网络通讯协议有哪几种
1、TCP/IP协议TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/网际协议) 协议具有很强的灵活性,支持任意规模的网络,几乎可连接所有服务器和工作站。在使用TCP/IP协议时需要进行复杂的设置,每个结点至少需要一个“IP地址”、一个“子网掩码”、一个“默认网关”、一个“主机名”,对于一些初学者来说使用不太方便。2、IPX/SPX及其兼容协议IPX/SPX(Internetwork Packet Exchange/Sequences Packet Exchange,网际包交换/顺序包交换)是Novell公司的通信协议集。IPX/SPX具有强大的路由功能,适合于大型网络使用。当用户端接入NetWare服务器时,IPX/SPX及其兼容协议是最好的选择。但在非Novell网络环境中,IPX/SPX一般不使用。3、NetBEUI协议NetBEUI(NetBios Enhanced User Interface , NetBios增强用户接口)协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。扩展资料:协议的使用建议1、根据网络条件选择:如网络存在多个网段或要通过路由器相连时,就不能使用不具备路由和跨网段操作功能的NetBEUI协议,而必须选择IPX/SPX或TCP/IP等协议。2、尽量减少协议种类:一个网络中尽量只选择一种通信协议,协议越多,占用计算机的内存资源就越多,影响了计算机的运行速度,不利于网络的管理。3、注意协议的版本:每个协议都有其发展和完善的过程,因而出现了不同的版本,每个版本的协议都有它最为合适的网络环境。在满足网络功能要求的前提下,应尽量选择高版本的通信协议。4、协议的一致性:如果要让两台实现互联的计算机间进行对话,它们使用的通信协议必须相同。否则,中间需要一个“翻译”进行不同协议的转换,不仅影响了网络通信速率,同时也不利于网络的安全、稳定运行。参考资料来源:百度百科-网络通信协议
常用的三个网络协议 网络中不同的工作站,服务器之间能传输数据,源于协议的存在。随着网络的发展,不同的开发商开发了不同的通信方式。为了使通信成功可靠,网络中的所有主机都必须使用同一语言,不能带有方言。因而必须开发严格的标准定义主机之间的每个包中每个字中的每一位。这些标准来自于多个组织的努力,约定好通用的通信方式,即协议。这些都使通信更容易。已经开发了许多协议,但是只有少数被保留了下来。那些协议的淘汰有多中原因---设计不好、实现不好或缺乏支持。而那些保留下来的协议经历了时间的考验并成为有效的通信方法。当今局域网中最常见的三个协议是MICROSOFT的NETBEUI、NOVELL的IPX/SPX和交叉平台TCP/IP。一:NETBEUINETBEUI是为IBM开发的非路由协议,用于携带NETBIOS通信。NETBEUI缺乏路由和网络层寻址功能,既是其最大的优点,也是其最大的缺点。因为它不需要附加的网络地址和网络层头尾,所以很快并很有效且适用于只有单个网络或整个环境都桥接起来的小工作组环境。因为不支持路由,所以NETBEUI永远不会成为企业网络的主要协议。NETBEUI帧中唯一的地址是数据链路层媒体访问控制(MAC)地址,该地址标识了网卡但没有标识网络。路由器靠网络地址将帧转发到最终目的地,而NETBEUI帧完全缺乏该信息。网桥负责按照数据链路层地址在网络之间转发通信,但是有很多缺点。因为所有的广播通信都必须转发到每个网络中,所以网桥的扩展性不好。NETBEUI特别包括了广播通信的记数并依赖它解决命名冲突。一般而言,桥接NETBEUI网络很少超过100台主机。近年来依赖于第二层交换器的网络变得更为普遍。完全的转换环境降低了网络的利用率,尽管广播仍然转发到网络中的每台主机。事实上,联合使用100-BASE-T Ethernet,允许转换NetBIOS网络扩展到350台主机,才能避免广播通信成为严重的问题。二:IPX/SPXIPX是NOVELL用于NETWARE客户端/服务器的协议群组,避免了NETBEUI的弱点。但是,带来了新的不同弱点。IPX具有完全的路由能力,可用于大型企业网。它包括32位网络地址,在单个环境中允许有许多路由网络。IPX的可扩展性受到其高层广播通信和高开销的限制。服务广告协议(Service Advertising Protocol,SAP)将路由网络中的主机数限制为几千。尽管SAP的局限性已经被智能路由器和服务器配置所克服,但是,大规模IPX网络的管理员仍是非常困难的工作。三:TCP/IP每种网络协议都有自己的优点,但是只有TCP/IP允许与Internet完全的连接。TCP/IP是在60年代由麻省理工学院和一些商业组织为美国国防部开发的,即便遭到核攻击而破坏了大部分网络,TCP/IP仍然能够维持有效的通信。ARPANET就是由基于协议开发的,并发展成为作为科学家和工程师交流媒体的Internet。TCP/IP同时具备了可扩展性和可靠性的需求。不幸的是牺牲了速度和效率(可是:TCP/IP的开发受到了政府的资助)。Internet公用化以后,人们开始发现全球网的强大功能。Internet的普遍性是TCP/IP至今仍然使用的原因。常常在没有意识到的情况下,用户就在自己的PC上安装了TCP/IP栈,从而使该网络协议在全球应用最广。TCP/IP的32位寻址功能方案不足以支持即将加入Internet的主机和网络数。因而可能 代替当前实现的标准是IPv6。
呃通讯协议的话有很多种呀因为各种的通讯协议对应了不同的版本吧你比如说比如说最常用的就是tcpip这个协议吧这个是上网用的

一层层了解网络通信协议
互联网的实现,分为好几层,每一层都有自己特有的功能,而且每一层都靠下一层支持。用户接触到的,只是最上面的一层,我们称为应用层,要理解互联网,必须从最下层开始,自下而上的理解每一层的功能。我们常见的网络模型,有以下三种:它们之间的关系如下图所示其中, 理论五层模型 是综合 OSI七层 和 TCP/IP四层 的优点,采用的一种原理体系结构。我们接下来的探讨也是基于 理论五层模型 来展开的。理论五层模型 的结构如下图各层的作用如下:简单说,越下面的层,越靠近硬件;越上面的层,越靠近用户。每一层都是为了完成某一种功能。为了实现这些功能,需要遵守一些共同的规则,这些规则就是 协议(protocol) 。互联网的每一层,都定义了很多协议。这些协议的总称,叫做 互联网协议(Internet Protocol Suite) ,它们是互联网的核心。下面的内容中,我们通过每一层的功能的介绍,对每一层中的主要协议所起作用进行讲解。电脑要进行联网,需要把电脑通过各种设备连接进网络,设备有光缆、电缆、双绞线、无限电波等方式。物理层是用于传输信号的介质,它传输的是 0和1 的电信号。但是关于电信号如何分组,每个信号位有何意义并没有规定。这就是 数据链路层 的功能,它在 物理层 的上方,确定了0和1的分组方式,用于两个设备(同一种数据链路结点)之间进行信息传递。早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做 以太网(Ethernet) 的协议,占据了主导地位。以太网规定,一组电信号构成一个数据包,叫做 帧(frame) ,每一帧分为两个部分: 标头(Head) 和 数据(Data) 。MTU是链路层对物理层的限制。由于链路层存在MTU的限制,导致网络层的报文如果超过1500字节,就必要要对其进行分片发送。上面我们提到,以太网数据包的 标头 ,包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?以太网规定,连入网络的所有设备,都必须具有 网卡 接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做 MAC地址 。每块网卡出厂的时候,都有一个全世界 独一无二的MAC地址 ,长度是 48个二进制位 ,通常用 12个十六进制数 表示。前6个十六进制数是厂商编号,后6个十六进制数是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。定义地址只是第一步,后面还有更多的步骤:上图中,5号计算机向3号计算机 发送一个数据包 ,同一个子网络的1号、2号、3号、4号、6号计算机 都会收到 这个包。它们读取这个包的 标头 ,找到 接收方的MAC地址 ,然后 与自身的 MAC地址相 比较 ,如果两者 相同 ,就 接收这个包 ,做进一步处理, 否则就丢弃 这个包。这种发送方式就叫做 广播 (broadcasting)。有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,成都的网卡就可以找到休斯顿的网卡了,技术上是可以实现的。但是,这样做有一个重大的缺点。 以太网 采用 广播 方式 发送数据包 ,所有成员人手一包,不仅 效率低 ,而且 局限在发送者所在的子网络 。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。互联网是无数子网络共同组成的一个巨型网络,很像想象成都和休斯顿的电脑会在同一个子网络,这几乎是不可能的。因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是 同一个子网络 ,就采用 广播 方式发送, 否则 就采用 路由 方式发送。( 路由 的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。这就导致了 网络层 的诞生。它的作用是 引进一套新的地址 ,使得我们能够 区分 不同的计算机是否属于同一个 子网络。这套地址就叫做 网络地址 ,简称 网址 。于是, 网络层 出现以后,每台计算机有了 两种地址 ,一种是 MAC地址 ,另一种是 网络地址 。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。规定网络地址的协议,叫做 IP协议 。它所定义的地址,就被称为 IP地址 。目前,广泛采用的是IP协议的第四版和第六版,分别称为IPv4和IPv6。互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成 两个部分 , 前一部分代表网络,后一部分代表主机 。比如,IP地址14.215.177.39,这是一个32位的地址,假定它的网络部分是前24位(14.215.177),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说14.215.177.2应该与14.215.177.1处在同一个子网络。但是,问题在于单单从IP地址,我们无法判断网络部分。还是以14.215.177.39为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数 子网掩码 (subnet mask)。子网掩码:我们知道,IPv4的地址只有32位,地球上网民数量已经远远超出这个数字,那么,为啥至今还没出现地址枯竭呢?因为我们还有一些技术,可以变相的缓解地址不足,比如NAT技术。NAT(Network Address Translation,网络地址转换)IPv6拥有128位巨大的地址空间,对于那么大的空间,也不是随意的划分,而是使用按照bit位进行号段划分。IPv6地址结构如下图例如 RFC4291 中定义了n=48, m=16,也就是子网和接口ID与各占64位。IPv6没有子网掩码mask的概念,它支持的是 子网前缀标识方法 。使用 IPv6地址/前缀长度 表示方法,例如:可以看到,一个IPv6的地址有子网前缀+接口ID构成,子网前缀由地址分配和管理机构定义和分配,而接口ID可以由各操作系统实现生成。IPv6是用来解决IPv4 地址枯竭 问题的,IPv4地址为32位,而IPv6地址为 128位除了地址数量以外,IPv6还有很多优点,例如:如上所述,IP协议的作用主要有两个:根据IP协议发送的数据,就叫做 IP数据包 。我们直接把IP数据包直接放进以太网数据包的"数据"部分,不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。具体来说,IP数据包也分为 标头 和 数据 两个部分:其中, 标头 范围为 20-60字节 ( IPv6固定为40字节 ), 整个 数据包的总长度 最大为65535字节 。因此, 理论上 ,一个IP数据包的 数据部分 , 最长为65515字节 。如图所示,标头中 20字节是固定不变的 ,它包含了版本、长度、IP地址等信息,另外还有可变部分的标头可选。而数据则是IP数据包的具体内容。将它放入以太网数据包后,以太网数据包就变成了下面这样:在以太网协议中,以太网数据包的数据部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。关于网络层,还有最后一点需要说明。因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道 两个地址 ,一个是对方的 MAC地址 ,另一个是对方的 IP地址 。通常情况下,对方的IP地址是已知的,但是我们 不知道它的MAC地址 。所以,我们需要一种机制,能够从IP地址得到MAC地址。这里又可以分成两种情况:总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。ARP攻击是利用ARP协议设计时缺乏安全验证漏洞来实现的,通过伪造ARP数据包来窃取合法用户的通信数据,造成影响网络传输速率和盗取用户隐私信息等严重危害。ARP攻击主要是存在于局域网网络中,局域网中若有一台计算机感染ARP木马,则感染该ARP木马的系统将会试图通过“ARP欺骗”手段截获所在网络内其它计算机的通信信息,并因此造成网内其它计算机的通信故障。局域网中比较常见的ARP攻击包括:上网时断时续,拷贝文件无法完成,局域网内的ARP包激增。出现不正常的MAC地址,MAC地址对应多个IP地址,网络数据发不出去了,网上发送信息被窃取,个人PC中毒局域网内MAC地址泛洪使MAC地址缓存表溢出等问题。据包的协议地址不匹配,从而在网络中产生大量的ARP。在局域网环境中,ARP攻击是主要的安全威胁,在传统网络中主要是通过静态绑定的方式来解决,但是这种方式限制了网络扩展的易用性。有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?也就是说,我们还需要一个参数,表示这个数据包到底供哪个 程序(进程) 使用。这个参数就叫做 端口 (port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。端口是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。传输层 的功能,就是建立 端口到端口 的通信。相比之下,网络层 的功能是建立 主机到主机的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做 套接字(socket)。有了它,就可以进行网络应用程序开发了。现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。UDP数据包,也是由标头和数据两部分组成:UDP数据包非常简单,标头部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。TCP数据包和UDP数据包一样,都是内嵌在IP数据包的数据部分。 TCP数据包没有长度限制,理论上可以无限长 ,但是为了保证网络的效率, 通常 TCP数据包的长度 不会超过IP数据包的长度 ,以确保单个TCP数据包不必再分割。应用程序收到传输层的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。应用层的作用,就是规定应用程序的数据格式。举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了应用层。这是最高的一层,直接面对用户。它的数据就放在TCP数据包的数据部分。因此,现在的以太网的数据包就变成下面这样:

常用的网络通信协议有哪些?
常用的三个网络协议 网络中不同的工作站,服务器之间能传输数据,源于协议的存在。随着网络的发展,不同的开发商开发了不同的通信方式。为了使通信成功可靠,网络中的所有主机都必须使用同一语言,不能带有方言。因而必须开发严格的标准定义主机之间的每个包中每个字中的每一位。这些标准来自于多个组织的努力,约定好通用的通信方式,即协议。这些都使通信更容易。已经开发了许多协议,但是只有少数被保留了下来。那些协议的淘汰有多中原因---设计不好、实现不好或缺乏支持。而那些保留下来的协议经历了时间的考验并成为有效的通信方法。当今局域网中最常见的三个协议是MICROSOFT的NETBEUI、NOVELL的IPX/SPX和交叉平台TCP/IP。一:NETBEUINETBEUI是为IBM开发的非路由协议,用于携带NETBIOS通信。NETBEUI缺乏路由和网络层寻址功能,既是其最大的优点,也是其最大的缺点。因为它不需要附加的网络地址和网络层头尾,所以很快并很有效且适用于只有单个网络或整个环境都桥接起来的小工作组环境。因为不支持路由,所以NETBEUI永远不会成为企业网络的主要协议。NETBEUI帧中唯一的地址是数据链路层媒体访问控制(MAC)地址,该地址标识了网卡但没有标识网络。路由器靠网络地址将帧转发到最终目的地,而NETBEUI帧完全缺乏该信息。网桥负责按照数据链路层地址在网络之间转发通信,但是有很多缺点。因为所有的广播通信都必须转发到每个网络中,所以网桥的扩展性不好。NETBEUI特别包括了广播通信的记数并依赖它解决命名冲突。一般而言,桥接NETBEUI网络很少超过100台主机。近年来依赖于第二层交换器的网络变得更为普遍。完全的转换环境降低了网络的利用率,尽管广播仍然转发到网络中的每台主机。事实上,联合使用100-BASE-T Ethernet,允许转换NetBIOS网络扩展到350台主机,才能避免广播通信成为严重的问题。二:IPX/SPXIPX是NOVELL用于NETWARE客户端/服务器的协议群组,避免了NETBEUI的弱点。但是,带来了新的不同弱点。IPX具有完全的路由能力,可用于大型企业网。它包括32位网络地址,在单个环境中允许有许多路由网络。IPX的可扩展性受到其高层广播通信和高开销的限制。服务广告协议(Service Advertising Protocol,SAP)将路由网络中的主机数限制为几千。尽管SAP的局限性已经被智能路由器和服务器配置所克服,但是,大规模IPX网络的管理员仍是非常困难的工作。三:TCP/IP每种网络协议都有自己的优点,但是只有TCP/IP允许与Internet完全的连接。TCP/IP是在60年代由麻省理工学院和一些商业组织为美国国防部开发的,即便遭到核攻击而破坏了大部分网络,TCP/IP仍然能够维持有效的通信。ARPANET就是由基于协议开发的,并发展成为作为科学家和工程师交流媒体的Internet。TCP/IP同时具备了可扩展性和可靠性的需求。不幸的是牺牲了速度和效率(可是:TCP/IP的开发受到了政府的资助)。Internet公用化以后,人们开始发现全球网的强大功能。Internet的普遍性是TCP/IP至今仍然使用的原因。常常在没有意识到的情况下,用户就在自己的PC上安装了TCP/IP栈,从而使该网络协议在全球应用最广。TCP/IP的32位寻址功能方案不足以支持即将加入Internet的主机和网络数。因而可能 代替当前实现的标准是IPv6
常用的协议有NETBEUI IPX/SPX TCP/IP
TCP/IP

以太网采用的通讯协议是什么?
现在比较通用的以太网通信协议是TCP/IP协议,TCP/IP协议与开放互联模型ISO相比,采用了更加开放的方式,它已经被美国国防部认可,并被广泛应用于实际工程。TCP/IP协议可以用在各种各样的信道和底层协议(如T1、X.25以及RS一232串行接口)之上。确切地说,TCP/IP协议是包括TCP协议、IP协议、UDP(User Datagram Proto—c01)协议、ICMP(Internet Control Message Protoc01)协议和其他一些协议的协议组。扩展资料:TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的七层抽象参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。而TCP/IP通讯协议采用了四层结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这四层分别为:(1)应用层:应用程序间沟通的层,如简单电子邮件传输协议(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。(2)传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据包协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。(3)网络层:负责提供基本的数据包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。(4)接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。参考资料:百度百科——以太网通信
以太网采用的通讯协议是CSMA/CD。 CSMA/CD:一种争用型的介质访问控制协议,应用在 OSI 的第二层数据链路层。CSMA/CD控制方式的优点:原理比较简单,技术上易实现,网络中各工作站处于平等地位 ,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。工作原理: 发送数据前先侦听信道是否空闲 ,若空闲,则立即发送数据;若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。简单总结为:先听后发,边发边听,冲突停发,随机延迟后重发 主要目的:提供寻址和媒体存取的控制方式,使得不同设备或网络上的节点可以在多点的网络上通信而不相互冲突。
以太网的通讯协议: 802.1,TCP/IP 以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。Ethernet 基本网络组成:共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:10 Mbps – 10Base-T Ethernet(802.3)100 Mbps – Fast Ethernet(802.3u)1000 Mbps – Gigabit Ethernet(802.3z))10 Gigabit Ethernet – IEEE 802.3ae拥有计算机并以拨号方式介入网络的用户需使用A CD--ROM B 键盘 C 电话机 D MODEM 答案:D MODEM
tcp/ip

什么是网络通信协议?它有什么作用?
网络通信协议是一种网络通用语言,为连接不同操作系统和不同硬件体系结构的互联网络引提供通信支持,是一种网络通用语言。例如,网络中一个微机用户和一个大型主机的操作员进行通信,由于这两个数据终端所用字符集不同,因此操作员所输入的命令彼此不认识。为了能进行通信,规定每个终端都要将各自字符集中的字符先变换为标准字符集的字符后,才进入网络传送,到达目的终端之后,再变换为该终端字符集的字符。因此,网络通信协议也可以理解为网络上各台计算机之间进行交流的一种语言。扩展资料:网络通信协议的三个要素:1、语义,解释控制信息每个部分的意义。它规定了需要发出何种控制信息,以及完成的动作与做出什么样的响应。2、语法,用户数据与控制信息的结构与格式,以及数据出现的顺序。3、时序,对事件发生顺序的详细说明。参考资料来源:百度百科-网络通信协议
“网络通信协议”指的是连接不同操作系统和不同硬件体系结构的互联网络引提供通信支持,是一种网络通用语言。 常用的三个网络协议网络中不同的工作站,服务器之间能传输数据,源于协议的存在。随着网络的发展,不同的开发商开发了不同的通信方式。为了使通信成功可靠,网络中的所有主机都必须使用同一语言,不能带有方言。因而必须开发严格的标准定义主机之间的每个包中每个字中的每一位。这些标准来自于多个组织的努力,约定好通用的通信方式,即协议。这些都使通信更容易。已经开发了许多协议,但是只有少数被保留了下来。那些协议的淘汰有多中原因---设计不好、实现不好或缺乏支持。而那些保留下来的协议经历了时间的考验并成为有效的通信方法。当今局域网中最常见的三个协议是MICROSOFT的NETBEUI、NOVELL的IPX/SPX和交叉平台TCP/IP。一:NETBEUINETBEUI是为IBM开发的非路由协议,用于携带NETBIOS通信。NETBEUI缺乏路由和网络层寻址功能,既是其最大的优点,也是其最大的缺点。因为它不需要附加的网络地址和网络层头尾,所以很快并很有效且适用于只有单个网络或整个环境都桥接起来的小工作组环境。因为不支持路由,所以NETBEUI永远不会成为企业网络的主要协议。NETBEUI帧中唯一的地址是数据链路层媒体访问控制(MAC)地址,该地址标识了网卡但没有标识网络。路由器靠网络地址将帧转发到最终目的地,而NETBEUI帧完全缺乏该信息。网桥负责按照数据链路层地址在网络之间转发通信,但是有很多缺点。因为所有的广播通信都必须转发到每个网络中,所以网桥的扩展性不好。NETBEUI特别包括了广播通信的记数并依赖它解决命名冲突。一般而言,桥接NETBEUI网络很少超过100台主机。近年来依赖于第二层交换器的网络变得更为普遍。完全的转换环境降低了网络的利用率,尽管广播仍然转发到网络中的每台主机。事实上,联合使用100-BASE-T Ethernet,允许转换NetBIOS网络扩展到350台主机,才能避免广播通信成为严重的问题。二:IPX/SPXIPX是NOVELL用于NETWARE客户端/服务器的协议群组,避免了NETBEUI的弱点。但是,带来了新的不同弱点。IPX具有完全的路由能力,可用于大型企业网。它包括32位网络地址,在单个环境中允许有许多路由网络。IPX的可扩展性受到其高层广播通信和高开销的限制。服务广告协议(Service Advertising Protocol,SAP)将路由网络中的主机数限制为几千。尽管SAP的局限性已经被智能路由器和服务器配置所克服,但是,大规模IPX网络的管理员仍是非常困难的工作。三:TCP/IP每种网络协议都有自己的优点,但是只有TCP/IP允许与Internet完全的连接。TCP/IP是在60年代由麻省理工学院和一些商业组织为美国国防部开发的,即便遭到核攻击而破坏了大部分网络,TCP/IP仍然能够维持有效的通信。ARPANET就是由基于协议开发的,并发展成为作为科学家和工程师交流媒体的Internet。TCP/IP同时具备了可扩展性和可靠性的需求。不幸的是牺牲了速度和效率(可是:TCP/IP的开发受到了政府的资助)。Internet公用化以后,人们开始发现全球网的强大功能。Internet的普遍性是TCP/IP至今仍然使用的原因。常常在没有意识到的情况下,用户就在自己的PC上安装了TCP/IP栈,从而使该网络协议在全球应用最广。TCP/IP的32位寻址功能方案不足以支持即将加入Internet的主机和网络数。因而可能 代替当前实现的标准是IPv6。
网络通信协议”指的是连接不同操作系统和不同硬件体系结构的互联网络引提供通信支持,是一种网络通用语言。
网络通信协议是一种网络通用语言,为连接不同操作系统和不同硬件体系结构的互联网络引提供通信支持,是一种网络通用语言。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/309208.html。