TCP/IP、SIP协议
TCP/IP协议 (传输控制协议/网间协议) TCP/IP 协议集确立了 Internet 的技术基础。TCP/IP 的发展始于美国 DOD (国防部)方案。 IAB (Internet 架构委员会)的下属工作组 IETF (Internet 工程任务组)研发了其中多数协议。 IAB 最初由美国政府发起,如今转变为公开而自治的机构。IAB 协同研究和开发 TCP/IP 协议集的底层结构,并引导着 Internet 的发展。TCP/IP 协议集记录在请求注解(RFC)文件中,RFC 文件均由 IETF 委员会起草、讨论、传阅及核准。所有这些文件都是公开且免费的,且能在 IETF 网站上列出的参考文献中找到。TCP/IP 协议覆盖了 OSI 网络结构七层模型中的六层,并支持从交换(第二层)诸如多协议标记交换,到应用程序诸如邮件服务方面的功能。TCP/IP 的核心功能是寻址和路由选择(网络层的 IP/IPV6 )以及传输控制(传输层的 TCP、UDP)。IP (网际协议)在网络通信中,网络组件的寻址对信息的路由选择和传输来说是相当关键的。相同网络中的两台机器间的消息传输有各自的技术协定。LAN 是通过提供6字节的唯一标识符(“MAC”地址)在机器间发送消息的。SNA 网络中的每台机器都有一个逻辑单元及与其相应的网络地址。DECNET、AppleTalk 和 Novell IPX 均有一个用来分配编号到各个本地网和工作站的配置。除了本地或特定提供商的网络地址,IP 为世界范围内的各个网络设备都分配了一个唯一编号,即 IP 地址。IPV4 的 IP 地址为4字节,按照惯例,将每个字节转化成十进制(0-255)并以点分隔各字节。IPV6 的 IP 地址已经增加到16字节。关于 IP 和 IPV6 协议的详细说明,在相关文件中再另作介绍。TCP (传输控制协议)通过序列化应答和必要时重发数据包,TCP 为应用程序提供了可靠的传输流和虚拟连接服务。TCP 主要提供数据流转送,可靠传输,有效流控制,全双工操作和多路传输技术。可查阅 TCP 部分获取更多详细资料。在下面的 TCP/IP 协议表格中,我们根据协议功能和其在 OSI 七层网络通信参考模型的映射关系将其全部列出。然而,TCP/IP 并不完全遵循 OSI 模型,例如:大多数 TCP/IP 应用程序是直接在传输层协议 TCP 和 UDP 上运行,而不涉及其中的表示层和会话层。主要协议表IP TCP UDP IPsec HTTP POP3 SNMP MPLS DNS SMTP应用层(Application Layer)--------------------------------------------------------------------------------BOOTP:引导协议 (BOOTP:Bootstrap Protocol)DCAP:数据转接客户访问协议 (DCAP:Data Link Switching Client Access Protocol)DHCP:动态主机配置协议 (DHCP:Dynamic Host Configuration Protocol)DNS:域名系统(服务)系统 (DNS:Domain Name Systems)Finger:用户信息协议 (Finger:User Information Protocol)FTP:文件传输协议 (FTP:File Transfer Protocol)HTTP:超文本传输协议 (HTTP:Hypertext Transfer Protocol)S-HTTP:安全超文本传输协议 (S-HTTP:Secure Hypertext Transfer Protocol)IMAP & IMAP4:信息访问协议 & 信息访问协议第4版 (IMAP & IMAP4:Internet Message Access Protocol)IPDC:IP 设备控制 (IPDC:IP Device Control)IRCP/IRC:因特网在线聊天协议 (IRCP/IRC:Internet Relay Chat Protocol)LDAP:轻量级目录访问协议 (LDAP:Lightweighted Directory Access Protocol)MIME/S-MIME/Secure MIME:多用途网际邮件扩充协议 (MIME/S-MIME/Secure MIME:Multipurpose Internet Mail Extensions)NAT:网络地址转换 (NAT:Network Address Translation)NNTP:网络新闻传输协议 (NNTP:Network News Transfer Protocol)NTP:网络时间协议 (NTP:Network Time Protocol)POP&POP3:邮局协议 (POP & POP3:Post Office Protocol)RLOGIN:远程登录命令 (RLOGIN:Remote Login in Unix)RMON:远程监控 (RMON:Remote Monitoring MIBs in SNMP)RWhois:远程目录访问协议 (RWhois Protocol)SLP:服务定位协议 (SLP:Service Location Protocol)SMTP:简单邮件传输协议 (SMTP:Simple Mail Transfer Protocol)SNMP:简单网络管理协议 (SNMP:Simple Network Management Protocol)SNTP:简单网络时间协议 (SNTP:Simple Network Time Protocol)TELNET:TCP/IP 终端仿真协议 (TELNET:TCP/IP Terminal Emulation Protocol)TFTP:简单文件传输协议 (TFTP:Trivial File Transfer Protocol)URL:统一资源管理 (URL:Uniform Resource Locator)X-Window/X Protocol:X 视窗 或 X 协议(X-Window:X Window or X Protocol or X System)表示层(Presentation Layer)--------------------------------------------------------------------------------LPP:轻量级表示协议 (LPP:Lightweight Presentation Protocol)会话层(Session Layer)--------------------------------------------------------------------------------RPC:远程过程调用协议 (RPC:Remote Procedure Call protocol)传输层(Transport Layer)--------------------------------------------------------------------------------ITOT:基于TCP/IP 的 ISO 传输协议 (ITOT:ISO Transport Over TCP/IP)RDP:可靠数据协议 (RDP:Reliable Data Protocol)RUDP:可靠用户数据报协议 (RUDP:Reliable UDP)TALI:传输适配层接口 (TALI:Transport Adapter Layer Interface)TCP:传输控制协议 (TCP:Transmission Control Protocol)UDP:用户数据报协议 (UDP:User Datagram Protocol)Van Jacobson:压缩 TCP 协议 (Van Jacobson:Compressed TCP)网络层(Network Layer)--------------------------------------------------------------------------------路由选择(Routing)BGP/BGP4:边界网关协议 (BGP/BGP4:Border Gateway Protocol)EGP:外部网关协议(EGP:Exterior Gateway Protocol)IP:网际协议 (IP:Internet Protocol)IPv6:网际协议第6版 (IPv6:Internet Protocol version 6)ICMP/ICMPv6:Internet 信息控制协议 (ICMP/ICMPv6:Internet Control Message Protocol)IRDP:ICMP 路由器发现协议 (IRDP:ICMP Router Discovery Protocol)Mobile IP: 移动 IP (Mobile IP:IP Mobility Support Protocol for IPv4 & IPv6)NARP:NBMA 地址解析协议 (NARP:NBMA Address Resolution Protocol)NHRP:下一跳解析协议 (NHRP:Next Hop Resolution Protocol)OSPF:开放最短路径优先 (OSPF:Open Shortest Path First)RIP/RIP2:路由选择信息协议 (RIP/RIP2:Routing Information Protocol)RIPng:路由选择信息协议下一代 (RIPng:RIP for IPv6)RSVP:资源预留协议 (RSVP:Resource ReSerVation Protocol)VRRP:虚拟路由器冗余协议 (VRRP:Virtual Router Redundancy Protocol)组播(Multicast)BGMP:边界网关组播协议 (BGMP:Border Gateway Multicast Protocol)DVMRP:距离矢量组播路由协议 (DVMRP:Distance Vector Multicast Routing Protocol)IGMP:Internet 组管理协议 (IGMP:Internet Group Management Protocol)MARS:组播地址解析服务 (MARS:Multicast Address Resolution Server)MBGP:组播协议边界网关协议 (MBGP:Multiprotocol BGP)MOSPF:组播OSPF (MOSPF:Multicast OSPF)MSDP:组播源发现协议 (MSDP:Multicast Source Discovery Protocol)MZAP:组播区域范围公告协议 (MZAP:Multicast Scope Zone Announcement Protocol)PGM:实际通用组播协议 (PGM:Pragmatic General Multicast Protocol)PIM-DM:密集模式独立组播协议 (PIM-DM:Protocol Independent Multicast - Dense Mode)PIM-SM:稀疏模式独立组播协议 (PIM-SM:Protocol Independent Multicast - Sparse Mode)MPLS 协议(MPLS Protocols)CR-LDP:基于路由受限标签分发协议 (CR-LDP: Constraint-Based Label Distribution Protocol)GMPLS:通用多协议标志交换协议 (GMPLS:Generalized Multiprotocol Label Switching)LDP:标签分发协议 (LDP:Label Distribution Protocol)MPLS:多协议标签交换 (MPLS:Multi-Protocol Label Switching)RSVP-TE:基于流量工程扩展的资源预留协议 (RSVP-TE:Resource ReSerVation Protocol-Traffic Engineering)数据链路层(Data Link Layer)--------------------------------------------------------------------------------ARP and InARP:地址转换协议和逆向地址转换协议 (ARP and InARP:Address Resolution Protocol and Inverse ARP)IPCP and IPv6CP:IP控制协议和IPV6控制协议 (IPCP and IPv6CP:IP Control Protocol and IPv6 Control Protocol)RARP:反向地址转换协议 (RARP:Reverse Address Resolution Protocol)SLIP:串形线路 IP (SLIP:Serial Line IP)SIP介绍新一代的服务历史回顾SIP 的优点:类似 Web 的可扩展开放通信SIP 会话构成介绍通信提供商及其合作伙伴和用户越来越渴求新一代基于 IP 的服务。现在有了 SIP(会话启动协议),一解燃眉之急。SIP 是不到十年前在计算机科学实验室诞生的一个想法。它是第一个适合各种媒体内容而实现多用户会话的协议,现在已成了 Internet 工程任务组 (IETF) 的规范。今天,越来越多的运营商、CLEC(竞争本地运营商)和 ITSP(IP 电话服务商)都在提供基于 SIP 的服务,如市话和长途电话技术、在线信息和即时消息、IP Centrex/Hosted PBX、语音短信、push-to-talk(按键通话)、多媒体会议等等。独立软件供应商 (ISV) 正在开发新的开发工具,用来为运营商网络构建基于 SIP 的应用程序以及 SIP 软件。网络设备供应商 (NEV) 正在开发支持 SIP 信令和服务的硬件。现在,有众多 IP 电话、用户代理、网络代理服务器、VOIP 网关、媒体服务器和应用服务器都在使用 SIP。SIP 从类似的权威协议--如 Web 超文本传输协议 (HTTP) 格式化协议以及简单邮件传输协议 (SMTP) 电子邮件协议--演变而来并且发展成为一个功能强大的新标准。但是,尽管 SIP 使用自己独特的用户代理和服务器,它并非自成一体地封闭工作。SIP 支持提供融合的多媒体服务,与众多负责身份验证、位置信息、语音质量等的现有协议协同工作。本白皮书对 SIP 及其作用进行了概括性的介绍。它还介绍了 SIP 从实验室开发到面向市场的过程。本白皮书说明 SIP 提供哪些服务以及正在实施哪些促进发展的方案。它还详细介绍了 SIP 与各种协议不同的重要特点并说明如何建立 SIP 会话。返回页首新一代的服务SIP 较为灵活,可扩展,而且是开放的。它激发了 Internet 以及固定和移动 IP 网络推出新一代服务的威力。SIP 能够在多台 PC 和电话上完成网络消息,模拟 Internet 建立会话。与存在已久的国际电信联盟 (ITU) SS7 标准(用于呼叫建立)和 ITU H.323 视频协议组合标准不同,SIP 独立工作于底层网络传输协议和媒体。它规定一个或多个参与方的终端设备如何能够建立、修改和中断连接,而不论是语音、视频、数据或基于 Web 的内容。SIP 大大优于现有的一些协议,如将 PSTN 音频信号转换为 IP 数据包的媒体网关控制协议 (MGCP)。因为 MGCP 是封闭的纯语音标准,所以通过信令功能对其进行增强比较复杂,有时会导致消息被破坏或丢弃,从而妨碍提供商增加新的服务。而使用 SIP,编程人员可以在不影响连接的情况下在消息中增加少量新信息。例如,SIP 服务提供商可以建立包含语音、视频和聊天内容的全新媒体。如果使用 MGCP、H.323 或 SS7 标准,则提供商必须等待可以支持这种新媒体的协议新版本。而如果使用 SIP,尽管网关和设备可能无法识别该媒体,但在两个大陆上设有分支机构的公司可以实现媒体传输。而且,因为 SIP 的消息构建方式类似于 HTTP,开发人员能够更加方便便捷地使用通用的编程语言(如 Java)来创建应用程序。对于等待了数年希望使用 SS7 和高级智能网络 (AIN) 部署呼叫等待、主叫号码识别以及其他服务的运营商,现在如果使用 SIP,只需数月时间即可实现高级通信服务的部署。这种可扩展性已经在越来越多基于 SIP 的服务中取得重大成功。Vonage 是针对用户和小企业用户的服务提供商。它使用 SIP 向用户提供 20,000 多条数字市话、长话及语音邮件线路。Deltathree 为服务提供商提供 Internet 电话技术产品、服务和基础设施。它提供了基于 SIP 的 PC 至电话解决方案,使 PC 用户能够呼叫全球任何一部电话。Denwa Communications 在全球范围内批发语音服务。它使用 SIP 提供 PC 至 PC 及电话至 PC 的主叫号码识别、语音邮件,以及电话会议、统一通信、客户管理、自配置和基于 Web 的个性化服务。某些权威人士预计,SIP 与 IP 的关系将发展成为类似 SMTP 和 HTTP 与 Internet 的关系,但也有人说它可能标志着 AIN 的终结。迄今为止,3G 界已经选择 SIP 作为下一代移动网络的会话控制机制。Microsoft 已经选择 SIP 作为其实时通信策略并在 Microsoft XP、Pocket PC 和 MSN Messenger 中进行了部署。Microsoft 同时宣布 CE.net 的下一个版本将使用基于 SIP 的 VoIP 应用接口层,并承诺向用户 PC 提供基于 SIP 的语音和视频呼叫。另外,MCI 正在使用 SIP 向 IP 通信用户部署高级电话技术服务。用户将能够通知主叫方自己是否有空以及首选的通信方式,如电子邮件、电话或即时消息。利用在线信息,用户还能够即时建立聊天会话和召开音频会议。使用 SIP 将不断地实现各种功能。返回页首历史回顾SIP 出现于二十世纪九十年代中期,源于哥伦比亚大学计算机系副教授 Henning Schulzrinne 及其研究小组的研究。Schulzrinne 教授除与人共同提出通过 Internet 传输实时数据的实时传输协议 (RTP) 外,还与人合作编写了实时流传输协议 (RTSP) 标准提案,用于控制音频视频内容在 Web 上的流传输。Schulzrinne 本来打算编写多方多媒体会话控制 (MMUSIC) 标准。1996 年,他向 IETF 提交了一个草案,其中包含了 SIP 的重要内容。1999 年,Shulzrinne 在提交的新标准中删除了有关媒体内容方面的无关内容。随后,IETF 发布了第一个 SIP 规范,即 RFC 2543。虽然一些供应商表示了担忧,认为 H.323 和 MGCP 协议可能会大大危及他们在 SIP 服务方面的投资,IETF 继续进行这项工作,于 2001 年发布了 SIP 规范 RFC 3261。RFC 3261 的发布标志着 SIP 的基础已经确立。从那时起,已发布了几个 RFC 增补版本,充实了安全性和身份验证等领域的内容。例如,RFC 3262 对临时响应的可靠性作了规定。RFC 3263 确立了 SIP 代理服务器的定位规则。RFC 3264 提供了提议/应答模型,RFC 3265 确定了具体的事件通知。早在 2001 年,供应商就已开始推出基于 SIP 的服务。今天,人们对该协议的热情不断高涨。Sun Microsystems 的 Java Community Process 等组织正在使用通用的 Java 编程语言定义应用编程接口 (API),以便开发商能够为服务提供商和企业构建 SIP 组件和应用程序。最重要的是,越来越多的竞争者正在借助前途光明的新服务进入 SIP 市场。SIP 正在成为自 HTTP 和 SMTP 以来最为重要的协议之一。返回页首SIP 的优点:类似 Web 的可扩展开放通信使用 SIP,服务提供商可以随意选择标准组件,快速驾驭新技术。不论媒体内容和参与方数量,用户都可以查找和联系对方。SIP 对会话进行协商,以便所有参与方都能够就会话功能达成一致以及进行修改。它甚至可以添加、删除或转移用户。不过,SIP不是万能的。它既不是会话描述协议,也不提供会议控制功能。为了描述消息内容的负载情况和特点,SIP 使用 Internet 的会话描述协议 (SDP) 来描述终端设备的特点。SIP 自身也不提供服务质量 (QoS),它与负责语音质量的资源保留设置协议 (RSVP) 互操作。它还与若干个其他协议进行协作,包括负责定位的轻型目录访问协议 (LDAP)、负责身份验证的远程身份验证拨入用户服务 (RADIUS) 以及负责实时传输的 RTP 等多个协议。SIP 规定了以下基本的通信要求:1. 用户定位服务2. 会话建立3. 会话参与方管理4. 特点的有限确定SIP 的一个重要特点是它不定义要建立的会话的类型,而只定义应该如何管理会话。有了这种灵活性,也就意味着 SIP 可以用于众多应用和服务中,包括交互式游戏、音乐和视频点播以及语音、视频和 Web 会议。下面是 SIP 在新的信令协议中出类拔萃的一些其他特点SIP 消息是基于文本的,因而易于读取和调试。新服务的编程更加简单,对于设计人员而言更加直观。SIP 如同电子邮件客户机一样重用 MIME 类型描述,因此与会话相关的应用程序可以自动启动。SIP 重用几个现有的比较成熟的 Internet 服务和协议,如 DNS、RTP、RSVP 等。不必再引入新服务对 SIP 基础设施提供支持,因为该基础设施很多部分已经到位或现成可用。对 SIP 的扩充易于定义,可由服务提供商在新的应用中添加,不会损坏网络。网络中基于 SIP 的旧设备不会妨碍基于 SIP 的新服务。例如,如果旧 SIP 实施不支持新的 SIP 应用所用的方法/标头,则会将其忽略。SIP 独立于传输层。因此,底层传输可以是采用 ATM 的 IP。SIP 使用用户数据报协议 (UDP) 以及传输控制协议 (TCP),将独立于底层基础设施的用户灵活地连接起来。SIP 支持多设备功能调整和协商。如果服务或会话启动了视频和语音,则仍然可以将语音传输到不支持视频的设备,也可以使用其他设备功能,如单向视频流传输功能。返回页首SIP 会话构成SIP 会话使用多达四个主要组件:SIP 用户代理、SIP 注册服务器、SIP 代理服务器和 SIP 重定向服务器。这些系统通过传输包括了 SDP 协议(用于定义消息的内容和特点)的消息来完成 SIP 会话。下面概括性地介绍各个 SIP 组件及其在此过程中的作用。SIP 用户代理 (UA) 是终端用户设备,如用于创建和管理 SIP 会话的移动电话、多媒体手持设备、PC、PDA 等。用户代理客户机发出消息。用户代理服务器对消息进行响应。SIP 注册服务器是包含域中所有用户代理的位置的数据库。在 SIP 通信中,这些服务器会检索参与方的 IP 地址和其他相关信息,并将其发送到 SIP 代理服务器。SIP 代理服务器接受 SIP UA 的会话请求并查询 SIP 注册服务器,获取收件方 UA 的地址信息。然后,它将会话邀请信息直接转发给收件方 UA(如果它位于同一域中)或代理服务器(如果 UA 位于另一域中)。SIP 重定向服务器允许 SIP 代理服务器将 SIP 会话邀请信息定向到外部域。SIP 重定向服务器可以与 SIP 注册服务器和 SIP 代理服务器同在一个硬件上。以下几个情景说明 SIP 组件之间如何进行协调以在同一域和不同域中的 UA 之间建立 SIP 会话:在同一域中建立 SIP 会话下图说明了在预订同一个 ISP 从而使用同一域的两个用户之间建立 SIP 会话的过程。用户 A 使用 SIP 电话。用户 B 有一台 PC,运行支持语音和视频的软客户程序。加电后,两个用户都在 ISP 网络中的 SIP 代理服务器上注册了他们的空闲情况和 IP 地址。用户 A 发起此呼叫,告诉 SIP 代理服务器要联系用户 B。然后,SIP 代理服务器向 SIP 注册服务器发出请求,要求提供用户 B 的 IP 地址,并收到用户 B 的 IP 地址。SIP 代理服务器转发用户 A 与用户 B 进行通信的邀请信息(使用 SDP),包括用户 A 要使用的媒体。用户 B 通知 SIP 代理服务器可以接受用户 A 的邀请,且已做好接收消息的准备。SIP 代理服务器将此消息传达给用户 A,从而建立 SIP 会话。然后,用户创建一个点到点 RTP 连接,实现用户间的交互通信。1.呼叫用户 B2.查询捻没?B 在哪里??br> 3.响应捻没?B 的 SIP 地址?br> 4.挚�顶呼叫5. 响应6. 响应7. 多媒体通道已建立返回页首在不同的域中建立 SIP 会话本情景与第一种情景的不同之处如下。用户 A 邀请正在使用多媒体手持设备的用户 B 进行 SIP 会话时,域 A 中的 SIP 代理服务器辨别出用户 B 不在同一域中。然后,SIP 代理服务器在 SIP 重定向服务器上查询用户 B 的 IP 地址。SIP 重定向服务器既可在域 A 中,也可在域 B 中,也可既在域 A 中又在域 B 中。SIP 重定向服务器将用户 B 的联系信息反馈给 SIP 代理服务器,该服务器再将 SIP 会话邀请信息转发给域 B 中的 SIP 代理服务器。域 B 中的 SIP 代理服务器将用户 A 的邀请信息发送给用户 B。用户 B 再沿邀请信息经由的同一路径转发接受邀请的信息。1. 呼叫用户 B 2. 询问撑胰绾谓油ㄓ?B 中的用户 B?? 3. 响应挚�砜刂破鞯挠虻刂窋 4. 挚�顶呼叫域 B 的 SIP 代理 5. 查询捻没?B 在哪里?? 6. 用户 B 的地址 7. 代理呼叫 8. 响应 9. 响应 10.响应 11.多媒体通道已建立无缝、灵活、可扩展:展望 SIP 未来SIP 能够连接使用任何 IP 网络(有线 LAN 和 WAN、公共 Internet 骨干网、移动 2.5G、3G 和 Wi-Fi)和任何 IP 设备(电话、PC、PDA、移动手持设备)的用户,从而出现了众多利润丰厚的新商机,改进了企业和用户的通信方式。基于 SIP 的应用(如 VOIP、多媒体会议、push-to-talk(按键通话)、定位服务、在线信息和 IM)即使单独使用,也会为服务提供商、ISV、网络设备供应商和开发商提供许多新的商机。不过,SIP 的根本价值在于它能够将这些功能组合起来,形成各种更大规模的无缝通信服务。使用 SIP,服务提供商及其合作伙伴可以定制和提供基于 SIP 的组合服务,使用户可以在单个通信会话中使用会议、Web 控制、在线信息、IM 等服务。实际上,服务提供商可以创建一个满足多个最终用户需求的灵活应用程序组合,而不是安装和支持依赖于终端设备有限特定功能或类型的单一分散的应用程序。 通过在单一、开放的标准 SIP 应用架构下合并基于 IP 的通信服务,服务提供商可以大大降低为用户设计和部署基于 IP 的新的创新性托管服务的成本。它是 SIP 可扩展性促进本行业和市场发展的强大动力,是我们所有人的希望所在。

以太网采用的通讯协议是什么?
现在比较通用的以太网通信协议是TCP/IP协议,TCP/IP协议与开放互联模型ISO相比,采用了更加开放的方式,它已经被美国国防部认可,并被广泛应用于实际工程。TCP/IP协议可以用在各种各样的信道和底层协议(如T1、X.25以及RS一232串行接口)之上。确切地说,TCP/IP协议是包括TCP协议、IP协议、UDP(User Datagram Proto—c01)协议、ICMP(Internet Control Message Protoc01)协议和其他一些协议的协议组。扩展资料:TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的七层抽象参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。而TCP/IP通讯协议采用了四层结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这四层分别为:(1)应用层:应用程序间沟通的层,如简单电子邮件传输协议(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。(2)传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据包协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。(3)网络层:负责提供基本的数据包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。(4)接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。参考资料:百度百科——以太网通信
以太网采用的通讯协议是CSMA/CD。 CSMA/CD:一种争用型的介质访问控制协议,应用在 OSI 的第二层数据链路层。CSMA/CD控制方式的优点:原理比较简单,技术上易实现,网络中各工作站处于平等地位 ,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。工作原理: 发送数据前先侦听信道是否空闲 ,若空闲,则立即发送数据;若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。简单总结为:先听后发,边发边听,冲突停发,随机延迟后重发 主要目的:提供寻址和媒体存取的控制方式,使得不同设备或网络上的节点可以在多点的网络上通信而不相互冲突。
以太网的通讯协议: 802.1,TCP/IP 以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。Ethernet 基本网络组成:共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:10 Mbps – 10Base-T Ethernet(802.3)100 Mbps – Fast Ethernet(802.3u)1000 Mbps – Gigabit Ethernet(802.3z))10 Gigabit Ethernet – IEEE 802.3ae拥有计算机并以拨号方式介入网络的用户需使用A CD--ROM B 键盘 C 电话机 D MODEM 答案:D MODEM
tcp/ip

PLC通信协议有哪些
各种PLC通讯介质和协议介绍自从第一台PLC在GM公司汽车生产线上首次应用成功以来,PLC凭借其方便性、可靠性以及低廉的价格得到了广泛的应用。但PLC毕竟是一个黑盒子,不能实时直观地观察控制过程,与DCS相比存在比较大的差距。计算机技术的发展和普及,为PLC又提供了新的技术手段,通过计算机可以实施监测PLC的控制过程和结果,让PLC如虎添翼。但是各PLC通讯介质和通讯协议各不相同,下面将简单介绍主要PLC的通讯介质和协议内容。美系厂家 RockwellAB Rockwell的PLC主要是包括PLC2、PLC3、PLC5、SLC500、ControlLogix等型号,PLC2和PLC3是早期型号,现在用的比较多的小型PLC是SLC500,中型的一般是ControlLogix,大型的用PLC5系列。DF1协议是Rockwell各PLC都支持的通讯协议,DF1协议可以通过232或422等串口介质进行数据传输,也可以通过DH、DH+、DH485、ControlNet等网络介质来传输。DF1协议的具体内容可以在AB的资料库中下载。AB的plc也提供了OPC和DDE,其集成的软件中RSLogix中就包含DDE和OPC SERVER,可以通过上述软件来进行数据通讯。AB的中高档的PLC还提供了高级语言编程功能,用户还可以通过编程实现自己的通讯协议。GE GE现在在国内用的比较多的主要是90-70和90-30系列plc,这两款PLC都支持SNP协议,SNP协议在其PLC手册中有协议的具体内容。现在GE的PLC也可以通过以太网链接,GE的以太网协议内容不对外公开,但GE提供了一个SDK开发包,可以基于该开发包通讯。欧洲系列西门子西门子系列PLC主要包括其早期的S5和现在的S7-200、S7-300、S7-400等各型号PLC,早期的S5PLC支持的是3964R协议,但是因为现在在国内应用较少,除极个别改造项目外,很少有与其进行数据通讯的。S7-200是西门子小型PLC,因为其低廉的价格在国内得到了大规模的应用,支持MPI、PPI和自由通讯口协议。西门子300的PLC支持MPI,还可以通过PROFIBUS 和工业以太网总线系统和计算机进行通讯。如果要完成点对点通讯,可以使用CP340/341。S7400作为西门子的大型PLC,提供了相当完备的通讯功能。可以通过S7标准的MPI进行通讯,同时可以通过C-总线,PROFIBUS和工业以太网进行通讯。如果要使用点对点通讯,S7-400需要通过CP441通讯模块。西门子的通讯协议没有公开,包括紫金桥组态软件在内许多组态软件都支持MPI、PPI等通讯方式,PROFIBUS和工业以太网一般通过西门子的软件进行数据通讯。施耐德(莫迪康)施耐德的PLC型号比较多,在国内应用也比较多。其通讯方式主要是支持MODBUS和MODBUS PLUS两种通讯协议。MODBUS协议在工控行业得到了广泛的应用,已不仅仅是一个PLC的通讯协议,在智能仪表,变频器等许多智能设备都有相当广泛的应用。MODBUS经过进一步发展,现在又有了MODBUS TCP方式,通过以太网方式进行传输,通讯速度更快。MODBUS PLUS相对于MODBUS传送速度更快,距离更远,该通讯方式需要在计算机上安装MODCON提供的SA85卡并需安装该卡的驱动才可以进行通讯。除了上述两种方式之外,莫迪康的PLC还支持如TCP/IP以太网,Unitelway, FIPWAY,FIPIO,AS-I,Interbus-s等多种通讯方式。日系PLC欧姆龙欧姆龙系列PLC在中国推广的也比较多。在通讯方式上,OMRON现在主要采用两种通讯方式:Host Link协议是基于串口方式进行数据传输的通讯方式。当PLC进入MONITOR方式时,上位机可以和欧姆龙PLC通讯。在和欧姆龙通讯时要注意,两次通讯之间要留一定时间,如果通讯速度过快容易造成PLC通讯异常。ControlLink是欧姆龙PLC的一种快速通讯方式。Control Link通过板卡进行数据通讯,板卡之间有数据交换区,由板卡实现数据的交换从而完成数据采集功能。使用该方式通讯需配置欧姆龙的驱动。三菱三菱PLC的小型PLC在国内的应用非常广泛。三菱的PLC型号也比较多,主要包括FX系列,A系列和Q系列。三菱系列PLC通讯协议是比较多的,各系列都有自己的通讯协议。如FX系列中就包括通过编程口或232BD通讯,也可以通过485BD等方式通讯。其A系列和Q系列可以通过以太网通讯。当然,三菱的PLC还可以通过CC-LINK协议通讯。松下松下PLC和计算机之间可以通过串口和以太网进行通讯。其采用的通讯协议是MEWTOCOL协议。如大多数日系PLC一样,MEWTOCOL协议比较简单。包括紫金桥组态软件在内的许多软件都可以从PLC中直接读取数据。拓展资料:德国西门子(SIEMENS)公司生产的可编程序控制器在我国的应用也相当广泛,在冶金、化工、印刷生产线等领域都有应用。西门子(SIEMENS)公司的PLC产品包括LOGO、S7-200、S7-1200、S7-300、S7-400等。西门子S7系列PLC体积小、速度快、标准化,具有网络通信能力,功能更强,可靠性高。S7系列PLC产品可分为微型PLC(如S7-200),小规模性能要求的PLC(如S7-300)和中、高性能要求的PLC(如S7-400)等。优点:1.可靠PLC不需要大量的活动元件和连线电子元件。它的连线大大减少。与此同时,系统的维修简单,维修时间短。Plc采用了一系列可靠性设计的方法进行设计。例如:冗余的设计。断电保护,故障诊断和信息保护及恢复。PLC是为工业生产过程控制而专门设计的控制装置,它具有比通用计算机控制更简单的编程语言和更可靠的硬件。采用了精简化的编程语言。编程出错率大大降低。2.易操作PLC有较高的易操作性。它具有编程简单,操作方便,维修容易等特点,一般不容易发生操作的错误。对PLC的操作包括程序输入和程序更改的操作。程序的输入直接可接显示,更改程序的操作也可以直接根据所需要的地址编号或接点号进行搜索或程序寻找,然后进行更改。PLC有多种程序设计语言可供使用。用于梯形图与电气原理图较为接近。容易掌握和理解。PLC具有的自诊断功能对维修人员维修技能的要求降低。当系统发生故障时,通过硬件和软件的自诊断,维修人员可以很快找到故障的部位。3.灵活PLC采用的编程语言有梯形图、布尔助记符、功能表图、功能模块和语句描述编程语言。编程方法的多样性使编程简单、应用面拓展。操作十分灵活方便,监视和控制变量十分容易。西门子PLC S7-300系列PLC安装及注意事项:一、辅助电源功率较小,只能带动小功率的设备(光电传感器等);二、 一般PLC均有一定数量的占有点数(即空地址接线端子),不要将线接上;三、 PLC存在I/O响应延迟问题,尤其在快速响应设备中应加以注意。四、输出有继电器型,晶体管型(高速输出时宜选用),输出可直接带轻负载(LED指示灯等);五、输入/断开的时间要大于PLC扫描时间;六、PLC输出电路中没有保护,因此应在外部电路中串联使用熔断器等保护装置,防止负载短路造成损坏PLC;七、 不要将交流电源线接到输入端子上,以免烧坏PLC;八、接地端子应独立接地,不与其它设备接地端串联,接地线裁面不小于2mm2;九、 输入、输出信号线尽量分开走线,不要与动力线在同一管路内或捆扎在一起,以免出现干扰信号,产生误动作;信号传输线采用屏蔽线,并且将屏蔽线接地;为保证 信号可靠,输入、输出线一般控制在20米以内;扩展电缆易受噪声电干扰,应远离动力线、高压设备等。参考资料:西门子PLC 百度百科
西门子PLC有4大类,几十个型号类型,PLC不同所支持的通讯协议也不相同。 S7-200系列支持的协议有:PPI、MPI、PROFIBUS、以太网、S7协议、AS-INTERFACE、USS、MODBUS、自由口。S7-300400系列支持的协议有:MPI、PROFIBUS、ETHERNET网、ISO协议、ISO-ON-TCP、MODBUS等。相同点是同一协议物理传输介质相同。比如S7协议可以使用DP、以太网作为传输介质。 不同之处是每个协议都对应不同的组态方式和程序。
基本上每家的通讯协议都不一样,如西门子的是PPI协议,但是都可以扩展成标准MODBUS协议
你好:西门子PLC有4大类,几十个型号类型,PLC不同所支持的通讯协议也不相同。 S7-200系列支持的协议有:PPI、MPI、PROFIBUS、以太网、S7协议、AS-INTERFACE、USS、MODBUS、自由口。S7-300400系列支持的协议有:MPI、PROFIBUS、ETHERNET网、ISO协议、ISO-ON-TCP、MODBUS等。相同点是同一协议物理传输介质相同。比如S7协议可以使用DP、以太网作为传输介质。 不同之处是每个协议都对应不同的组态方式和程序。
西门子的PLC 通讯类型:A. MPI通信B. 串口通信C. PROFIBUS通信D. 工业以太网E. ASI通信F. PPI通信G. 远程无线通信通讯协议: TCP、UDP、S7、profibus、pofinet、MPI、PPI、MODBUS==

TCP/IP协议
TCP/IP协议是一个协议集合,HTTP协议,IP协议,TCP协议,DNS协议等都属于TCP/IP协议。 TCP/IP协议是为了保证全球亿万台计算机能准确、无误的通信。TCP/IP中分层是很重要的概念,每层完成不同的功能。分为应用层,传输层,网络层,数据链路层。分层的目的是为了层级之间的功能相对队里,互不影响。TCP/IP通信数据流HTTP是基于TCP/IP协议的应用层协议,它不涉及数据包的传输,主要规定了客户端和服务器端的通信协议,默认端口是80IP协议的作用是将各种数据包准确无误的传递给对方,其中重要的条件是IP地址和MAC地址。由于IP地址是稀有资源,不可能每个人都有一个IP地址,所以我们通常的IP地址都是路由器给我们生成的IP地址,路由器里面会记录我们的MAC地址,而MAC地址是唯一的。IP实现的两个基本功能:寻址和分段寻址功能就是原地址和目标地址之间建立连接,需要使用ARP协议(Address Resolution Protocol),IP协议就是找到一条连接两台电脑的路径,从而完成数据的交互。地址解析协议,ARP协议,是根据IP地址获取物理地址的一个TCP/IP协议。IP间的通信依赖MAC地址。在进行中转时,会利用下一站中转设备的MAC地址来搜索下一个中转目标,这时就会采用ARP协议,根据通讯放的IP地址就可以反查出对应的MAC地址,从而进行精确的定位,完成寻址的功能。分段功能是为了适应不同网络对包的要求,对数据进行重新组装。TCP协议就是将数据包安全的给对方,IP协议是找到对方的详细地址,分工不同,互不冲突。TCP属于传输层,提供可靠的字节流服务。字节流类似于数据切割,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。可靠的传输服务是指,能够把数据准确可靠的传给对方。TCP协议为了更容易的传输大数据才将数据进行分割,而且TCP协议能够确认数据最终是否送达对方。为了确保信息准确无误的送达,TCP采用了三次握手策略(three-way-handshaking)。TCP建立连接时需要三次握手,在关闭连接时还需要四次握手。 这部分占用了http请求过程的中大量时间,在高并发时,可以考虑优化这部分。和HTTP协议一样是处于应用层的服务,提供域名到IP地址之间的解析服务。1、可缓存:get请求能缓存,post请求不能;响应报文的状态码是可缓存的,包括:200, 203, 204, 206, 300, 301, 404, 405, 410, 414, and 501。2、get是获取资源,post用于传输实体主体。3、参数:get请求的参数在url里面,会被浏览器保存历史记录,post的请求数据在数据包里面,同时因为url只支持ASCII码,因此get的参数如果存在汉字就要先进性编码,post请求支持更多的编码类型且不对数据类型限制;post传输的数据比get的多;url的长度有限制,会影响get请求;4、安全的HTTP方法不会改变服务器状态,也就说是只读的。所以get是安全的,post不是安全的。5、幂等性:get是幂等的,post不是幂等的。6、XMLHttpRequest: 在使用XMLHttpRequest时,post请求发送时,浏览器会先发送header再发送Data;get请求header和data一起发送。XMLHttpRequest 是一个 API,它为客户端提供了在客户端和服务器之间传输数据的功能。它提供了一个通过 URL 来获取数据的简单方式,并且不会使整个页面刷新。这使得网页只更新一部分页面而不会打扰到用户。XMLHttpRequest 在 AJAX 中被大量使用。200 OK,表示从客户端发来的请求在服务器端被正确处理。204 No content,表示请求成功,但是想要报文不包含实体的主体部分。206 Partial Content ,进行范围请求。301 moved permanently 永久性重定向,表示自愿一杯分配了新的URL。302 found 临时性重定向,表示自愿临时被分配了新的URL。303 see other 表示资源存在着另一个URL,应使用GET方法获取资源。和 302 有着相同的功能,但是 303 明确要求客户端应该采用 GET 方法获取资源。注:虽然 HTTP 协议规定 301、302 状态下重定向时不允许把 POST 方法改成 GET 方法,但是大多数浏览器都会在 301、302 和 303 状态下的重定向把 POST 方法改成 GET 方法。304 not modified 表示服务器允许访问资源,但因发生请求未满足条件的情况。307 temporary redirect,临时重定向,和302含义相同。但是 307 要求浏览器不会把重定向请求的 POST 方法改成 GET 方法。400 bad request 请求报文存在语法错误401 unauthorized 表示没有权限403 forbidden 表示对请求资源的访问被服务器拒绝404 not found 表示在服务器上没有找到请求的资源500 internal sever error 表示服务器端在执行请求时错误503 service unavailable 表明服务器暂时处于超负载或正在停机维护,无法处理请求HTTPS是HTTP建立在SSL/TLS安全协议上的。在IOS中,客户端本地会存有CA证书,在HTTPS请求时,会首先向服务器获取公钥,获得公钥后会使用本地的CA证书验证公钥的正确性,然后通过正确的公钥加密信息发送给服务器,服务器会使用私钥解密信息。SSL/TSL握手阶段分为五步:HTTP和HTTPS的对比:HTTP:无状态,协议对客户端没有状态存储;无连接,每次请求都会和服务器重新建立连接;基于请求和响应,由客户端发起,服务端响应;简单快速,灵活;使用明文,请求和响应不会对通信方进行确认,无法保证数据的完整性。 HTTPS:内容加密,采用混合加密技术,中间者无法直接查看明文内容;验证身份,通过证书认真客户端访问的是自己的服务器;保护数据完整性,放置传输的内容被中间人冒充或篡改。

威盛电度表通信协议是什么
答:威盛电度表通信协议以电力负荷管理终端与电表进行数据通信为例进行说明,但不限于此。本协议是所有通信内容的全集,当用户在具体使用本协议时,仔细确认电表的通信软件版本、功能、型号等有关说明,以确定实际适用的子集。本协议所有版本向上兼容,高版本协议内容包含低版本协议内容。协议按《标志字节》升序排序。本协议于1997年1月制定含V1.0、V2.0、V3.0的通信协议,并根据公司的通信型电子式电能表的发展,于1998年11月制定了V4.0通信协议,于1999年1月制定V4.1通信协议。谢谢。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/318386.html。