路由协议支持osi(路由协议支持通过命令配置发布缺省路由(多选))

      最后更新:2024-04-01 05:08:00 手机定位技术交流文章

      IS-IS路由协议的工作原理和用途

      由于历史原因,OSI曾经是要比TCP/IP协议栈普及,当现在的TCP/IP流行的时候,以前的采用OSI模型中CLNS(由ISO制定的规范)的应用要和现在的TCP/IP(由IETF进行兼容,可以使网络层为CLNP和为IP的路由信息可以互通,所以需要要有个路由协议来作为这两种情况的兼容点。 二. 和OSPF的相同点1. 都维护一个链路状态数据库,并使用SPF算法来得出最佳路径。2. 都是用Hello报文来查找和维护邻居关系。3. 使用区域来维护一个阶级的概念。4. 在区域之间都可以使用路由汇总来减少路由器的负担。5. 都是无类的路由协议。6. 在广播网络里,都通过选举一个DR来减少报文数量。7. 都有认证功能。三. 名词解释1. ES-IS和IS-IS在ISO规范中,一个路由器就是一个IS(中间系统),一个主机就是一个ES(末端系统)。提供IS和ES(路由器和主机)之间通信的协议,就是ES-IS;提供IS和IS(路由器和路由器)之间通信的协议也就是路由协议,叫IS-IS。2. SNPA(Subnetwork Point of Attachment,子网连接点),是一个连接着子网的接口,它是一个概念上的接口,不一定是物理接口。3. PDU(Protocol Data Unit,协议数据单元),是在OSI模型中各层之间所传送的数据单元。数据帧就是Data Link PDU;报文就是Packet PDU;相当于OSPF中的LSA就是Link State PDU,但不象LSA,前面还要有OSPF头,IP头,LSP本身就是一个报文,不需要额外的封装。4. Level 1和 Level 2路由器首先要明白和OSPF的一个区别,OSPF路由协议的区域边界是以路由器为准,而IS-IS路由协议的区域边界是在链路上的。Level 1路由器是没有直接连接到其他区域的路由器;Level 2路由器是连接不同区域的路由器;Level 1路由器相当于OSPF中的非骨干区域中的路由器;Level 2路由器相当于OSPF中的骨干区域路由器;Level 1/Level 2路由器相当于OSPF中的ABR,他必须维护两个不同区域的链路状态表。但是他又不像ABR,他不会把Level 2的路由信息传到Level 1的区域中去。而Level 1区域就相当于OSPF中的完全存根区域,需要把L1/L2路由器作为一个网关,去请求一个去往外区域的路由,L1/L2路由器通过发送LSP报文到L1区域,设置ATT bit让L1区域的路由器知道,发送这个LSP的路由器知道如何去往外区域的路由。和OSPF的又一个不同:OSPF在区域内采用SPF算法,而区域间路由采用Distance Vector算法来实现;而IS-IS都采用SPF算法来计算路由,因为作为L1/L2路由器他同时维护了两张链路状态表。可以进行SPF计算。Area ID:由于IS-IS路由区域里,一个路由器必须只能属于一个区域,不会象OSPF中一个路由器同时属于多个区域,所以一个Area ID只会和一台路由器产生关系。System ID:相当于OSPF路由协议中的Router ID;Network Entity Titles:Area ID+System ID,System ID是不变的,在一个区域中,所有的IS都必须只能有一个System ID,而且System ID的长度必须一直,为6个Octet。一般都是接口的MAC地址。而所有处在相同Area 的路由器都必须有一致的Area ID四. IS-IS的网络层1. 分层IS-IS协议属于OSI模型,在网络层中,分为两个子层:Subnetwork Dependent Layer:它在Subnetwork Independent Layer上把链路状态屏蔽掉了,提供上层一个透明的工作环境。功能:完成了PDU从连接网络上的接受和发送;负责Hello PDU的发送接受,完成邻居的发现和链接关系的建立,维护;负责把IP和IS-IS的PDU交给各自的Process进行处理特性:由于它是负责和地下链路打交道的,所以它决定了IS-IS路由协议支持什么?�缋嘈汀?广播和点对点两种类型。使用show clns is-neighbors命令可以查看邻居表:Circuit ID:是一个只有8位bit长度的ID用来确定IS的接口,如果这个接口是连接着一个广播网络,那么它的Circuit ID变成了连接多播网络的DR的System ID+Circuit ID。LAN ID:System ID+Circuit ID,也就是由DR产生分发的一个ID,来表示路由器邻居的特性。在IS-IS中,DR路由器的选择:通过接口的优先级,只不过这些优先级分成L1和L2,如果优先级为零,那么这个路由器无权进行DR选举。如果优先级相同,根据System ID来进行选择,最高的成为System ID。和OSPF不同的是,在广播网络中,IS-IS路由器和所有的邻居都会形成adjancency,而不只和DR形成;没有BDR的概念,如果一个Dr fail了,会在区域中重新选一个出来;而且IS-IS路由协议的DR不是恒定的,如果有一个优先级更高或System ID更高的路由器加入,会导致整个区域重新进行DR的选择,并重新泛洪LSP报文通知DR的信息。一个路由器可以同时是L1和L2区域的DR,取决于不同接口的优先级设置。Subnetwork Independent Layer:负责如何在CLNP网络中传送报文到目的地,并同时提供哪些服务对上层协议。而路由功能分为以下四个步骤:1. Update这个步骤负责构建L1和L2的链路数据库。IS-IS对LSP处理的方式和OSPF对LSA处理的方式有一些不同:IS-IS和OSPF使用MaxAge参数来控制LSP的更新度,但是IS-IS的MaxAge是从大到小计算,OSPF是通过从小到大来计算,一个?搅憔退愎�鹆耍�桓龅阶畲缶退愎�凇6�盠SP的MaxAge到零了的时候,IS-IS不会马上采取行动,而是会把它在数据库中再保留60秒(ZeroAgeLifetime)。IS-IS中,如果接收路由器发现LSP的校验和不对,可以删掉LSP,并要求重发。而OSPF中只有LSA的发送者可以清楚LSA。但是这样也等于增加了IS-IS区域中的通信流量,可以使用“ignore-lsp-errors”命令,来去掉接受者进行校验和检查的功能。但也可以使发送者知道LSP有问题,通过使用SNPs(相当于一个Ack)。在点对点网络上,IS使用单播来发送LSP;在广播网络上,IS使用组播来发送LSP。L1的LSP的目的地址是0180.c200.0014,L2的LSP的目的地址是0180.c200.0015。IS-IS使用SNPs来进行报文收到确认和维护链路状态同步。SNPs分为两种,Partial SNPs,Complete SNPs:PSNP是使用在点对点网络上;而CSNP是使用在广播网络上,通过使用组播来达到传送LSP确认的方式,但是它不是明确认,而是在隔了一段时间,收到一定数量的LSP后,它会发送CSNP其中包含了所收到的所有LSP的List,由它的邻接的路由器来判断是否对端路由器接收到了它的LSP。同时,如果CSNP中包含了一个LSP是自己没有的,它会发出组播的PSNP来列出自己没有的LSP,虽然是组播,但是只有DR会进行回复这种报文。类似于OSPF中的LSR和LSU的功能。IS-IS有一种检测网络负担和路由器负担的特性,如果他发现路由器的内存不够了,或路由区域中的路由太多了,它会设置LSP的Overload bit。一旦设了,不会影响到目的地是它的报文,但是其他路由器不会通过它来转发报文。2. DecisionIS-IS路由决定也是使用SPF算法,它把路由分为两种,Internal和External;如果有多条路由到达相同目的地时,IS-IS支持负载均衡,最多同时可以支持6条路径。负责进行路由汇总支持VLSM负责计算最近的L2路由器作为到外区域的网关3. Forwarding4. Receive2.PDU的功能描述由8个Octet的报头加上CLV结构构成了PDU的基本结构,不同用途的PDU,会由不同的CLV结构构成。CLV结构目前有如下分类:Area address:通告源路由器所在地Area地址,并且同时有多个可以存在。IS Neighbors(LSPs)列出源路由器的邻居和链路信息ES NeighborsPartition Designated Level 2 ISPrefix NeighborsIS Neighbors(Hellos):列出上次Holdtime后,源路由器地的邻居的System ID列表。而且这类报文只用在LAN LSP中(发给DR路由器),在点对点网络中没有。Level 1的路由器只发送Level 1邻居,Level 2路由器只发送Level 2邻居。Padding:用来填充PDU,达到最小的报文尺寸。LSP EntriesAuthentication InformationIP Internal Reachability Information列出路由区域中直接连接到源路由器的网络IP地址Protocols Supported:通告源路由器是否支持CLNP或IP。IP External Reachability Information列出路由区域外直接连接到源路由器的网络IP地址Inter-Domain Routing Protocol Information在路由重分发中使用,可以使IS路由器知道外路由域的路由信息。IP Interface Address通告源路由器发送PDU的接口的IP地址Hello PDU: 起到邻居发现和维护邻居关系,根据网络类型可以分为点到点和局域网两种类型。PDU的大小收到源路由器的缓存和MTU的制约。在Hello PDU传送时,允许把PDU填充到最大容量,可以使邻居之间可以隐含的得知各自邻居的MTU。这种策略可以帮助减少链路的符合,避免在低链路上负载大的交通量。
      你还专门搞这方面的;别丢人了 官方PPT不会看么 百度搜
      IS-IS路由协议的工作原理和用途

      路由协议属于OSI的第几层

      网络层.... 从上到下 一次是:应用层 表示层 会话层 传输层 网络层 数据链路层 物理层~在点到点式网络中,从源主机到目的地主机通常有多条路径存在路径选择的问题,网络层就是要负责进行路径选择,即路由选择.另外,当过多的分组同时涌入网络时,会引起网络局部或全网性能的下降,造成网络拥塞,网络层必须采取一定的手段控制分组的过量流入.当分组需要跨越多个网络才能到达目的主机时,网络层还要解决网络互联的问题.因此,网络层定义的协议主要有IP(Internet Protocol,网际协议)IPX(Internet work Packet Exchange,网间数据包交换协议)等. 网络互联设备路由器就工作在这一层.
      网络层~ 从上到下 一次是: 应用层表示层会话层 传输层网络层数据链路层物理层~
      路由协议属于OSI的第几层

      路由是什么

      路由是一个网络工程术语,路由(routing)是指分组从源到目的地时,决定端到端路径的网络范围的进程。 路由工作在OSI参考模型第三层——网络层的数据包转发设备。路由器通过转发数据包来实现网络互连。虽然路由器可以支持多种协议(如TCP/IP、IPX/SPX、AppleTalk等协议),但是在我国绝大多数路由器运行TCP/IP协议。路由器通常连接两个或多个由IP子网或点到点协议标识的逻辑端口,至少拥有1个物理端口。路由器根据收到数据包中的网络层地址以及路由器内部维护的路由表决定输出端口以及下一跳地址,并且重写链路层数据包头实现转发数据包。 路由器通过动态维护路由表来反映当前的网络拓扑,并通过网络上其他路由器交换路由和链路信息来维护路由表。
      从技术角度来说,路由就是如何高效地把数据从源端传输到目的地的技术。从网络工程角度来说,路由是运行在路由器中的路由协议。它可以通过配置学习得到需要的路由信息,并且完成数据的传输功能。
      路由是什么

      路由器属于OSI体系结构的哪一层

      路由器属于OSI体系结构的第三层:网络层。OSI体系结构,意为开放式系统互联。国际标准组织(国际标准化组织)制定了OSI模型。这个模型把网络通信的工作分为7层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。1至4层被认为是低层,这些层与数据移动密切相关。5至7层是高层,包含应用程序级的数据。每一层负责一项具体的工作,然后把数据传送到下一层。扩展资料1、物理层(即OSI模型中的第一层也是最底层):物理层实际上就是布线、光纤、网卡和其它用来把两台网络通信设备连接在一起的东西。甚至一个信鸽也可以被认为是一个1层设备。网络故障的排除经常涉及到1层问题。2、数据链路层:运行以太网等协议。网桥都在2层工作,仅关注以太网上的MAC地址。有关MAC地址、交换机或者网卡和驱动程序,就是在第2层的范畴。集线器属于第1层的领域,因为它们只是电子设备,没有2层的知识。3、网络层:网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在第3层处理。地址解析和路由是3层的重要目的。4、信息的传输层:第4层的数据单元也称作数据包(packets)。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。理解第4层的另一种方法是,第4层提供端对端的通信管理。像TCP等一些协议非常善于保证通信的可靠性。有些协议并不在乎一些数据包是否丢失,UDP协议就是一个主要例子。5、会话层:这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。6、表示层:这一层主要解决用户信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩, 加密和解密等工作都由表示层负责。7、应用层:是专门用于应用程序的。应用层确定进程之间通信的性质以满足用户需要以及提供网络与用户应用软件之间的接口服务。SMTP、DNS和FTP都是第7层协议。参考资料来源:百度百科:OSI体系结构
      答案:下面倒数第三层,路由器在OSI体系结构中属于网络层。 应用层表示层会话层传输层网络层数据链路层物理层现实中,是用TCP/IP标准的。你以打开网页为例:1)数据从应用层产生(HTTP协议)2)数据被从应用层送到传输层,这时候必须包含端口信息以便构造传输层的TCP协议的头部。由于是WEB应用,目标端口就是80,本地端口由OS自动产生。3)数据被送到IP层。IP层要求应用提供源和目的端的IP地址。由于你输入的是域名,这时候,请求DNS应用,即你计算机上的DNS应用需要向DNS服务器发出一个DNS请求。4)从应用层(DNS协议)产生DNS请求包,送入传输层(UDP),加上UDP头部后,送入IP层,加上IP头部后(此时,本机和DNS的IP都已知,可以构成IP头)。送入链路层。5)链路层构造头部需要加上本机及网关的MAC地址。此时,需发送ARP请求。6)所以,你的计算机首先会发出ARP请求包(这是链路层的工作)7)收到ARP应答后,就立即发出DNS请求包。8)收到DNS应答后,就可以启动TCP协议,进行三次握手,进行连接。 9)TCP建立连接后,HTTP协议就可以发送,HTTP的请求,这时,应用层之间就可以互相进行通讯了。
      OSI七层:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。。路由器属于网络层设备。
      路由器工作于OSI七层协议中的第三层!
      路由器属于OSI体系结构的哪一层

      集线器、路由器的功能是什么?他们各自处于OSI七层模型的哪一层?

      OSI OSI是Open System Interconnect的缩写,意为开放式系统互联。在OSI出现之前,计算机网络中存在众多的体系结构,其中以IBM公司的SNA(系统网络体系结构)和DEC公司的DNA(Digital Network Architecture)数字网络体系结构最为著名。为了解决不同体系结构的网络的互联问题,国际标准化组织ISO(注意不要与OSI搞混))于 1981年制定了开放系统互连参考模型(Open System Interconnection Reference Model,OSI/RM)。这个模型把网络通信的工作分为7层,它们由低到高分别是物理层(Physical Layer),数据链路层(Data Link Layer),网络层(Network Layer),传输层(Transport Layer),会话层(Session Layer),表示层(Presen tation Layer)和应用层(Application Layer)。第一层到第三层属于OSI参考模型的低三层,负责创建网络通信连接的链路;第四层到第七层为OSI参考模型的高四层,具体负责端到端的数据通信。每层完成一定的功能,每层都直接为其上层提供服务,并且所有层次都互相支持,而网络通信则可以自上而下(在发送端)或者自下而上(在接收端)双向进行。当然并不是每一通信都需要经过OSI的全部七层,有的甚至只需要双方对应的某一层即可。物理接口之间的转接,以及中继器与中继器之间的连接就只需在物理层中进行即可;而路由器与路由器之间的连接则只需经过网络层以下的三层即可。总的来说,双方的通信是在对等层次上进行的,不能在不对称层次上进行通信。OSI参考模型的各个层次的划分遵循下列原则:1、同一层中的各网络节点都有相同的层次结构,具有同样的功能。2、同一节点内相邻层之间通过接口(可以是逻辑接口)进行通信。3、七层结构中的每一层使用下一层提供的服务,并且向其上层提供服务。4、不同节点的同等层按照协议实现对等层之间的通信。第一层:物理层(PhysicalLayer),规定通信设备的机械的、电气的、功能的和过程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组操作规程,是指在物理连接的建立、维护、交换信息是,DTE和DCE双放在各电路上的动作系列。在这一层,数据的单位称为比特(bit)。属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。第二层:数据链路层(DataLinkLayer):在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。在这一层,数据的单位称为帧(frame)。数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。第三层是网络层在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点,确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。在这一层,数据的单位称为数据包(packet)。网络层协议的代表包括:IP、IPX、RIP、OSPF等。第四层是处理信息的传输层。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所为透明的传输是指在通信过程中传输层对上层屏蔽了通信传输系统的具体细节。传输层协议的代表包括:TCP、UDP、SPX等。第五层是会话层这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。第六层是表示层这一层主要解决拥护信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩, 加密和解密等工作都由表示层负责。第七层应用层,应用层为操作系统或网络应用程序提供访问网络服务的接口。应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。通过 OSI 层,信息可以从一台计算机的软件应用程序传输到另一台的应用程序上。例如,计算机 A 上的应用程序要将信息发送到计算机 B 的应用程序,则计算机 A 中的应用程序需要将信息先发送到其应用层(第七层),然后此层将信息发送到表示层(第六层),表示层将数据转送到会话层(第五层),如此继续,直至物理层(第一层)。在物理层,数据被放置在物理网络媒介中并被发送至计算机 B 。计算机 B 的物理层接收来自物理媒介的数据,然后将信息向上发送至数据链路层(第二层),数据链路层再转送给网络层,依次继续直到信息到达计算机 B 的应用层。最后,计算机 B 的应用层再将信息传送给应用程序接收端,从而完成通信过程。下面图示说明了这一过程。OSI 的七层运用各种各样的控制信息来和其他计算机系统的对应层进行通信。这些控制信息包含特殊的请求和说明,它们在对应的 OSI 层间进行交换。每一层数据的头和尾是两个携带控制信息的基本形式。对于从上一层传送下来的数据,附加在前面的控制信息称为头,附加在后面的控制信息称为尾。然而,在对来自上一层数据增加协议头和协议尾,对一个 OSI 层来说并不是必需的。当数据在各层间传送时,每一层都可以在数据上增加头和尾,而这些数据已经包含了上一层增加的头和尾。协议头包含了有关层与层间的通信信息。头、尾以及数据是相关联的概念,它们取决于分析信息单元的协议层。例如,传输层头包含了只有传输层可以看到的信息,传输层下面的其他层只将此头作为数据的一部分传递。对于网络层,一个信息单元由第三层的头和数据组成。对于数据链路层,经网络层向下传递的所有信息即第三层头和数据都被看作是数据。换句话说,在给定的某一 OSI 层,信息单元的数据部分包含来自于所有上层的头和尾以及数据,这称之为封装。例如,如果计算机 A 要将应用程序中的某数据发送至计算机 B ,数据首先传送至应用层。 计算机 A 的应用层通过在数据上添加协议头来和计算机 B 的应用层通信。所形成的信息单元包含协议头、数据、可能还有协议尾,被发送至表示层,表示层再添加为计算机 B 的表示层所理解的控制信息的协议头。信息单元的大小随着每一层协议头和协议尾的添加而增加,这些协议头和协议尾包含了计算机 B 的对应层要使用的控制信息。在物理层,整个信息单元通过网络介质传输。计算机 B 中的物理层收到信息单元并将其传送至数据链路层;然后 B 中的数据链路层读取计算机 A 的数据链路层添加的协议头中的控制信息;然后去除协议头和协议尾,剩余部分被传送至网络层。每一层执行相同的动作:从对应层读取协议头和协议尾,并去除,再将剩余信息发送至上一层。应用层执行完这些动作后,数据就被传送至计算机 B 中的应用程序,这些数据和计算机 A 的应用程序所发送的完全相同 。一个 OSI 层与另一层之间的通信是利用第二层提供的服务完成的。相邻层提供的服务帮助一 OSI 层与另一计算机系统的对应层进行通信。一个 OSI 模型的特定层通常是与另外三个 OSI 层联系:与之直接相邻的上一层和下一层,还有目标联网计算机系统的对应层。例如,计算机 A 的数据链路层应与其网络层,物理层以及计算机 B 的数据链路层进行通信。集线器与路由器在功能上有什么不同?首先说HUB,也就是集线器。它的作用可以简单的理解为将一些机器连接起来组成一个局域网。而交换机(又名交换式集线器)作用与集线器大体相同。但是两者在性能上有区别:集线器采用的式共享带宽的工作方式,而交换机是独享带宽。这样在机器很多或数据量很大时,两者将会有比较明显的。而路由器与以上两者有明显区别,它的作用在于连接不同的网段并且找到网络中数据传输最合适的路径,可以说一般情况下个人用户需求不大。路由器是产生于交换机之后,就像交换机产生于集线器之后,所以路由器与交换机也有一定联系,并不是完全独立的两种设备。路由器主要克服了交换机不能路由转发数据包的不足。总的来说,路由器与交换机的主要区别体现在以下几个方面:(1)工作层次不同最初的的交换机是工作在OSI/RM开放体系结构的数据链路层,也就是第二层,而路由器一开始就设计工作在OSI模型的网络层。由于交换机工作在OSI的第二层(数据链路层),所以它的工作原理比较简单,而路由器工作在OSI的第三层(网络层),可以得到更多的协议信息,路由器可以做出更加智能的转发决策。(2)数据转发所依据的对象不同交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。IP地址是在软件中实现的,描述的是设备所在的网络,有时这些第三层的地址也称为协议地址或者网络地址。MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。而IP地址则通常由网络管理员或系统自动分配。(3)传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。连接到路由器上的网段会被分配成不同的广播域,广播数据不会穿过路由器。虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。(4)路由器提供了防火墙的服务 路由器仅仅转发特定地址的数据包,不传送不支持路由协议的数据包传送和未知目标网络数据包的传送,从而可以防止广播风暴。
      集线器在物理层,交换机在数据链路层,路由器在网络层 HUB,也就是集线器。它的作用可以简单的理解为将一些机器连接起来组成一个局域网。路由器第一,网络互连:路由器支持各种局域网和广域网接口,主要用于互连局域网和广域网,实现不同网络互相通信;第二,数据处理:提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能; 第三,网络管理:路由器提供包括路由器配置管理、性能管理、容错管理和流量控制等功能。
      集线器、路由器的功能是什么?他们各自处于OSI七层模型的哪一层?

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/315062.html

          热门文章

          文章分类