TCP 详解
title: TCP 总结date: 2018-03-25 09:40:24tags:categories:-计算机网络我们都知道 TCP 是位于传输层的协议,他还有一个兄弟就是 UDP ,他们两共同构成了传输层。显然他们之间有很大的区别要不然的话在传输层只需要一个就好了。其中最重要的区别就是一个面向连接另外一个不是,这个区别就导致了他们是否能够保证稳定传输,显然不面向连接的 UDP 是没办法保证可靠传输的,他只能靠底层的网络层和链路层来保证。我们都知道网络层采用的是不可靠的 IP 协议。好吧,网络层也保证不了可靠传输,所以 UDP 保证可靠传输只能依靠链路层了。而 TCP 就好说了他不仅仅有底层的链路层的支持,还有自己的面向链接服务来保证可靠传输。当然 TCP也不仅仅就是比 UDP 多了一个可靠传输,前面也说到了这只是他们之间一个重要的区别。其实他的三个重要特性就是它们之间的区别。* 可靠传输* 流量控制* 拥塞控制TCP 主要是 确认重传机制 数据校验 数据合理分片和排序 流量控制 拥塞控制 依靠来完成可靠传输的 , 下面详细介绍这几种保证可靠传输的方式。确认重传,简单来说就是接收方收到报文以后给发送方一个 ACK 回复,说明自己已经收到了发送方发过来的数据。如果发送方等待了一个特定的时间还没有收到接收方的 ACK 他就认为数据包丢了,接收方没有收到就会重发这个数据包。好的,上面的机制还是比较好理解的,但是我们会发现一个问题,那就是如果接收方已经收到了数据然后返回的 ACK 丢失,发送方就会误判导致重发。而此时接收方就会收到冗余的数据,但是接收方怎么能判定这个数据是冗余的还是新的数据呢?这就涉及到了 TCP 的另外一个机制就是采用序号和确认号,也就是每次发送数据的时候这个报文段里面包括了当前报文段的序号和对上面的报文的确认号,这样我们的接收方可以根据自己接受缓存中已经有的数据来确定是否接受到了重复的报文段。这时候如果出现上面所说的 ACK 丢失,导致接受重复的报文段时客户端丢弃这个冗余的报文段。好现在我们大致了解了确认重传机制,但是还有些东西还没有弄清楚,也就是 TCP 真正的实现究竟是怎样的。这就是我们要解决的第一个问题就是如何确认。这里涉及到两种确认方式,分别称为 累计确认(捎带确认)和单停等协议。用一张图来快速理解,就是每发送一次数据,就进行一次确认。等发送方收到了 ACK 才能进行下一次的发送。一样的也是采用的 ACK 机制,但是注意一点的是,并非对于每一个报文段都进行确认,而仅仅对最后一个报文段确认,捎带的确认了上图中的 203 号及以前的报文。总结:从上面可以看到累计确认的效率更加高,首先他的确认包少一些那么也就是在网络中出现的大部分是需要传输的数据,而不是一半的数据一半的 ACK ,然后我们在第二张图中可以看到我们是可以连续发送多个报文段的(究竟一次性能发多少这个取决于发送窗口,而发送窗口又是由接受窗口和拥塞窗口一起来决定的。),一次性发多个数据会提高网络的吞吐量以及效率这个可以证明,比较简单这里不再赘述!结论:显然怎么看都是后者比较有优势,TCP 的实现者自然也是采用的累计确认的方式!上文中的那个特定的时间就是超时时间,为什么有这个值呢? 其实在发送端发送的时候就为数据启动了一个定时器,这个定时器的初始值就是超时时间。超时时间的计算其实有点麻烦,主要是我们很难确定一个确定的值,太长则进行了无意义的等待,太短就会导致冗余的包。TCP 的设计者们设计了一个计算超时时间的公式,这个公式概念比较多,有一点点麻烦,不过没关系我们一点点的来。首先我们自己思考如何设计一个超时时间的计算公式,超时时间一般肯定是和数据的传输时间有关系的,他必然要大于数据的往返时间(数据在发送端接收端往返一趟所用的时间)。好,那么我们就从往返时间下手,可是又有一个问题就是往返时间并不是固定的我们有如何确定这个值呢?自然我们会想到我们可以取一小段时间的往返时间的平均值来代表这一时间点的往返时间,也就是微积分的思想!好了我们找到了往返时间(RTT),接下来的超时时间应该就是往返时间再加上一个数就能得到超时时间了。这个数也应该是动态的,我们就选定为往返时间的波动差值,也就是相邻两个往返时间的差。下面给出我们所预估的超时时间(TimeOut)公式:很好,看到这里其实你已经差不多理解了超时时间的计算方式了,只不过我们这个公式不够完善,但是思路是对的。我们这时候来看看 TCP 的实现者们采用的方式。好的,这就是 TCP 实现的超时时间的方式,但是在实际的应用中并不是一直采用的这种方式。假如说我们现在网络状态非常的差,一直在丢包我们根本没必要这样计算,而是采用直接把原来的超时时间加倍作为新的超时时间。总结:好的现在我们知道了在两种情况下的超时时间的计算方式,正常的情况下我们采用的上面的比较复杂的计算公式,也就是RTT+波动值否则直接加倍上面我们看到在发送方等待一个超时重传时间后会开始重传,但是我们计算的超时重传时间也不定就很准,也就是说我们经常干的一件事就会是等待,而且一般等的时间还挺长。那么可不可以优化一下呢?当然,在 TCP 实现中是做了优化的,也就是这里说到的快速重传机制。他的原理就是在发送方收到三个冗余的 ACK 的时候,就开始重传那个报文段。那么为什么是三个冗余的 ACK 呢?注意三个冗余的 ACK 其实是四个 ACK 。我们先了解一下发送 ACK 策略,这个是RFC 5681 文档规定的。好的,那么现在我们可以看到如果出现了三个冗余的 ACK 他只可能是发生了两次情况三,也就是发送了两个比期望值大的数据。但是注意出现情况三有两种可能,一个是丢包,另外一个是乱序到达。比如说我们现在是数据乱序到达的,我们来看一下。第一种乱序情况另外一种乱序丢包情况结论: 很显然我们可以看到,如果发生了乱序有可能会出现三次冗余 ACK,但是如果发现了丢包必然会有三次冗余 ACK 发生,只是 ACK 数量可能更多但是不会比三次少在我们发现丢包以后我们需要重传,但是我们重传的方式也有两种方式可以选择分别是GBN和SR翻译过来就是拉回重传和选择重传。好其实我们已经能从名字上面看出来他们的作用方式了,拉回重传就是哪个地方没收到那么就从那个地方及以后的数据都重新传输,这个实现起来确实很简单,就是把发送窗口和接受窗口移回去,但是同样的我们发现这个方式不实用干了很多重复的事,效率低。那么选择重传就是你想到的谁丢了,就传谁。不存在做无用功的情况。结论:TCP 实际上使用的是两者的结合,称为选择确认,也就是允许 TCP 接收方有选择的确认失序的报文段,而不是累计确认最后一个正确接受的有序报文段。也就是跳过重传那些已经正确接受的乱序报文段。数据校验,其实这个比较简单就是头部的一个校验,然后进行数据校验的时候计算一遍 checkSum 比对一下。在 UDP 中,UDP 是直接把应用层的数据往对方的端口上 “扔” ,他基本没有任何的处理。所以说他发给网络层的数据如果大于1500字节,也就是大于MTU。这个时候发送方 IP 层就需要分片。把数据报分成若干片,使每一片都小于MTU.而接收方IP层则需要进行数据报的重组。这样就会多做许多事情,而更严重的是 ,由于UDP的特性,当某一片数据传送中丢失时 , 接收方便无法重组数据报,将导致丢弃整个UDP数据报。而在 TCP 中会按MTU合理分片,也就是在 TCP 中有一个概念叫做最大报文段长度(MSS)它规定了 TCP 的报文段的最大长度,注意这个不包括 TCP 的头,也就是他的典型值就是 1460 个字节(TCP 和 IP 的头各占用了 20 字节)。并且由于 TCP 是有序号和确认号的,接收方会缓存未按序到达的数据,根据序号重新排序报文段后再交给应用层。流量控制一般指的就是在接收方接受报文段的时候,应用层的上层程序可能在忙于做一些其他的事情,没有时间处理缓存中的数据,如果发送方在发送的时候不控制它的速度很有可能导致接受缓存溢出,导致数据丢失。相对的还有一种情况是由于两台主机之间的网络比较拥塞,如果发送方还是以一个比较快的速度发送的话就可能导致大量的丢包,这个时候也需要发送方降低发送的速度。虽然看起来上面的两种情况都是由于可能导致数据丢失而让发送主机降低发送速度,但是一定要把这两种情况分开,因为前者是属于 流量控制而后者是拥塞控制,那将是我们后面需要讨论的事情。不要把这两个概念混了。其实说到流量控制我们就不得不提一下滑动窗口协议,这个是流量控制的基础。由于 TCP 连接是一个全双工的也就是在发送的时候也是可以接受的,所以在发送端和接收端同时维持了发送窗口和接收窗口。这里为了方便讨论我们就按照单方向来讨论。接收方维持一个接受窗口,发送方一个发送窗口。发送的时候要知道接受窗口还有多少空间,也就是发送的数据量不能超过接受窗口的大小,否则就溢出了。而当我们收到一个接收方的 ACK 的时候我们就可以移动接受窗口把那些已经确认的数据滑动到窗口之外,发送窗口同理把确认的移出去。这样一直维持两个窗口大小,当接收方不能在接受数据的时候就把自己的窗口大小调整为 0 发送窗口就不会发送数据了。但是有一个问题,这个时候当接收窗口再调大的时候他不会主动通知发送方,这里采用的是发送方主动询问。还是画个图看的比较直观:拥塞控制一般都是由于网络中的主机发送的数据太多导致的拥塞,一般拥塞的都是一些负载比较高的路由,这时候为了获得更好的数据传输稳定性,我们必须采用拥塞控制,当然也为了减轻路由的负载防止崩溃。这里主要介绍两个拥塞控制的方法,一个是慢开始,另外一个称为快恢复。那么问题来了,为什么需要序号呢?为什么又是三次握手而不是两次?以及什么是 SYN 洪泛攻击?这里需要说明一下的是最后的那个长长的 TIME_WAIT 状态一般是为了客户端能够发出 ACK 一般他的值是 1分钟 或者2分钟好了,今天真的写了不少,主要就是把 TCP 的可靠传输以及连接管理讲清楚了,以及里面的一下细节问题,真的很花时间。然后其他没有涉及到的就是关于 TCP 的头并没有详细的去分析,这个东西其实也不是很难,但是现在篇幅真的已经很大就先这样,头里面的都是固定的不需要太多的理解。

浅谈TCP(2):流量控制与拥塞控制
上文 浅谈TCP(1):状态机与重传机制 介绍了TCP的状态机与重传机制。本文介绍 流量控制 (Flow Control,简称流控)与 拥塞控制 (Congestion Control)。TCP依此保障网络的 QOS (Quality of Service)。根据前文对TCP超时重传机制的介绍,我们知道Timeout的设置对于重传非常重要:而且,这个超时时间在不同的网络环境下不同,必须动态设置。为此,TCP引入了 RTT (Round Trip Time,环回时间):一个数据包从发出去到回来的时间。这样,发送端就大约知道正常传输需要多少时间,据此计算 RTO (Retransmission TimeOut,超时重传时间)。 听起来似乎很简单:在发送方发包时记下t0,收到接收方的Ack时记一个t1,于是RTT = t1 – t0。然而,这只是一个采样,不能代表网络环境的普遍情况。RFC793 中定义了一个 经典算法 :经典算法描述了RTO计算的基本思路,但还有一个重要问题:RTT的采样取“第一次发Seq+收Ack的时间”,还是“重传Seq+收Ack的时间”?如图:问题的本质是:发送方无法区分收到的Ack对应第一次发的Seq还是重传的Seq(进入网络就都一样了)。针对该问题, Karn / Partridge 算法选择回避重传的问题: 忽略重传的样本,RTT的采样只取未产生重传的样本 。简单的忽略重传样本也有问题:假设当前的RTO很小,突然发生网络抖动,延时剧增导致要重传所有的包;由于忽略重传样本,RTO不会被更新,于是继续重传使网络更加拥堵;拥堵导致更多的重传,恶性循环直至网络瘫痪。Karn / Partridge算法用了一个取巧的办法: 只要一发生重传,就将现有的RTO值翻倍(指数回退策略),待网络恢复后再仿照经典算法逐渐平滑以降低RTO 。该算法已经做到可用,然而网络抖动对性能的影响比较大。前面两种算法均使用加权移动平均算法做平滑,这种方法的最大问题是:很难发现RTT值上的较大波动,因为被平滑掉了(1 - a比较小,即最新RTT的权重小)。针对该问题, Jacobson / Karels 算法引入了最新采样的RTT值和平滑过的SRTT值的差距做因子,即 DevRTT (Deviation RTT,RTT的偏离度),同时考虑SRTT带来的惯性和DevRTT带来的波动:Linux 2.6采用该算法计算RTO,默认取α = 0.125, β = 0.25, μ = 1, ∂ = 4(玄学调参,你懂的)。TCP使用 滑动窗口 (Sliding Window)做流量控制与 乱序重排 。乱序重排在TCP的重传机制中已经介绍,下面介绍流量控制。TCP头里有一个字段叫Window(或Advertised Window), 用于接收方通知发送方自己还有多少缓冲区可以接收数据 。发送方根据接收方的处理能力来发送数据,不会导致接收方处理不过来,是谓流量控制。暂且把Advertised Window当做滑动窗口,更容易理解滑动窗口如何完成流量控制,后面介绍拥塞控制时再说明二者的区别。观察TCP协议的发送缓冲区和接收缓冲区:假设位置序号从左向右增长(常见的读、写缓冲区设计),解释一下:据此在接收方计算 AdvertisedWindow ,在发送方计算 EffectiveWindow :AdvertisedWindow衡量接收方还能接收的数据量,发送方要根据AdvertisedWindow决定接下来发送的数据量上限,即EffectiveWindow(可能为0)。由于乱序问题的存在,LastByteRcvd可能指向Seq(LastByteSent),而Seq(LastByteAcked + 1)至Seq(LastByteSent - 1)都还在路上 ,即将到达接收方,最好的情况是不丢包(丢包后会重传), 则LastByteRcvd之后、接收缓冲区边界之前的空间就是发送方下一次发送数据的长度上限 (重传不属于下一次发送),因此, AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd - LastByteRead) 。LastByteRcvd还可能指向Seq(LastByteAcked)(一个新包都没有收到) ,显然AdvertisedWindow的公式不变, 而Seq(LastByteAcked + 1)至Seq(LastByteSent)都还在路上 ,未来将到达接收方,进入接收缓冲区,则“还在路上的Seq(LastByteAcked + 1)至Seq(LastByteSent)”不应超过接收缓冲区的剩余空间AdvertisedWindow(目前等于MaxRcvBuffer),这要求的是上一次发送满足LastByteSent - LastByteAcked ≤ AdvertisedWindow, 那么LastByteSent之后、接收缓冲区剩余空间边界之前的空间就是发送方窗口内剩余可发送数据的长度上限 ,因此, EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked) 。以下是一个发送缓冲区的滑动窗口:上图分为4个部分:其中, #2 + #3 组成了滑动窗口,总大小不超过AdvertisedWindow,二者比例受到接收方的处理速度与网络情况的影响(如果丢包严重或处理速度慢于发送速度,则 #2:#3 会越来越大)。以下是一个AdvertisedWindow的调整过程,EffectiveWindow随之变化:上图,我们可以看到一个处理缓慢的Server(接收端)是怎么把Client(发送端)的发送窗口size给降成0的。对于接收方来说,此时接收缓冲区确实已经满了,因此令发送方的发送窗口size降为0以暂时禁止发送是合理的。那么,等接收方的接收缓冲区再空出来,怎么通知发送方新的window size呢?针对这个问题,为TCP设计了ZWP技术(Zero Window Probe,零窗通告):发送方在窗口变成0后,会发ZWP的包给接收方,让接收方来Ack他的Window尺寸;ZWP的重传也遵循指数回退策略,默认重试3次;如果3次后window size还是0,则认为接收方出现异常,发RST重置连接(部分文章写的是重试到window size正常???)。注意:只要有等待的地方都可能出现DDoS攻击,Zero Window也不例外。一些攻击者会在和服务端建好连接发完GET请求后,就把Window设置为0,于是服务端就只能等待进行ZWP;然后攻击者再大量并发发送ZWP,把服务器端的资源耗尽。(客户端等待怎么耗服务端???)为什么要进行拥塞控制?假设网络已经出现拥塞,如果不处理拥塞,那么延时增加,出现更多丢包,触发发送方重传数据,加剧拥塞情况,继续恶性循环直至网络瘫痪。可知,拥塞控制与流量控制的适应场景和目的均不同。拥塞发生前,可避免流量过快增长拖垮网络;拥塞发生时,唯一的选择就是降低流量。主要使用4种算法完成拥塞控制:算法1、2适用于拥塞发生前,算法3适用于拥塞发生时,算法4适用于拥塞解决后(相当于拥塞发生前)。在正式介绍上述算法之前,先补充下 rwnd (Receiver Window,接收者窗口)与 cwnd (Congestion Window,拥塞窗口)的概念:介绍流量控制时,我们没有考虑cwnd,认为发送方的滑动窗口最大即为rwnd。实际上, 需要同时考虑流量控制与拥塞处理,则发送方窗口的大小不超过 min{rwnd, cwnd}。下述4种拥塞控制算法只涉及对cwnd的调整,同介绍流量控制时一样,暂且不考虑rwnd,假定滑动窗口最大为cwnd;但读者应明确rwnd、cwnd与发送方窗口大小的关系。慢启动算法 (Slow Start)作用在拥塞产生之前: 对于刚刚加入网络的连接,要一点一点的提速,不要妄图一步到位 。如下:因此,如果网速很快的话,Ack返回快,RTT短,那么,这个慢启动就一点也不慢。下图说明了这个过程:前面说过,当cwnd >= ssthresh(通常ssthresh = 65535)时,就会进入 拥塞避免算法 (Congestion Avoidance): 缓慢增长,小心翼翼的找到最优值 。如下:慢启动算法主要呈指数增长,粗犷型,速度快(“慢”是相对于一步到位而言的);而拥塞避免算法主要呈线性增长,精细型,速度慢,但更容易在不导致拥塞的情况下,找到网络环境的cwnd最优值。慢启动与拥塞避免算法作用在拥塞发生前,采取不同的策略增大cwnd;如果已经发生拥塞,则需要采取策略减小cwnd。那么,TCP如何判断当前网络拥塞了呢?很简单,如果发送方发现有Seq发送失败(表现为“丢包”),就认为网络拥塞了。丢包后,有两种重传方式,对应不同的网络情况,也就对应着两种拥塞发生时的控制算法:可以看到,不管是哪种重传方式,ssthresh都会变成cwnd的一半,仍然是 指数回退,待拥塞消失后再逐渐增长回到新的最优值 ,总体上在最优值(动态)附近震荡。回退后,根据不同的网络情况,可以选择不同的恢复算法。慢启动已经介绍过了,下面介绍快速恢复算法。如果触发了快速重传,即发送方收到至少3次相同的Ack,那么TCP认为网络情况不那么糟,也就没必要提心吊胆的,可以适当大胆的恢复。为此设计 快速恢复算法 (Fast Recovery),下面介绍TCP Reno中的实现。回顾一下,进入快速恢复之前,cwnd和sshthresh已被更新:然后,进入快速恢复算法:下面看一个简单的图示,感受拥塞控制过程中的cwnd变化:

TCP协议采取了哪些机制来进行拥塞控制
最初的TCP协议只有基于窗口的流控制(flow control)机制而没有拥塞控制机制,流控制是一种局部控制机制,其参与者仅仅是发送方和接收方,它只考虑了接收端的接收能力,而没有考虑到网络的传输能力;而拥塞控制则注重于整体,其考虑的是整个网络的传输能力,是一种全局控制机制。拥塞控制机制使得TCP连接在网络发生拥塞时回退(back off),也就是说TCP源端会对网络发出的拥塞指示(congestion notification)(例如丢包、重复的ACK等)作出响应。针对TCP在控制网络拥塞方面的不足,后来又提出了“慢启动”(Slow Start)和“拥塞避免”(Congestion Avoidance)算法。TCP Reno版本增加了“快速重传 ”(Fast Retransmit)、“快速恢复”(Fast Recovery)算法,避免了网络拥塞不严重时采用“慢启动”算法而造成过大地减小发送窗口尺寸的现象,这样TCP的拥塞控制就由这4个核心部分组成。 近几年又出现TCP的改进版本如NewReno和选择性应答(selective acknowledgement,SACK)等。

分析tcp协议原理
原理四个主要方面:一、tcp协议之连接建立、断开二、tcp协议之超时重传三、tcp协议之窗口管理四、tcp协议之拥塞控制TCP是一种面向有连接的协议,也就是说必须确认对方存在时才能发送数据而TCP通过检验和、序列号、确认应答、重发控制、连接管理、窗口控制等机制来实现可靠传输。1. 目的:TCP三次握手是客户端和服务器总共发三个数据包,通过三个数据包来确认主动发送能力和被动接收能力是否正常。2. 实质:通过指定的四元组(源地址、源端口、目标地址、目标端口)来建立TCP连接,同步双方各自发送序列号seq和确认号ACK,同时也会交换窗口大小信息三次握手过程的实现方式就是交换序列号seq。随便在网上找个地址,如果通过域名想看ip地址,可以ping下看连接。① 192.168.3.7发送[SYN]报文段至222.169.228.146,告知序列号x为0。② 222.169.228.146发送[SYN,ACK]报文段至192.168.3.7,告知序列号y为0,确认号ACK为x+1=1。③192.168.3.7发送[ACK]报文段至222.169.228.146,告知确认号ACK为y+1=1。报文段中的其他参数:MSS=1460:允许从对方接收到的最大报文段,图中为1460字节(指承载的数据,不包含报文段的头部)。win=8192:滑动窗口的大小为8192字节。SACK_PERM=1:开启选择确认。为什么会使用SACK:tcp确认方式不是一段报文段一确认,而是采用累积确认方式。服务器接收到的报文段无序所以序列号也是不连续,服务器的接收队列会出现空洞情况。为了解决空洞,提前了解当前空洞,应对丢失遗漏,采取重传。提前了解方式就是通过SACK选项信息,SACK信息包含接收方已经成功接收的数据块的序列号范围。而SACK_PERM字段为1表明,选择开启了SACK功能。网络层可能会出现丢失、重复、乱序的问题,tcp是提供可靠的数据传输服务的,为了保证数据的正确性,tcp协议会重传它认为的已经丢失的包。重传两种机制:一种基于时间重传,一种基于确认报文段提供的信息重传。RTT:数据完全发送完(完成最后一个比特推送到数据链路上)到收到确认信号的时间(往返时间)。RTO:重传超时时间(tcp发送数据时设置一个计时器,当计时器超时没有收到数据确认信息,引发超时而重传,判断的标准就是RTO)。思考:发送序列号为1、2、3、4这4个报文段,但是出现了序列号2报文段丢失,怎么办?发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端当收到序列号为3的报文(2已丢失),发送ack为4的确认报文,发送端正等待ack为2的确认报文,面对跳跃的报文,那么发送端会一直等待,直到超出指定时间,重传报文2。为什么不跳跃确认呢?tcp是累积确认方式,如果确认报文3,那么意味着报文1和报文2都已经成功接收。超时处理方式:思考:上面计时器是以时间为标准重传,那么可以通过确认报文的次数来决定重传。发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端收到报文3、4、5,但是没收到报文2,那么接收端发送三个ACK为2的确认报文,发送端收到这个三个确认报文,重传报文2。思考:如果快速重传中丢失包的地方很多(报文2,报文,7,报文9,报文30,报文300....),那么需要从头到尾都重传,这很蛋疼?思考:SACK重传对于接收到重复数据段怎样运作没有明确规定,通过DSACK重传可以让发送方知道哪些数据被重复接收了,而且明确是什么原因造成的。发送端没有收到100-199的ACK包,超过指定时间,重传报文。接收端都已经收到200-299的发送报文了,又来100-199是重复报文。再向发送端发送一个ACK报文,设置SACK 100-199,告知发送端,已经收到了100-199包,只是回应ACK包丢失。发送端发送包100-199,由于网络延迟,一直没有达到接收端。接收端连续发送三个ACK 200确认报文,触发快速重传,发送端收到了ACK 500的确认报文,表明之前的报文都已经交付成功。接收端又收到了延迟的报文100-199,再次向发送端发送一个SACK 100-199的ACK 500报文。发送端发现这是重复报文,判断为网络延迟造成的。计时器重传:根据超时,重传。快速重传:根据接收三次相同ACK报文,重传。选择确认重传:根据接收端提供的SACK信息,重传。DSACK重传:根据重复报文,明确丢失ACK报文还是网络延迟。Category1:已发送且已确认(已经收到ACK报文的数据)。Category2:已发送但未收到确认。Category3:即将发送。Category4:窗口移动前都不能发送。可用窗口:46-51字节。发送窗口:32-51字节。RCV.NXT:左边界RCV.WND:接收窗口RCV.NXT+RCV.WND:右边界接收端接收到序列号小于左边界,那么被认为重复数据而被丢弃。接收端接收到序列号大于右边界,那么被认为超出处理范围,丢弃。注意:tcp协议为累积ACK结构,只有当达到数据序列号等于左边界时,数据才不会被丢弃。如果窗口更新ACK丢失,对于发送端,窗口左边界右移,已发送数据得到ACK确认之后,左右边界距离减小,发送端窗口会减小,当左右边界相等时,称为零窗口。零窗口之后:接收端发送窗口更新能会发生窗口更新ACK丢失。<>解释:TCP是通过接收端的通告窗口来实现流量控制的,通告窗口指示了接收端可接收的数据量。当窗口值变为0时,可以有效阻止发送端继续发送,直到窗口大小恢复为非零值。当接收端重新获得可用空间时,会给发送端传输一个窗口更新告知其可继续发送数据。这样的窗口更新通常都不包含数据(纯ACK),接收端向发送端发送的窗口更新ACK可能丢失。结果双方处于等待状态,发生死锁。解决方案:发送端会采用一个持续计时器间歇性地查询接收端,看其窗口是否已增长。触发窗口探测,强制要求接收端返回ACK。发送几次探测,窗口大小还是0,那么断开连接。出现SWS的情况:① 接收端通告窗口太小。② 发送端发送的数据太小。解决方案:① 针对接收端:不应通告小窗口值[RFC1122]描述:在窗口可增至一个全长的报文段(接收端MSS)或者接收端缓存空间的一半(取两者中较小值)之前,不能通告比当前窗口更大的窗口值。标准:min(MSS , 缓存空间/2)。② 针对发送端:不应发送小的报文至少满足以下其一:(1)可以发送MSS字节的报文。window size >= MSS或者 数据大小>=MSS(2)数据段长度>=接收端通告过的最大窗口值的一半,才可以发送。收到之前发送的数据的ack回包,再发送数据,否则一直攒数据。(3) -1 没有未经确认的在传数据或者-2 连接禁用Nagle算法。tcp基于ACK数据包中的通告窗口大小字段实现了流量控制。当网络大规模通信负载而瘫痪,默认网络进入拥塞状态,减缓tcp的传输。发送方和接收方被要求承担超负荷的通信任务时,采取降低发送速率或者最终丢弃部分数据的方法。反映网络传输能力的变量称为拥塞窗口(cwnd)。通告窗口(awnd)。发送窗口swnd=min(cwnd,awnd)目的:tcp在用拥塞避免算法探寻更多可用带宽之前得到cwnd值,帮助tcp建立ACK时钟。[RFC5681] :在传输初始阶段,由于未知网络传输能力,需要缓慢探测可用传输资源,防止短时间内大量数据注入导致拥塞。慢启动算法针对这一问题而设计。在数据传输之初或者重传计时器检测到丢包后,需要执行慢启动。拥塞窗口值:每收到一个ACK值,cwnd扩充一倍。所以假设没有丢包且每个数据包都有相应ACK值,在k轮后swnd=,成指数增长。SMSS是发送方的最大段大小。慢启动阶段,cwnd会指数增长,很快,帮助确立一个慢启动阙值(ssthresh)。有了阙值,tcp会进入拥塞避免阶段,cwnd每次增长值近似于成功传输的数据段大小,成线性增长。实现公式:cwnd+=SMSS*SMSS/cwnd刚建立连接使用慢启动算法,初始窗口为4,收到一次ACK后,cwnd变为8,再收到一次ACK后,cwnd变为16,依次继续,32、64,达到阙值ssthresh为64。开始使用拥塞避免算法,设置ssthresh为ssthresh/2,值为32。重新从初始窗口4,线性递增到ssthresh=32。当cwnd < ssthresh时,使用慢启动算法当cwnd > ssthresh时,使用拥塞避免算法应用快速恢复算法时机:启动快速重传且正常未失序ACK段达到之前。启动快速恢复算法。实现过程:① 将ssthresh设置为1/2 cwnd,将cwnd设置为ssthresh+3*SMSS。② 每接收一个重复ACK,cwnd值暂时增加1 SMSS。③当接收到新数据ACK后,将cwnd设置为ssthresh。参考:<>

TCP拥塞控制
我们看到TCP连接的双方都包含一个接收缓冲区,一个发送缓冲区和几个变量(LastByteRead,rwnd等)。 TCP拥塞控制机制运行在发送者对拥塞窗口的跟踪上。 拥塞窗口(表示为cwnd)对TCP发送方可以发送到网络的速率施加约束。具体而言,发送者的未确认数据量不得超过cwnd和rwnd之间的较小值:ssthresh 慢启动阈值(show start threshold)别被“慢启动”这个名字所迷惑了,实际上这是cwnd增长最快的阶段。在慢启动状态下,cwnd的值从1 MSS开始,并且当每个被传输的报文段第一次ACK时,cwnd都会+1MSS在进入拥塞避免状态时,cwnd的值大约是上次遇到拥塞时的值的一半在慢启动阶段每个RTT都会将cwnd值加倍,而在拥塞避免阶段TCP采用更保守的方法,并且每个RTT只增加cwnd一个MSS的值[RFC 5681]。 这可以通过几种方式实现。 一种常见的方法是TCP发送器在新的确认到达时通过MSS字节(MSS / cwnd)增加cwnd。 例如,如果MSS是1,460字节而cwnd是14,600字节,则在RTT内发送10个段。 每个到达的ACK(假设每个段一个ACK)将拥塞窗口大小增加1/10MSS,因此,当10个段都ACK后,cwnd才累计增加了一个MSS。在快速恢复中,对于导致TCP进入快速恢复状态的丢失段的每个重复ACK,cwnd的值增加1 MSS。 最终,当丢失的段的ACK到达时,TCP在放空cwnd后进入拥塞避免状态。 如果发生超时事件,则执行与慢启动和拥塞避免相同的操作后,快速恢复将转换为慢启动状态:cwnd的值设置为1 MSS,ssthresh的值设置为值的一半。快速恢复是TCP [RFC 5681]的推荐但不是必需的组件。 有趣的是,早期版本的TCP(称为TCP Tahoe)无条件地将其拥塞窗口切换为1 MSS,并在超时指示或三重复ACK指示丢失事件后进入慢启动阶段。 较新版本的TCP,TCP Reno,整合了快速恢复。TCP tahoe 无快速恢复TCP reno有快速恢复忽略连接开始时的初始慢启动时段并假设丢失由三次重复ACK而不是超时触发的,TCP的拥塞控制包括每个RTT 1个MSS的cwnd线性(附加)增加然后减半 (三次重复ACK事件)的cwnd的(乘法减少)。 出于这个原因,TCP拥塞控制通常被称为加法增加,乘法减少(AIMD)形式的拥塞控制。AIMD拥塞控制引起了“锯齿”行为,如图3.54所示,这也很好地说明了我们早期对TCP“探测”带宽的直觉 -TCP线性增加了它的拥塞窗口大小(以及它的传输速率),直到 发生三重复ACK事件。 然后它将拥塞窗口大小减少两倍,然后再次开始线性增加,探测是否有额外的可用带宽。如前所述,许多TCP实现使用Reno算法[Padhye 2001]。已经提出了Reno算法的许多变体[RFC 3782; RFC 2018]。 TCP Vegas算法[Brakmo 1995; Ahn 1995]试图在保持良好吞吐量的同时避免拥挤。 Vegas的基本思想是(1)在发生丢包之前检测源和目的地之间的路由器中的拥塞,以及(2)当检测到即将发生的丢包时,线性地降低速率。通过观察RTT预测即将发生的分组丢失。数据包的RTT越长,路由器的拥塞就越大。 Linux支持许多拥塞控制算法(包括TCP Reno和TCP Vegas),并允许系统管理员配置将使用哪个版本的TCP。 Linux版本2.6.18中的TCP的默认版本设置为CUBIC [Ha 2008],这是为高带宽应用程序开发的TCP版本。有关TCP的许多风格的最新调查,请参阅[Afanasyev 2010]。 TCP的AIMD算法是基于大量的工程洞察力和运营网络中的拥塞控制实验而开发的。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/308926.html。