有关1的数学知识(航天中的数学知识)

      最后更新:2024-01-02 08:08:55 手机定位技术交流文章

      一年级数学的主要知识点

      数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。下面是我给大家整理的一些一年级数学的知识点,希望对大家有所帮助。一年级数学《20以内退位减法》知识点方法一:“做减想加”或“想加做减”因为8+7=15,所以15-8=7,15-7=8。“做减想加”或“想加做减”这个计算方法看似简单,但要求学生思维力,首先要求学生要熟练掌握20以内的加法才能快速的应用“做减想加”或“想加做减”。方法二:“破十法”12-5=10-5+2=7“破十法”这个计算方法如果让学生自己思考计算方法,它是一个不受欢迎的方法。这方法要在教师的指导下学习学生才能掌握,首先告诉学生3不够5减时先不减,要找十位借1变成一个10-5得数5再和剩下的2合在一起成了7。方法三:“平十法”14-5=14-4-1=9“平十法”也叫“连续减法”它的特点就在于先把减数拆成补减数的个位和别一个数如:把5拆成4和1,再把14-3=10,最后把10-1=9,这方法的难点在于把减数拆成另外两个数,一定要拆对。方法四:“多减加补”13-9=13-10+1=4“多减加补”这个方法的特点在于:把减数先凑成10,再用补减数减再加上和9凑成10的那个数1,如:9+1=10,再把13-10+1=4。方法五:“将被减数个位上补足成够减的数”13-5=15-5-2=8“将被减数个位上补足成够减的数”这个方法是将被减数的个位补到能被减数减,再接着减去补上的数。如:13-5化成15-5-2=8这样学生就更容易掌握了。一年级数学《认识人民币》知识点1、人民币的单位有(元)、(角)、(分)。2、人民币各单位之间的换算:1元=10角;10角=1元;1角=10分;10分=1角;10角=100分;1元=100分。3、主要题型:填合适的单位。(注意和生活实际联系)计算:元+元角+角满10角记得换成1元元-元角-角“角”不够减向“元”借1元当10角再计算4、解决问题:先画批,找准数据,再列式计算。列式时用:“几元几角+几元几角”的形式来表示,不用小数形式列式。5、换钱:1张10元可以换5张2元。1张100元可以换5张20元。1张100元可以换2张50元。1张50元可以换10张5元。6、2.00元=2元;0.50元=5角;59.90元=59元9角;9.25元=9元2角5分小学一年级数学引导学习方法一、课内重视听讲,课后及时复习新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比力本身的解题思路与教师所讲有哪些差别。然而由于各种原因,往往会有一部分学生不克不及跟上老师的思路,在学习中出现漏洞,这时候就需要在职老师对学生进行一对一的辅导,在辅导过程中老师会资助学生把一天所学的知识点回忆一遍,引导学生正确掌握各类公式的推理过程,从某种意义上讲,这样有利于学生养成不懂即问的学习作风。别的,老师可以一对一资助学生在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入本身的知识体系。二、适当多做题,养成良好的解题习惯要想学好数学,多做标题问题是必需的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以资助开拓题型。一年级数学学习方法:如何培养孩子的口算能力如何培养孩子的口算能力口算也称心算,它是一种不借助计算工具,主要依靠思维、记忆,直接算出得数的计算方式。新大纲指出:口算既是笔算、估算和简算的基础,也是计算能力的重要组成部分。由此可见,培养学生的计算能力,首先要从口算能力着手。那么怎样培养学生的口算能力呢?我的体会是教师念好“基(抓基本)、教(教方法)、练(常训练)”三字经是至关重要的。念好“基”字经“基”是指基本口算。小学数学教学中的口算分为基本口算、一般口算和特殊口算三类。这三类口算以基本口算的内容为主,它是计算的基础,基本口算必需要求熟练,而熟练的程度是指达到“脱口而出”,其它两类口算只要求比力熟练或学会。因此,要注意抓好如下几个方面:1. 直观表象助口算从运算形式看,小学低年级的口算是从直观感知过渡到表象的运算。如教学建立9+2的表象:先出示装有9个皮球的盒子,别的再准备2个皮球,让学生想一想,“应该怎样摆才能一眼就看出一共有几个皮球?”很快有学生说:“我从盒子外面的2个皮球中拿1个皮球放进盒子里,盒子里就有10个皮球,外面还有一个,一共11个。”我表彰了这个同学说得好,并说明这种方法叫做“凑十法”,即看到9就想到9和几凑成10。这样,表象建立了,口算的准确性也就有基础了。一年级数学的主要知识点相关文章:★一年级数学知识点整理归纳★一年级数学知识点人教版★一年级数学知识点总结★小学一年级数学知识点梳理★一年级数学知识点梳理★小学一年级数学知识点归纳★一年级数学知识点★人教版一年级数学上册知识点★小学一年级数学知识点整理
      一年级数学的主要知识点

      高一数学必修一知识点总结

      数学知识点是高考的基础,掌握高一数学知识点将对高考复习起到重要作用,高一数学必修一知识点总结有哪些你知道吗?一起来看看高一数学必修一知识点总结,欢迎查阅!高1数学知识点总结一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。六、不等式(22课时,5个)1.不等式;2.不等式的'基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。九、直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二二项方程的解法。数学必修一知识点整理集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:XKb1.Com非负整数集(即自然数集)记作:N正整数集:N_或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。注意:当是奇数时,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质函数的应用1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.必修一函数重点知识整理1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解 k∈D(D为f(x)的值域);6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+);(2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆;(4) a log a N= N ( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。高一数学必修一知识点总结相关文章:★高一数学必修一知识点汇总★高中数学必修1知识点总结★高一数学必修一知识点总结★高一数学知识点汇总大全★高一数学必修1对数函数知识点总结★高一数学必修1函数的知识点归纳★高一数学必修一知识点总结归纳★高一数学必修1知识点归纳★高中数学必修一复习提纲★高一数学必修1知识整理
      高一数学必修一知识点总结

      高一数学知识点有哪些?

      高一数学知识点:一、集合有关概念。1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1)元素的确定性。2)元素的互异性。3)元素的无序性。说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}。1)、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}。2)、集合的表示方法:列举法与描述法。二、集合间的基本关系。1、“包含”关系—子集。注意:有两种可能。(1)A是B的一部分。(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。2、“相等”关系(5≥5,且5≤5,则5=5)。实例:设A={x|x2—1=0}B={—1,1}“元素相同”。结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。①任何一个集合是它本身的子集。AíA。②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)。③如果AíB,BíC,那么AíC。④如果AíB同时BíA那么A=B。3、不含任何元素的集合叫做空集,记为Φ。规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算。1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。
      高一数学知识点有哪些?

      高中数学必修1知识点总结

      高中数学合集百度网盘下载链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
      高中高一数学必修1各章知识点总结 第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或 N+ 整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB同时 BíA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x | x?S且 x?A}SCsAA(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CU(C UA)=A⑵(C UA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。常用的函数表示法及各自的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值补充一:分段函数 (参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x11,且 ∈ *.当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。注意:当 是奇数时, ,当 是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(1) · ;(2);(3).(二)指数函数及其性质1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1010
      高中数学必修1知识点总结

      一年级数学基本知识点梳理

      不渴望能够一跃千里,只希望每天能够前进一步。每一门科目都有自己的学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些一年级数学的知识点,希望对大家有所帮助。一年级数学《20以内退位减法》知识点方法一:“做减想加”或“想加做减”因为8+7=15,所以15-8=7,15-7=8。“做减想加”或“想加做减”这个计算方法看似简单,但要求学生思维力,首先要求学生要熟练掌握20以内的加法才能快速的应用“做减想加”或“想加做减”。方法二:“破十法”12-5=10-5+2=7“破十法”这个计算方法如果让学生自己思考计算方法,它是一个不受欢迎的方法。这方法要在教师的指导下学习学生才能掌握,首先告诉学生3不够5减时先不减,要找十位借1变成一个10-5得数5再和剩下的2合在一起成了7。方法三:“平十法”14-5=14-4-1=9“平十法”也叫“连续减法”它的特点就在于先把减数拆成补减数的个位和别一个数如:把5拆成4和1,再把14-3=10,最后把10-1=9,这方法的难点在于把减数拆成另外两个数,一定要拆对。方法四:“多减加补”13-9=13-10+1=4“多减加补”这个方法的特点在于:把减数先凑成10,再用补减数减再加上和9凑成10的那个数1,如:9+1=10,再把13-10+1=4。方法五:“将被减数个位上补足成够减的数”13-5=15-5-2=8“将被减数个位上补足成够减的数”这个方法是将被减数的个位补到能被减数减,再接着减去补上的数。如:13-5化成15-5-2=8这样学生就更容易掌握了。小学一年级下册知识点(数学)第一重点:认识图形一、图形可分为(1)平面图形,(2)立体图形1、平面图形:正方形、长方形、三角形、圆、平行四边形2、立体图形:长方体、正方体、圆柱、球二、图形的拼组1、两个完全一样的三角形可拼成一个平行四边形;两个完全一样的三角形既可以拼成一个平行四边形,也可以拼成一个长方形,还可以拼成一个大三角形。2、拼成一个大正方形至少需要4个小正方形,拼成一个大正方体至少需要8个小正方体。3、两个长方形能拼成一个大的长方形。(两个特殊的长方形能拼成一个大正方形),4个长方体能拼成一个大的长方体。第二重点:分类与整理分类的方法:一般是(1)按形状;(2)按颜色;(3)按用途;(4)按种类。在分类的同时,初步体验数据的收集、整理、描述、分析的过程,会用简单的方法收集、整理数据,初步认识条形统计图和统计表,能根据统计图表中的数据提出并回答简单的问题。第三重点:认识人民币1、人民币的单位有(元)、(角)、(分)。2、人民币各单位之间的换算:1元=10角;10角=1元;1角=10分;10分=1角;10角=100分;1元=100分。3、主要题型:填合适的单位。(注意和生活实际联系)计算:元+元角+角满10角记得换成1元元-元角-角“角”不够减向“元”借1元当10角再计算如:(1)2元8角+6角=2元14角=3元4角(2)65元-3元7角=64元10角-3元7角=61元3角4、解决问题:先画批,找准数据,再列式计算。列式时用:“几元几角+几元几角”的形式来表示,不用小数形式列式。5、换钱:1张10元可以换5张2元。1张100元可以换5张20元。1张100元可以换2张50元。1张50元可以换10张5元。6、2.00元=2元;0.50元=5角;59.90元=59元9角;9.25元=9元2角5分。第四重点:100以内数的认识1、从右边起,第一位是个位,第二位是十位,第三位是百位。读数、写数的方法:读数和写数都要从高位起。2、单数:个位上是1,3,5,7,9的自然数。3、双数:个位上是0,2,4,6,8的自然数(0除外)。4、整十数:个位上是0的自然数(0除外)。5、5个十,5个一,组成起来是55。(十位上的5表示5个十,个位上的5表示5个一。)读作:五十五(写语文汉字)写作:55(写数学字)6、10个一是十,10个十是一百。(一、十、百是计数单位。要写汉字)数的组成:(注意不同的问法)例:68是由6个十和8个一组成的;68是由8个一和6个十组成的68里面有(6)个十和(8)个一,有(68)个一。68十位上的数是6,表示6个十(写汉字),个位上的数是8,表示8个一(写汉字)。数学学习方法技巧1、接触数学,兴趣第一。我们接触过不少四五年级希望开始学习华数的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过数学的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小学六年级形势又不得不学。对于这样的学生,学习数学是有一定阴影的,甚至有些学生抱定了自己不适合学数学的念头,有一定抵触心理。所以既然家长决定低年级开始学习数学,一定要首先注意兴趣上的培养,帮助他们找到数学中引起他们兴趣的事情,比如数字游戏等等。2、找一位孩子最喜欢的老师。既然刚刚接触数学,兴趣是第一位的,那找一位孩子喜欢的老师就是学习的重中之重。一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。?在课堂上,老师不仅是孩子的师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。3、用一套最权威的教材。通过长期的数学学习,可以使学生的数学学习能力和素质得到培养,思维能力、智力潜能得到很好的开发,现已被众多学有余力和学有兴趣的学生所青睐。数学?课程可以使您的孩子“开思维之窍,入解题之门”,帮助孩子奠定坚实的基础,攀登数学的颠峰!《小学数学练习机》里就有很多好教程。4、从最合适的起点开始。刚刚接触数学,学不懂不是孩子不适合学数学,是起点不合适。举个例子:《小学数学练习机》里有很多非常好的教程,但是里面的《秘笈》中的很多知识超前于学校的课本,如果利用的不好,很容易打击孩子的积极性和自信心,这是目前导致很多孩子不喜欢数学,厌恶数学的最主要的原因之一。一年级数学基本知识点梳理相关文章:★小学一年级数学知识点梳理★一年级数学人教版知识点梳理★一年级数学上册知识点整理★人教版一年级数学重点知识点总结★一年级数学知识点梳理★一年级数学基本知识点★小学一年级数学知识点整理★一年级数学的知识点归纳★小学一年级数学重点知识点总结★一年级数学必备知识点
      一年级数学基本知识点梳理

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/258405.html

          热门文章

          文章分类