会发送 FIN 连接释放报文,对方确认后就完全关闭了TCP连接。举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。ps:设想这样一个情景:客户端已主动与服务器建立了 TCP 连接。但后来客户端的主机突然发生故障。显然,服务器以后就不能再收到客户端发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就需要使用TCP的保活计时器。基本原理:tcp11种状态及变迁其实基本包含在正常的三次握手和四次挥手中,除开CLOSING。正常的三次握手包括4中状态变迁:服务器打开监听(LISTEN)->客户端先发起SYN主动连接标识->服务器回复SYN及ACK确认->客户端再确认即三次握手TCP连接成功。这里边涉及四种状态及变迁:正常的四次握手包含6种tcp状态变迁,如主动发起关闭方为客户端:客户端发送FIN进入FIN_WAIT1 -> 服务器发送ACK确认并进入CLOSE_WAIT(被动关闭)状态->客户端收到ACK确认后进入FIN_WAIT2状态 -> 服务器再发送FIN进入LAST_ACK状态 -> 客户端收到服务器的FIN后发送ACK确认进入TIME_WAIT状态 -> 服务器收到ACK确认后进入CLOSED状态断开连接 -> 客户端在等待2MSL的时间如果期间没有收到服务器的相关包,则进入CLOSED状态断开连接。CLOSING状态:连接断开期间,一般是客户端发送一个FIN,然后服务器回复一个ACK,然后服务器发送完数据后再回复一个FIN,当客户端和服务器同时接受到FIN时,客户端和服务器处于CLOSING状态,也就是此时双方都正在关闭同一个连接。在进入CLOSING状态后,只要收到了对方对自己发送的FIN的ACK,收到FIN的ACK确认就进入TIME_WAIT状态,因此,如果RTT(Round Trip Time TCP包的往返延时)处在一个可接受的范围内,发出的FIN会很快被ACK从而进入到TIME_WAIT状态,CLOSING状态持续的时间就特别短,因此很难看到这种状态。我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。应用场景:UDP协议比TCP协议的效率更高,TCP协议比UDP协议更加安全可靠。下面主要对数据传输出现错误/无应答/堵塞/超时/重复等问题。注意:TCP丢包:TCP是基于不可靠的网路实现可靠传输,肯定会存在丢包问题。如果在通信过程中,发现缺少数据或者丢包,那边么最大的可能性是程序发送过程或者接受过程中出现问题。总结:为了满足TCP协议不丢包,即保证可靠传输,规定如下:注意:TCP丢包有三方面的原因,一是网络的传输质量不好,二是安全策略,三是服务器性能瓶颈先理解2个基础概念:发送窗口、接收窗口工作原理:注意点:关于滑动窗口的知识点:滑动窗口中的数据类型:ARQ解决的问题:出现差错时,让发送方重传差错数据:即 出错重传类型:流量控制和拥塞控制解决的问题:当接收方来不及接收收到的数据时,可通知发送方降低发送数据的效率:即 速度匹配流量控制:注意:拥塞控制:慢开始与拥塞避免:快重传和快恢复:补充:流量控制和拥塞控制的区别什么情况造成TCP粘包和拆包?解决TCP粘包和拆包的方法:传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式,只是实现不在传输层,实现转移到了应用层。最简单的方式是在应用层模仿传输层TCP的可靠性传输。下面不考虑拥塞处理,可靠UDP的简单设计。https://www.jianshu.com/p/65605622234bhttp://www.open-open.com/lib/view/open1517213611158.htmlhttps://blog.csdn.net/dangzhangjing97/article/details/81008836https://blog.csdn.net/qq_30108237/article/details/107057946https://www.jianshu.com/p/6c73a4585eba
      TCP协议解析

      图文并茂,讲解TCP和UDP协议的原理以及区别

      最近重新认知了一下TCP和UDP的原理以及区别,做一个简单的总结。首先,tcp和udp都是工作在传输层,用于程序之间传输数据的。数据一般包含:文件类型,视频类型,jpg图片等。TCP是基于连接的,而UDP是基于非连接的。tcp传输数据稳定可靠,适用于对网络通讯质量要求较高的场景,需要准确无误的传输给对方,比如,传输文件,发送邮件,浏览网页等等udp的优点是速度快,但是可能产生丢包,所以适用于对实时性要求较高但是对少量丢包并没有太大要求的场景。比如:域名查询,语音通话,视频直播等。udp还有一个非常重要的应用场景就是隧道网络,比如:VXLAN以人与人之间的通信为例:UDP协议就相当于是写信给对方,寄出去信件之后不能知道对方是否收到信件,信件内容是否完整,也不能得到及时反馈,而TCP协议就像是打电话通信,在这一系列流程都能得到及时反馈,并能确保对方及时接收到。如下图:tcp是如何保证以上过程的?分为三个步骤:三次握手,传输确认,四次挥手。三次握手是建立连接的过程。当客户端向服务端发起连接时,会先发一包连接请求数据,过去询问一下,能否与你建立连接?这包数据称之为SYN包,如果对端同意连接,则回复一包SYN+ACK包,客户端收到之后,发送一包ACK包,连接建立,因为这个过程中互相发送了三包数据,所以称之为三次握手。这是为了防止,因为已失效的请求报文,突然又传到服务器,引起错误,这是什么意思?假设采用两次握手建立连接,客户端向服务端发送一个syn包请求建立连接,因为某些未知的原因,并没有到达服务器,在中间某个网络节点产生了滞留,为了建立连接,客户端会重发syn包,这次的数据包正常送达,服务端发送syn+ack之后就建立起了连接。但是第一包数据阻塞的网络突然恢复,第一包syn包又送达到服务端,这时服务端会认为客户端又发起了一个新的连接,从而在两次握手之后进入等待数据状态,服务端认为是两个连接,而客户端认为是一个连接,造成了状态不一致,如果在三次握手的情况下,服务端收不到最后的ack包,自然不会认为连接建立成功。所以三次握手本质上来说就是为了解决网络信道不可靠的问题,为了在不可靠的信道上建立起可靠的连接,经过三次握手之后,客户端和服务端都进入了数据传输状态。一包数据可能会被拆成多包发送,如何处理丢包问题,这些数据包到达的先后顺序不同,如何处理乱序问题?针对这些问题,tcp协议为每一个连接建立了发送缓冲区,从建立链接后的第一个字节的序列号为0,后面每个字节的序列号就会增加1,发送数据时,从数据缓冲区取一部分数据组成发送报文,在tcp协议头中会附带序列号和长度,接收端在收到数据后需要回复确认报文,确认报文中的ack等于接受序列号加长度,也就是下包数据发送的起始序列号,这样一问一答的发送方式,能够使发送端确认发送的数据已经被对方收到,发送端也可以发送一次的连续的多包数据,接受端只需要回复一次ack就可以了。如图:六、四次挥手:处于连接状态的客户端和服务端,都可以发起关闭连接请求,此时需要四次挥手来进行连接关闭。假设客户端主动发起连接关闭请求,他给服务端发起一包FIN包,标识要关闭连接,自己进入终止等待1装填,服务端收到FIN包,发送一包ACK包,标识自己进入了关闭等待状态,客户端进入终止等待2状态,这是第二次挥手,服务端此时还可以发送未发送的数据,而客户端还可以接受数据,待服务端发送完数据之后,发送一包FIN包,最后进入确认状态,这是第3次挥手,客户端收到之后恢复ACK包,进入超时等待状态,经过超时时间后关闭连接,而服务端收到ACK包后,立即关闭连接,这是第四次挥手。为什么客户端要等待超时时间?这是为了保证对方已经收到ACK包,因为假设客户端发送完最后一包ACK包后释放了连接,一旦ACK包在网络中丢失,服务端将一直停留在 最后确认状态,如果等待一段时间,这时服务端会因为没有收到ack包重发FIN包,客户端会响应 这个FIN包进行重发ack包,并刷新超时时间,这个机制跟第三次握手一样。也是为了保证在不可靠的网络链路中进行可靠的连接断开确认。udp:首先udp协议是非连接的,发送数据就是把简单的数据包封装一下,然后从网卡发出去就可以了,数据包之间并没有状态上的联系,正因为udp这种简单的处理方式,导致他的性能损耗非常少,对于cpu,内存资源的占用也远小于tcp,但是对于网络传输过程中产生的丢包,udp并不能保证,所以udp在传输稳定性上要弱于tcp。所以,tcp和udp的主要区别:tcp传输数据稳定可靠,适用于对网络通讯质量要求较高的场景,需要准确无误的传输给对方。比如,传输文件,发送邮件,浏览网页等等,udp的优点是速度快,但是可能产生丢包,所以适用于对实时性要求较高但是对少量丢包并没有太大要求的场景。比如:域名查询,语音通话,视频直播等。udp还有一个非常重要的应用场景就是隧道网络,比如:VXLAN.
      图文并茂,讲解TCP和UDP协议的原理以及区别

      网络协议 TCP 的工作原理?

      大多数协议是分层的,互联网协议也不例外。IP是基础,TCP建立在IP之上。今后,你见到的两个协议常指的是TCP/IP。TCP常用于处理大量的数据,也处理在传输过程中某处损坏了的数据。TCP将大的报文划分为多个分组,然后,每个分组塞入TCP“信封”,再依次塞入IP信封。TCP信封外包含着关于分组中字节数目的信息和在原始报文中该分组的位置信息。在信息接收结束时,TCP信封被从IP信封中取出,然后,原始数据重新组装。一旦电脑通过校验发现有分组被破坏,发送者就重新发送出差错的分组。
      网络协议 TCP 的工作原理?

      TCP报文的格式及TCP协议的工作原理?

      TCP报文格式 源端口和目的端口:都是16个比特,分别表示发送方和接收方的端口号。端口号和IP地址构成套接字(socket)地址的主要内容。源端和目的端的套接字合起来唯一地表示一条连接。网络应用程序在通信时直接向套接字发送和接收数据。序列号和确认号:都是32位的无符号整数,可以表示0-4G(232)字节的范围。其中,序列号表示数据部分第一个字节的序列号,而确认号表示该数据报的接收者希望对方发送的下一个字节的序号(即序号小于确认号的数据都已正确地被接收)。头长度(HLEN):表示TCP报文头的长度。长度以32-bit为单位来计算。所以如果选项部分的长度不是4个字节的整数倍,则要加上填充(padding)。保留域:紧接在头长度字段后有6个比特,应该把它设置为0。再后则是6个标志位。标志位特定的含义:URG(urgent)为紧急数据标志。如果它为1,则表示本数据报中包含紧急数据。此时紧急数据指针表示的值有效。它表示在紧急数据之后的第一个字节的偏侈值(即紧急数据的总长度)。ACK(acknowledge)为确认标志位。如果ACK为1,则表示报文中的确认号是有效的。否则,报文中的确认号无效,接收端可以忽略它。PSH(push)标志位。被置位后,要求发送方的TCP协议软件马上发送该数据报,接收方在收到数据后也应该立即上交给应用程序,即使其接收缓冲区尚未填满。RST(reset)标志位。用来复位一条连接。RST标志置位的报文称为复位报文。一般情况下,如果TCP收到的一个报文明显不是属于该主机上的任何个连接,则向远端发送一个复位报文。SYN(synchronous)标志位。用来建立连接,让连接双方同步序列号。如果SYN=1而ACK=0,则表示该数据报为连接请求,如SYN=1而ACK=1则表示是接受连接。FIN(finish)标志位。表示发送方已经没有数据要传输了,希望释放连接。窗口(window)字段。窗口表示的是从被确认的字节开始,发送方最多可以连续发送的字节的个数。接收方通过设置该窗口值的大小,可以调节源端发送数据的速度,从而实现流控。校验和(checksum)域。是TCP协议提供的一种检错机制。与我们在前面的章节中学过的UDP协议类似,在计算校验和时不仅要计算TCP报文自身(报文头和数据),还要增加一些额外的信息内容 – 12个字节的“伪包头”。TCP/IP(Transmission Control Protocol/Internet Protocol的简写,中文译名为传输控制协议/互联网络协议)协议是Internet最基本的协议,简单地说,就是由底层的IP协议和TCP协议组成的。在Internet没有形成之前,各个地方已经建立了很多小型的网络,称为局域网,Internet的中文意义是“网际网”,它实际上就是将全球各地的局域网连接起来而形成的一个“网之间的网(即网际网)”。然而,在连接之前的各式各样的局域网却存在不同的网络结构和数据传输规则,将这些小网连接起来后各网之间要通过什么样的规则来传输数据呢?这就象世界上有很多个国家,各个国家的人说各自的语言,世界上任意两个人要怎样才能互相沟通呢?如果全世界的人都能够说同一种语言(即世界语),这个问题不就解决了吗?TCP/IP协议正是Internet上的“世界语”。 TCP/IP协议的开发工作始于70年代,是用于互联网的第一套协议。
      懂英文的看这个吧...TCP的"官方文档"... http://tools.ietf.org/html/rfc793
      TCP报文的格式及TCP协议的工作原理?

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/112565.html

          热门文章

          文章分类