tcp连接需要几个数据段(tcp连接的数据传送是)

      最后更新:2024-04-04 03:18:19 手机定位技术交流文章

      传输层TCP协议连接的建立和断开

      什么是TCP呢?由三个单词组成的Transport Control Protocol,字面理解是传输控制协议,可以理解为比特同学要想在网络泳池里游泳,那么他必须学习传输层控制技能,并且要掌握相应的动作——协议,他才能在畅游世界网络这个超大型游泳池。TCP:一个传输层协议,提供Host-To-Host的可靠传输,支持全双工,是一个面向连接的协议。TCP工作在传输层,它的上层是应用层,应用就是人们常用的微信、抖音、王者荣耀等服务工作的协议。两台不同的设备使用微信聊天,发送语音,需要实现Host-To-Host的数据通信,那么就可以直接调用TCP协议进行。调用TCP通信时需要指定通信的端口,不同的端口对应不同应用,不同IP对应不同的主机,也就是不同的设备。这就涉及到网络地址——IP地址,工作在网络层,当然TCP层只负责把对应的IP地址和端口传给网络层即可,具体业务由网络层来实现。互联网层,即Network Layer,提供地址和地址间的通信,只关注地址到地址Address-To-Address间通信,具体设备间通信由数据链路层实现,数据链路层关注MAC地址间通信,具体的物理设备,传输介质由物理层负责。以上就是TCP/IP协议常用的层级分割,最终目的就是为Host-To-Host服务,实现应用到应用的通信服务。什么是连接和会话呢?连接事需要通信双方相互配合来实现的,是双方达成的一种即时的状态约定,保证通信双方都在线,都有能力为接下来的数据传输做出尽快的响应,我们称之为连接。连接是网络行为状态的记录,既然连接需要双方共同努力,那么就需要双方都有一个对象来记忆当前传输的数据类型,对方的端口、已经传输了多少,效率怎么样等等一些关注点。那么与之相关联的另一个名词会话(Session),是什么意思呢,会话是应用的行为。大家每次用微信聊天时都会有一个窗口,用来发送信息,你来我往,这个窗口中会有很多条信息,我们称之为会话,当我们在会话进行中,连接一定是在通信状态的。聊一会,累了,退出微信了,但是一般我们不会删除我们的会话内容,这时会话还在,但是连接已经中断。双工/单工问题想想自己理解的是什么?单工:任何时间,数据只能单向发送,单工至少需要一条线路半全双工:某一时候可以双向发送数据,至少需要一条线路全双工:任何时刻都可以双向发送数据,大于一条线路这里线路不一定真实存在物理线路,可能采用模拟的形式实现TCP是一个全双工协议,数据任何时刻都可以双向发送,这说明服务器和客户端可以根据需要选择任意时刻发送和接收信息,所以呢都可以被称为主机(Host)可靠性的定义TCP可以提供可靠性,那么可靠性具体的实现方式是什么呢?可靠性指数据无损传输。发送主机按照顺序发送数据,数据通过网络传输,收不同网络条件限制,数据不会按照发送时的顺序到达接收方,这时我们就需要一种算法来保证接收方可以还原出发送方的顺序。这里还有一个概念叫多播,发送方同时发送给多个接收方信息,如果接收方中有一个接收到了这条信息,我们的可靠性就必须保证其他接收方也必须接收到相同的信息,这里我们不讨论多播。TCP的握手和挥手TCP是一个面向连接的连接的协议,握手是建立连接的过程,挥手是断开连接的过程。TCP的基本操作以上三种操作以后,另一方必须立即给发起方返回一个ACK(Ackknowledgement),这是TCP保证可靠性的要求。如果一方不回复发送方ACK,发送方则认为接收方没有收到信息,会重新发送。建立连接的过程-三次握手三次握手的形成和TCP要求每次发送方发送信息以后,接收方必须返回ACK确认有直接的关系上图描述了TCP建立连接的过程,分为6步:TCP建立连接的过程如上,那么为什么是三次呢?第二步服务端做准备,因为是首次收到发送数据请求,无需处理,可以立刻进入数据交互状态,所以可以立刻发送给客户端SYN,告诉客户端,我已准备好,所以第三步和第四步可以合并为一次握手——ACK-SYN,然后客户端回应ACK,连接建立完成以上就是三次握手了具体在数据交互过程,ACK和SYN等需要用标识位来标记,在实际应用中,我们一般使用1来表示开启,0表示关闭。那么四次挥手为什么是四次呢,主要是因为,挥手时服务端收到FIN以后,不能马上回复FIN,因为自身还有任务没有处理完,所以上面所说的6步中,第3、4步就不能一起回复,只能先回复ACK,等自身任务处理完毕,才能告诉客户端,我已经准备好,可以关闭连接,这样就需要4次数据交互,如下图:
      传输层TCP协议连接的建立和断开

      TCP连接包括哪三个过程

      TCP连接包括以下三个过程:1、LISTEN:侦听来自远方的TCP端口的连接请求。2、SYN-SENT:再发送连接请求后等待匹配的连接请求。3、SYN-RECEIVED:再收到和发送。扩展资料:在TCP/IP中,TCP协议通过三次握手来建立连接,从而提供可靠的连接服务。第一次握手:建立连接后,客户端向服务器发送syn包(syn=j),进入SYN_SEND状态,等待服务器确认;第二次握手:当服务器收到syn包时,必须确认客户端的syn(ack=j+1)并发送一个syn包(syn=k),即syn+ack包。此时,服务器进入SYN_RECV状态。第三次握手:SYN+ACK包,客户端收到服务器端发来的确认包ACK(ACK=k+1),来发送这个包来发送,客户端和服务器端进入建立状态,完成三路握手。
      TCP连接包括以下三个过程: 1. LISTEN:侦听来自远方的TCP端口的连接请求2. SYN-SENT:再发送连接请求后等待匹配的连接请求 3. SYN-RECEIVED:再收到和发送
      1. LISTEN:侦听来自远方的TCP端口的连接请求 2. SYN-SENT:再发送连接请求后等待匹配的连接请求 3. SYN-RECEIVED:再收到和发送
      TCP连接包括哪三个过程

      TCP协议详解及实战解析【精心整理收藏】

      TCP协议是在TCP/IP协议模型中的运输层中很重要的一个协议、负责处理主机端口层面之间的数据传输。主要有以下特点:1.TCP是面向链接的协议,在数据传输之前需要通过三次握手建立TCP链接,当数据传递完成之后,需要通过四次挥手进行连接释放。2.每一条TCP通信都是两台主机和主机之间的,是点对点传输的协议。3.TCP提供可靠的、无差错、不丢失、不重复,按序到达的服务。4.TCP的通信双方在连接建立的任何时候都可以发送数据。TCP连接的两端都设有发送缓存和接收缓存,用来临时存放双向通信的数据。5.面向字节流。在数据传输的过程中如果报文比较长的话TCP会进行数据分段传输,每一条分段的TCP传输信息都带有分段的序号,每一段都包含一部分字节流。接收方根据每段携带的的序号信息进行数据拼接,最终拼接出来初始的传输数据。但是在整个传输的过程中每一段TCP携带的都是被切割的字节流数据。所以说TCP是面向字节流的。a.TCP和UDP在发送报文时所采用的方式完全不同。TCP并不关心应用程序一次把多长的报文发送到TCP缓存中,而是根据对方给出的窗口值和当前网络拥塞的程度来决定一个报文段应包含多少个字节(UDP发送的报文长度是应用程序给出的)。b.如果应用程序传送到TCP缓存的数据块太大,TCP就可以把它划分短一些再传。TCP也可以等待积累有足够多的字节后再构建成报文段发送出去。各字段含义:源端口:发送端的端口号目的端口:接收端的端口号序号:TCP将发送报文分段传输的时候会给每一段加上序号,接收端也可以根据这个序号来判断数据拼接的顺序,主要用来解决网络报乱序的问题确认号:确认号为接收端收到数据之后进行排序确认以及发送下一次期待接收到的序号,数值 = 接收到的发送号 + 1数据偏移:占4比特,表示数据开始的地方离TCP段的起始处有多远。实际上就是TCP段首部的长度。由于首部长度不固定,因此数据偏移字段是必要的。数据偏移以32位为长度单位,因此TCP首部的最大长度是60(15*4)个字节。控制位:URG:此标志表示TCP包的紧急指针域有效,用来保证TCP连接不被中断,并且督促 中间层设备要尽快处理这些数据;ACK:此标志表示应答域有效,就是说前面所说的TCP应答号将会包含在TCP数据包中;有两个取值:0和1, 为1的时候表示应答域有效,反之为0;PSH:这个标志位表示Push操作。所谓Push操作就是指在数据包到达接收端以后,立即传送给应用程序, 而不是在缓冲区中排队;RST:这个标志表示连接复位请求。用来复位那些产生错误的连接,也被用来拒绝错误和非法的数据包;SYN:表示同步序号,用来建立连接。SYN标志位和ACK标志位搭配使用,当连接请求的时候,SYN=1, ACK=0;连接被响应的时候,SYN=1,ACK=1;这个标志的数据包经常被用来进行端口扫描。扫描者发送 一个只有SYN的数据包,如果对方主机响应了一个数据包回来 ,就表明这台主机存在这个端口;但是由于这 种扫描方式只是进行TCP三次握手的第一次握手,因此这种扫描的成功表示被扫描的机器不很安全,一台安全 的主机将会强制要求一个连接严格的进行TCP的三次握手;FIN: 表示发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送FIN标志 位的TCP数据包后,连接将被断开。这个标志的数据包也经常被用于进行端口扫描。窗口:TCP里很重要的一个机制,占2字节,表示报文段发送方期望接收的字节数,可接收的序号范围是从接收方的确认号开始到确认号加上窗口大小之间的数据。后面会有实例讲解。校验和:校验和包含了伪首部、TCP首部和数据,校验和是TCP强制要求的,由发送方计算,接收方验证紧急指针:URG标志为1时,紧急指针有效,表示数据需要优先处理。紧急指针指出在TCP段中的紧急数据的最后一个字节的序号,使接收方可以知道紧急数据共有多长。选项:最常用的选项是最大段大小(Maximum Segment Size,MSS),向对方通知本机可以接收的最大TCP段长度。MSS选项只在建立连接的请求中发送。放在以太网帧里看TCP的位置TCP 数据包在 IP 数据包的负载里面。它的头信息最少也需要20字节,因此 TCP 数据包的最大负载是 1480 - 20 = 1460 字节。由于 IP 和 TCP 协议往往有额外的头信息,所以 TCP 负载实际为1400字节左右。因此,一条1500字节的信息需要两个 TCP 数据包。HTTP/2 协议的一大改进, 就是压缩 HTTP 协议的头信息,使得一个 HTTP 请求可以放在一个 TCP 数据包里面,而不是分成多个,这样就提高了速度。以太网数据包的负载是1500字节,TCP 数据包的负载在1400字节左右一个包1400字节,那么一次性发送大量数据,就必须分成多个包。比如,一个 10MB 的文件,需要发送7100多个包。发送的时候,TCP 协议为每个包编号(sequence number,简称 SEQ),以便接收的一方按照顺序还原。万一发生丢包,也可以知道丢失的是哪一个包。第一个包的编号是一个随机数。为了便于理解,这里就把它称为1号包。假定这个包的负载长度是100字节,那么可以推算出下一个包的编号应该是101。这就是说,每个数据包都可以得到两个编号:自身的编号,以及下一个包的编号。接收方由此知道,应该按照什么顺序将它们还原成原始文件。收到 TCP 数据包以后,组装还原是操作系统完成的。应用程序不会直接处理 TCP 数据包。对于应用程序来说,不用关心数据通信的细节。除非线路异常,否则收到的总是完整的数据。应用程序需要的数据放在 TCP 数据包里面,有自己的格式(比如 HTTP 协议)。TCP 并没有提供任何机制,表示原始文件的大小,这由应用层的协议来规定。比如,HTTP 协议就有一个头信息Content-Length,表示信息体的大小。对于操作系统来说,就是持续地接收 TCP 数据包,将它们按照顺序组装好,一个包都不少。操作系统不会去处理 TCP 数据包里面的数据。一旦组装好 TCP 数据包,就把它们转交给应用程序。TCP 数据包里面有一个端口(port)参数,就是用来指定转交给监听该端口的应用程序。应用程序收到组装好的原始数据,以浏览器为例,就会根据 HTTP 协议的Content-Length字段正确读出一段段的数据。这也意味着,一次 TCP 通信可以包括多个 HTTP 通信。服务器发送数据包,当然越快越好,最好一次性全发出去。但是,发得太快,就有可能丢包。带宽小、路由器过热、缓存溢出等许多因素都会导致丢包。线路不好的话,发得越快,丢得越多。最理想的状态是,在线路允许的情况下,达到最高速率。但是我们怎么知道,对方线路的理想速率是多少呢?答案就是慢慢试。TCP 协议为了做到效率与可靠性的统一,设计了一个慢启动(slow start)机制。开始的时候,发送得较慢,然后根据丢包的情况,调整速率:如果不丢包,就加快发送速度;如果丢包,就降低发送速度。Linux 内核里面 设定 了(常量TCP_INIT_CWND),刚开始通信的时候,发送方一次性发送10个数据包,即"发送窗口"的大小为10。然后停下来,等待接收方的确认,再继续发送。默认情况下,接收方每收到 两个TCP 数据包,就要 发送 一个确认消息。"确认"的英语是 acknowledgement,所以这个确认消息就简称 ACK。ACK 携带两个信息。发送方有了这两个信息,再加上自己已经发出的数据包的最新编号,就会推测出接收方大概的接收速度,从而降低或增加发送速率。这被称为"发送窗口",这个窗口的大小是可变的。注意,由于 TCP 通信是双向的,所以双方都需要发送 ACK。两方的窗口大小,很可能是不一样的。而且 ACK 只是很简单的几个字段,通常与数据合并在一个数据包里面发送。即使对于带宽很大、线路很好的连接,TCP 也总是从10个数据包开始慢慢试,过了一段时间以后,才达到最高的传输速率。这就是 TCP 的慢启动。TCP 协议可以保证数据通信的完整性,这是怎么做到的?前面说过,每一个数据包都带有下一个数据包的编号。如果下一个数据包没有收到,那么 ACK 的编号就不会发生变化。举例来说,现在收到了4号包,但是没有收到5号包。ACK 就会记录,期待收到5号包。过了一段时间,5号包收到了,那么下一轮 ACK 会更新编号。如果5号包还是没收到,但是收到了6号包或7号包,那么 ACK 里面的编号不会变化,总是显示5号包。这会导致大量重复内容的 ACK。如果发送方发现收到 三个 连续的重复 ACK,或者超时了还没有收到任何 ACK,就会确认丢包,即5号包遗失了,从而再次发送这个包。通过这种机制,TCP 保证了不会有数据包丢失。TCP是一个滑动窗口协议,即一个TCP连接的发送端在某个时刻能发多少数据是由滑动窗口控制的,而滑动窗口的大小实际上是由两个窗口共同决定的,一个是接收端的通告窗口,这个窗口值在TCP协议头部信息中有,会随着数据的ACK包发送给发送端,这个值表示的是在接收端的TCP协议缓存中还有多少剩余空间,发送端必须保证发送的数据不超过这个剩余空间以免造成缓冲区溢出,这个窗口是接收端用来进行流量限制的,在传输过程中,通告窗口大小与接收端的进程取出数据的快慢有关。另一个窗口是发送端的拥塞窗口(Congestion window),由发送端维护这个值,在协议头部信息中没有,滑动窗口的大小就是通告窗口和拥塞窗口的较小值,所以拥塞窗口也看做是发送端用来进行流量控制的窗口。滑动窗口的左边沿向右移动称为窗口合拢,发生在发送的数据被确认时(此时,表明数据已被接收端收到,不会再被需要重传,可以从发送端的发送缓存中清除了),滑动窗口的右边沿向右移动称为窗口张开,发生在接收进程从接收端协议缓存中取出数据时。随着发送端不断收到的被发送数据的ACK包,根据ACK包中的确认序号和通告窗口大小使滑动窗口得以不断的合拢和张开,形成滑动窗口的向前滑动。如果接收进程一直不取数据,则会出现0窗口现象,即滑动窗口左边沿与右边沿重合,此时窗口大小为0,就无法再发送数据。在TCP里,接收端(B)会给发送端(A)报一个窗口的大小,叫Advertised window。1.在没有收到B的确认情况下,A可以连续把窗口内的数据都发送出去。凡是已经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。2.发送窗口里面的序号表示允许发送的序号。显然,窗口越大,发送方就可以在收到对方确认之前连续发送更多数据,因而可能获得更高的传输效率。但接收方必须来得及处理这些收到的数据。3.发送窗口后沿的后面部分表示已发送且已收到确认。这些数据显然不需要再保留了。4.发送窗口前沿的前面部分表示不允许发送的,应为接收方都没有为这部分数据保留临时存放的缓存空间。5.发送窗口后沿的变化情况有两种:不动(没有收到新的确认)和前移(收到了新的确认)6.发送窗口前沿的变化情况有两种:不断向前移或可能不动(没收到新的确认)TCP的发送方在规定时间内没有收到确认就要重传已发送的报文段。这种重传的概念很简单,但重传时间的选择确是TCP最复杂的问题之一。TCP采用了一种自适应算法,它记录一个报文段发出的时间,以及收到响应的确认的时间这两个时间之差就是报文段的往返时间RTT。TCP保留了RTT的一个加权平均往返时间。超时重传时间RTO略大于加权平均往返时间RTT:即Round Trip Time,表示从发送端到接收端的一去一回需要的时间,tcp在数据传输过程中会对RTT进行采样(即对发送的数据包及其ACK的时间差进行测量,并根据测量值更新RTT值,具体的算法TCPIP详解里面有),TCP根据得到的RTT值更新RTO值,即Retransmission TimeOut,就是重传间隔,发送端对每个发出的数据包进行计时,如果在RTO时间内没有收到所发出的数据包的对应ACK,则任务数据包丢失,将重传数据。一般RTO值都比采样得到的RTT值要大。如果收到的报文段无差错,只是未按序号,中间还缺少一些序号的数据,那么能否设法只传送缺少的数据而不重传已经正确到达接收方的数据?答案是可以的,选择确认就是一种可行的处理方法。如果要使用选项确认SACK,那么在建立TCP连接时,就要在TCP首部的选项中加上“允许SACK”的选项,而双方必须都事先商定好。如果使用选择确认,那么原来首部中的“确认号字段”的用法仍然不变。SACK文档并没有明确发送方应当怎么响应SACK.因此大多数的实现还是重传所有未被确认的数据块。一般说来,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快,接收方就可能来不及接收,这会造成数据的丢失。所谓流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。在计算机网络中的链路容量,交换节点中的缓存和处理机等,都是网络的资源。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫做拥塞。拥塞控制方法:1.慢开始和拥塞避免2.快重传和快恢复3.随机早期检测1.一开始,客户端和服务端都处于CLOSED状态2.先是服务端主动监听某个端口,处于LISTEN状态(比如服务端启动,开始监听)。3.客户端主动发起连接SYN,之后处于SYN-SENT状态(第一次握手,发送 SYN = 1 ACK = 0 seq = x ack = 0)。4.服务端收到发起的连接,返回SYN,并且ACK客户端的SYN,之后处于SYN-RCVD状态(第二次握手,发送 SYN = 1 ACK = 1 seq = y ack = x + 1)。5.客户端收到服务端发送的SYN和ACK之后,发送ACK的ACK,之后处于ESTABLISHED状态(第三次握手,发送 SYN = 0 ACK = 1 seq = x + 1 ack = y + 1)。6.服务端收到客户端的ACK之后,处于ESTABLISHED状态。(需要注意的是,有可能X和Y是相等的,可能都是0,因为他们代表了各自发送报文段的序号。)TCP连接释放四次挥手1.当前A和B都处于ESTAB-LISHED状态。2.A的应用进程先向其TCP发出连接释放报文段,并停止再发送数据,主动关闭TCP连接。3.B收到连接释放报文段后即发出确认,然后B进入CLOSE-WAIT(关闭等待)状态。TCP服务器进程这时应通知高层应用进程,因而从A到B这个方向的连接就释放了,这时TCP连接处于半关闭状态,即A已经没有数据发送了。从B到A这个方向的连接并未关闭,这个状态可能会持续一些时间。4.A收到来自B的确认后,就进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文端。5.若B已经没有向A发送的数据,B发出连接释放信号,这时B进入LAST-ACK(最后确认)状态等待A的确认。6.A再收到B的连接释放消息后,必须对此发出确认,然后进入TIME-WAIT(时间等待)状态。请注意,现在TCP连接还没有释放掉,必须经过时间等待计时器(TIME-WAIT timer)设置的时间2MSL后,A才进入CLOSED状态。7。B收到A发出的确认消息后,进入CLOSED状态。以请求百度为例,看一下三次握手真实数据的TCP连接建立过程我们再来看四次挥手。TCP断开连接时,会有四次挥手过程,标志位是FIN,我们在封包列表中找到对应位置,理论上应该找到4个数据包,但我试了好几次,实际只抓到3个数据包。查了相关资料,说是因为服务器端在给客户端传回的过程中,将两个连续发送的包进行了合并。因此下面会按照合并后的三次挥手解释,若有错误之处请指出。第一步,当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段(FIN表示英文finish)。第二步,主机B收到这个FIN报文段之后,并不立即用FIN报文段回复主机A,而是先向主机A发送一个确认序号ACK,同时通知自己相应的应用程序:对方要求关闭连接(先发送ACK的目的是为了防止在这段时间内,对方重传FIN报文段)。第三步,主机B的应用程序告诉TCP:我要彻底的关闭连接,TCP向主机A送一个FIN报文段。第四步,主机A收到这个FIN报文段后,向主机B发送一个ACK表示连接彻底释放。这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。原因有二:一、保证TCP协议的全双工连接能够可靠关闭二、保证这次连接的重复数据段从网络中消失先说第一点,如果Client直接CLOSED了,那么由于IP协议的不可靠性或者是其它网络原因,导致Server没有收到Client最后回复的ACK。那么Server就会在超时之后继续发送FIN,此时由于Client已经CLOSED了,就找不到与重发的FIN对应的连接,最后Server就会收到RST而不是ACK,Server就会以为是连接错误把问题报告给高层。这样的情况虽然不会造成数据丢失,但是却导致TCP协议不符合可靠连接的要求。所以,Client不是直接进入CLOSED,而是要保持TIME_WAIT,当再次收到FIN的时候,能够保证对方收到ACK,最后正确的关闭连接。再说第二点,如果Client直接CLOSED,然后又再向Server发起一个新连接,我们不能保证这个新连接与刚关闭的连接的端口号是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但是还是有特殊情况出现:假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中,这些延迟数据在建立新连接之后才到达Server,由于新连接和老连接的端口号是一样的,又因为TCP协议判断不同连接的依据是socket pair,于是,TCP协议就认为那个延迟的数据是属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接还要在TIME_WAIT状态等待2倍MSL,这样可以保证本次连接的所有数据都从网络中消失。硬件速度网络和服务器的负载请求和响应报文的尺寸客户端和服务器之间的距离TCP 协议的技术复杂性TCP 连接建立握手;TCP 慢启动拥塞控制;数据聚集的 Nagle 算法;用于捎带确认的 TCP 延迟确认算法;TIME_WAIT 时延和端口耗尽。介绍完毕,就这?是的,就这。补充:大部分内容为网络整理,方便自己学习回顾,参考文章:TCP 协议简介TCP协议图文详解什么是TCP协议?wireshark抓包分析——TCP/IP协议TCP协议的三次握手和四次挥手TCP协议详解TCP带宽和时延的研究(1)
      TCP协议详解及实战解析【精心整理收藏】

      【网络】TCP的连接建立

      TCP是面向连接的协议。运输连接是用来传送TCP报文的。TCP运输连接的建立和释放是每一次连接通信过程中必不可少的。因此,运输连接就有三个阶段:连接建立,数据传送和连接释放。需要解决以下3个问题:连接建立这个过程,需要在客户端和服务器之间,交换3个TCP报文段,也就是三次握手????x3。????请注意,在本例中,A主动打开连接,B被动打开连接一开始,B就在准备接受客户进程的连接请求,然后服务器进程就处于 LISTEN (收听)状态,等待客户的连接请求。如有,即作出响应。A的TCP客户进程像B发出连接请求报文段,这时,首部中的同步位SYN = 1,同时选择一个初始序号 seq = x 。TCP规定????,SYN报文段不能携带数据,但要消耗掉一个序号。这时,TCP客户进程进入SYN-SENT(同步已发送)状态。B收到连接请求的报文段后,如同意建立连接,则向A发送确认。在确认报文段中,应把SYN位和ASK位都置1,确认号是 ack = x + 1 ,同时也为自己选择一个初始序号 seq = y 。请注意,这个报文段也不能携带数据。但同样要消耗掉一个序号。这时,TCP服务器进程进入SYN-RCVD(同步收到)状态。TCP客户进程收到B的确认后,还要向B给出确认。确认报文段的ACK置1,确认号 ack = y + 1 ,而自己的序号 seq = x + 1 。TCP的标准规定????,ACK报文段可以携带数据。但如果不携带数据则不消耗序号,在这种情况下,下一个数据报文段的序号仍是 seq = x +1 。这时,TCP连接已经建立????,A进入ESTABLISHED(已建立连接)状态。当B收到A的确认后,也进入ESTABLISHED(已建立连接)???? Q:为什么A最后还有发送一次确认呢?????A:主要是为了防止已失效的连接请求报文段突然又传送到B,因而产生错误。所谓“已失效的连接请求报文段”是这样产生的。????考虑一种正常情况,A 发出连接请求????,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。A共发出了两个连接请求的报文段,其中第一个丢失????,第二个到达了B????,没有“已失效的连接请求报文段”。????现假定出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某个网络节点长时间的滞留????,以至延误到连接释放以后的某个时间才到达B。本来这是一个 早已失效的报文段 ,但是B收到此时小的连接请求的报文段之后,误以为是A又发出一次新的连接请求。于是向A发出确认报文段,同意建立连接。假定不采用报文握手。那么只要B发出确认之后,新的连接就建立了。由于现在A并没有发出建立连接的请求,因此不会理睬B的确认????,也不会向B发送数据,但B确以为新的运输连接已经建立,并一直等待A发来的数据。B的许多资源就这样白白浪费了。
      【网络】TCP的连接建立

      TCP/IP -- 2

      TCP/IP中有两个具有代表性的传输层协议,它们分别是TCP和UDP。TCP提供可靠的通信传输,而UDP则常被用于让广播和细节调控交给应用的通信传输。 IP首部中有一个协议字段,用来标识网络层的上一层所采用的是哪一种传输层协议。根据这个字段的协议号,就可以识别IP传输的数据部分究竟是TCP的内容,还是UDP的内容。同样,传输层的TCP和UDP,为了识别自己所传输的数据部分究竟应该发给哪个应用,也设定了这样一个编号。TCP/IP的众多应用协议大多以客户端/服务端的形式运行。客户端类似于客户的意思,是请求的发起端。而服务端则表示提供服务的意思,是请求的处理端。另外,作为服务端的程序有必要提前启动,准备接收客户端的请求。否则即使有客户端的请求发过来,也无法做到响应的处理。这些服务端程序在UNIX系统中叫做守护进程。例如HTTP的服务端程序是httpd(HTTP守护进程),而ssh的服务端程序是sshd(SSH守护进程)。在UNIX中并不需要将这些守护进程逐个启动,而是启动一个可以代表它们接收客户端请求的inetd(互联网守护进程)服务程序即可。它是一种超级守护进程,该超级守护进程收到客户端请求以后会创建新的进程并转换为sshd等各个守护进程。确认一个请求究竟发给的是哪个服务端(守护进程),可以通过所收到数据包的目标端口号轻松识别。TCP:TCP是面向连接的、可靠的流协议。流就是指不间断的数据结构,你可以把它想象成排水管道中的水流。当应用程序采用TCP发送消息时,虽然可以保证发送的顺序,但还是犹如没有任何间隔的数据流发送给接收端。TCP为提供可靠性传输,实行"顺序控制"或"重发控制"机制。此外还具备"流控制(流量控制)"、"拥塞控制"、提高网络利用率等众多功能。UDP:UDP是不具有可靠性的数据报协议。细微的处理它会交给上层的应用去完成。在UDP的情况下,虽然可以确保发送消息的大小,却不能保证消息一定会到达。因此,应用有时会根据自己的需求进行重发处理。TCP与UDP的区分:TCP用于在传输层有必要实现可靠传输的情况。由于它是面向有连接并具备顺序控制、重发控制等机制的,所以它可以为应用提供可靠传输。UDP主要用于那些对于高速传输和实时性有较高要求的通信或广播通信。数据链路和IP中的地址,分别指的是MAC地址和IP地址。前者用来识别同一链路中不同的计算机,后者用来识别TCP/IP网络中互连的主机和路由器。在传输层中也有这种类似于地址的概念,那就是端口号。端口号用来识别同一台计算机中进行通信的不同应用程序。因此,它也被称为程序地址。TCP/IP或UDP/IP通信中通常采用5个信息来识别一个通信。它们是"源IP地址"、"目标IP地址"、"协议号"、"源端口号"、"目标端口号"。只要其中某一项不同,则被认为是其他通信。标准既定的端口号:这种方法也叫静态方法。它是指每个应用程序都有其指定的端口号。但并不是说可以随意使用任何一个端口号。每个端口号都有其对应的使用目的。时序分配法:服务器有必要确定监听端口号,但是接收服务的客户端没必要确定端口号。在这种方法下,客户端应用程序可以完全不用自己设置端口号,而全权交给操作系统进行分配。操作系统可以为每个应用程序分配互不冲突的端口号。根据这种动态分配端口号的机制,即使是同一客户端程序发起多个TCP连接,识别这些通信连接的5部分数字也不会全部相同。端口号由其使用的传输层协议决定。因此,不同的传输协议可以使用相同的端口号。数据到达IP层后,会先检查IP首部中的协议号,再传给相应协议的模块。如果是TCP则传给TCP模块,如果是UDP则传给UDP模块去做端口号的处理。即使是同一端口号,由于传输协议是各自独立地进行处理,因此相互之间不会受到影响。UDP不提供复杂的控制机制,利用IP提供面向无连接的通信服务。并且它是将应用程序发来的数据在收到的那一刻,立刻按照原样发送到网络上的一种机制。即使是出现网络拥堵的情况,UDP也无法进行流量控制等避免网络拥塞的行为。此外,传输途中即使出现丢包,UDP也不负责重发。甚至当出现包的到达顺序乱掉时也没有纠正功能。如果需要这些细节控制,那么不得不交由采用UDP的应用程序去处理。由于UDP面向无连接,它可以随时发送数据。再加上UDP本身的处理既简单又高效,因此经常用于以下几个方面:TCP是对"传输、发送、通信"进行"控制"的"协议"。它充分地实现了数据传输时各种控制功能,可以进行丢包时的重发控制,还可以对次序乱掉的分包进行顺序控制。TCP作为一种面向有连接的协议,只有在确认通信对端存在时才会发送数据,从而可以控制通信流量的浪费。为了通过IP数据报实现可靠性传输,需要考虑很多事情。例如数据的破坏、丢包、重复以及分片顺序混乱等问题。TCP通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现可靠性传输。在TCP中,当发送端的数据到达接收主机时,接收端主机会返回一个已收到消息的通知。这个消息叫做确认应答。序列号是按照顺序给发送数据的每一个字节都标上号码的编号。接收端查询接收数据TCP首部中的序列号和数据的长度,将自己下一步应该接受的序号作为应答返送回去。就这样,通过序列号和确认应答号,TCP可以实现可靠传输。重发超时是指在重发数据之前,等待确认应答到来的那个特定时间间隔。如果超过了这个时间仍未收到确认应答,发送端将进行数据重发。重发超时的计算既要考虑往返时间又要考虑偏差是有其原因的。根据网络环境的不同往返时间可能会产生大幅度的摇摆,之所以发生这种情况是因为数据包的分段是经过不同路线到达的。TCP/IP的目的是即使在这种环境下也要进行控制,尽量不要浪费网络流量。数据被重发之后若还是收不到确认应答,则进行再次发送。此时,等待确认应答的时间将会以2倍、4倍的指数函数延长。此外,数据也不会被无限、反复地重发。达到一定重发次数之后,如果仍没有任何确认应答返回,就会判断为网络或对端主机发生了异常,强制关闭连接。并且通知应用通信异常强行终止。TCP提供面向有连接的通信传输。面向有连接是指在数据通信开始之前先做好通信两端之间的准备工作。在数据通信之前,通过TCP首部发送一个SYN包作为建立连接的请求等待确认应答。如果对端发来确认应答,则认为可以进行数据通信。如果对端的确认应答未能到达,就不会进行数据通信。此外,在通信结束时会进行断开连接的处理。可以使用TCP首部用于控制的字段来管理TCP连接。一个连接的建立与断开,正常过程至少需要来回发送7个包才能完成。在建立TCP连接的同时,也可以确定发送数据包的单位,我们也可以称其为"最大消息长度"(MSS)。最理想的情况是,最大消息长度正好是IP中不会被分片处理的最大数据长度。MSS是在三次握手的时候,在两端主机之间被计算得出。两端的主机在发出建立连接请求时,会在TCP首部中写入MSS选项,告诉对方自己的接口能够适应的MSS的大小。然后会在两者之间选择一个较小的投入使用。TCP以1个段为单位,每发一个段进行一次确认应答的处理。这样的传输方式有一个缺点。那就是,包的往返时间越长通信性能就越低。为了解决这个问题,TCP引入了窗口这个概念。即使在往返时间较长的情况下,它也能控制网络性能的下降。窗口大小就是指无需等待确认应答而可以继续发送数据的最大值。在未使用窗口控制时,没有收到确认应答的数据都会被重发。而使用了窗口控制,某些确认应答即使丢失也无需重发。其次,我们来考虑一下某个报文段丢失的情况。接收主机如果收到一个自己应该接收的序号以外的数据时,会针对当前位置收到的数据返回确认应答。当某一报文段丢失后,发送端会一直收到序号为1001的确认应答,这个确认应答提醒发送端,"我想接收的是从1001开始的数据"。TCP提供一种机制可以让发送端根据接收端的实际接收能力控制发送的数据量。这就是所谓的流控制。它的具体操作是,接收端主机向发送端主机通知自己可以接收数据的大小,于是发送端会发送不超过这个限度的数据。这大小限度被称作窗口大小。窗口大小的值就是由接收端主机决定的。当接收端从3001号开始的数据段后其缓冲区即满,不得不暂时停止接收数据。之后,在收到发送窗口更新通知后通信才得以继续进行。有了窗口控制,收发主机之间可以不再以一个数据段为单位发送确认应答,也能够连续发送大量数据包。但是如果在通信刚开始时就发送大量数据,也有可能会引发其他问题。TCP为了防止该问题的出现,在通信一开始时就会通过一个叫做慢启动的算法得出的数值,对发送数据量进行控制。首先,为了在发送端调节所要发送数据的量,定义了一个叫做"拥堵窗口"的概念。于是在慢启动的时候,将这个拥堵窗口的大小设置为1个数据段(1 MSS)发送数据,之后每收到一次确认应答(ACK),拥堵窗口的值就加1。在发送数据包时,将拥堵窗口的大小与接收端主机通知的窗口大小做比较,然后按照它们当中较小那个值,发送比其还要小的数据量。如果重发采用超时机制,那么拥塞窗口的初始值可以设置为1以后再进行慢启动修正。有了上述这些机制,就可以有限的减少通信开始时连续发包导致的网络拥堵,还可以避免网络拥塞情况的发生。不过,随着包的每次往返,拥塞窗口也会以1、2、4等指数函数的增长,拥堵状况激增甚至导致网络拥塞的发生。为了防止这些,引入了慢启动阀值的概念。只要拥塞窗口的值超出这个阀值,在每收到一次确认应答时,只允许以下面这种比例放大拥塞窗口:TCP的通信开始时,并没有设置相应的慢启动阈值。而是在超时重传时,才会设置为当前拥塞窗口一半的大小。由于重复确认应答而触发的高速重发与超时重发机制的处理多少有些不同。因为前者要求至少3次的确认应答数据段到达对方主机后才触发,相比后者网络的拥堵要轻一些。而由重复确认应答进行高速重发控制时,慢启动阈值的大小被设置为当时窗口大小的一半,然后将窗口的大小设置为该慢启动阈值+3个数据段的大小。当TCP通信开始以后,网络吞吐量会逐渐上升,但是随着网络拥堵的发生吞吐量也会急剧下降。于是会再次进入吞吐量慢慢上升的过程。因此所谓TCP的吞吐量的特点就好像是在逐步占领网络带宽的感觉。UDP-Lite(Lightweight User Datagram Protocol,轻量级用户数据报协议)是扩展UDP机能的一种传输层协议。在基于UDP的通信当中如果校验和出现错误,所收到的包将被全部丢弃。然而,现实操作中,有些应用在面对这种情况时并不希望把已经收到的所有包丢弃。如果将UDP中校验和设置为无效,那么即使数据的一部分发生错误也不会将整个包废弃。不过,这不是一个很好的方法。因为如果发生的错误有可能是UDP首部中的端口号被破坏或是IP首部中的IP地址被破坏,就会产生严重后果。因此,不建议将校验和关闭。为了解决这些问题,UDP的修正版UDP-Lite协议就出现了。UDP-Lite提供与UDP几乎相同的功能,不过计算校验和的范围可以由应用自行决定。这个范围可以是包加上伪首部的校验和计算,可以是首部与伪首部的校验和计算,也可以是首部、伪首部与数据从起始到中间某个位置的校验和计算。有了这样的机制,就可以只针对不允许发生错误的部分进行校验和的检查。 对于其他部分,即使发生了错误,也会被忽略不计。而这个包也不会被丢弃,而是直接传给应用继续处理。SCTP(Stream Control Transmission Protocol,流控制传输协议)与TCP一样,都是对一种提供数据到达与否相关可靠性检查的传输层协议。其主要特点如下:SCTP主要用于进行通信的应用之间发送众多较小消息的情况。这些较小的应用消息被称作数据块(Chunk),多个数据块组成一个数据包。此外,SCTP具有支持多重宿主以及设定多个IP地址的特点。多重宿主是指同一台主机具备多种网络的接口。例如,笔记本电脑既可以连接以太网又可以连接无线LAN。同时使用以太网和无线LAN时,各自的NIC会获取到不同的IP地址。进行TCP通信,如果开始时使用的是以太网,而后又切换为无线LAN,那么连接将会被断开。因为从SYN到FIN包必须使用同一个IP地址。然而在SCTP的情况下,由于可以管理多个IP地址使其同时进行通信,因此即使出现通信过程当中以太网与无线LAN之间的切换,也能够保持通信不中断。所以SCTP可以为具备多个NIC的主机提供更可靠的传输。DCCP(Datagram Congestion Control Protocol,数据报拥塞控制协议)是一个辅助UDP的崭新的传输层协议。UDP没有拥塞控制机制。为此,当应用使用UDP发送大量数据包时极容易出现问题。互联网中的通信,即使使用UDP也应该控制拥塞。而这个机制开发人员很难将其融合至协议中,于是便出现了DCCP这样的规范。DCCP具有如下几个特点: TCP首部比UDP首部要复杂得多。TCP中没有表示包长度和数据长度的字段。可由IP层获知TCP的包长,由TCP的包长可知数据的长度。
      TCP/IP -- 2

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/316557.html

          热门文章

          文章分类