分析tcp协议原理
原理四个主要方面:一、tcp协议之连接建立、断开二、tcp协议之超时重传三、tcp协议之窗口管理四、tcp协议之拥塞控制TCP是一种面向有连接的协议,也就是说必须确认对方存在时才能发送数据而TCP通过检验和、序列号、确认应答、重发控制、连接管理、窗口控制等机制来实现可靠传输。1. 目的:TCP三次握手是客户端和服务器总共发三个数据包,通过三个数据包来确认主动发送能力和被动接收能力是否正常。2. 实质:通过指定的四元组(源地址、源端口、目标地址、目标端口)来建立TCP连接,同步双方各自发送序列号seq和确认号ACK,同时也会交换窗口大小信息三次握手过程的实现方式就是交换序列号seq。随便在网上找个地址,如果通过域名想看ip地址,可以ping下看连接。① 192.168.3.7发送[SYN]报文段至222.169.228.146,告知序列号x为0。② 222.169.228.146发送[SYN,ACK]报文段至192.168.3.7,告知序列号y为0,确认号ACK为x+1=1。③192.168.3.7发送[ACK]报文段至222.169.228.146,告知确认号ACK为y+1=1。报文段中的其他参数:MSS=1460:允许从对方接收到的最大报文段,图中为1460字节(指承载的数据,不包含报文段的头部)。win=8192:滑动窗口的大小为8192字节。SACK_PERM=1:开启选择确认。为什么会使用SACK:tcp确认方式不是一段报文段一确认,而是采用累积确认方式。服务器接收到的报文段无序所以序列号也是不连续,服务器的接收队列会出现空洞情况。为了解决空洞,提前了解当前空洞,应对丢失遗漏,采取重传。提前了解方式就是通过SACK选项信息,SACK信息包含接收方已经成功接收的数据块的序列号范围。而SACK_PERM字段为1表明,选择开启了SACK功能。网络层可能会出现丢失、重复、乱序的问题,tcp是提供可靠的数据传输服务的,为了保证数据的正确性,tcp协议会重传它认为的已经丢失的包。重传两种机制:一种基于时间重传,一种基于确认报文段提供的信息重传。RTT:数据完全发送完(完成最后一个比特推送到数据链路上)到收到确认信号的时间(往返时间)。RTO:重传超时时间(tcp发送数据时设置一个计时器,当计时器超时没有收到数据确认信息,引发超时而重传,判断的标准就是RTO)。思考:发送序列号为1、2、3、4这4个报文段,但是出现了序列号2报文段丢失,怎么办?发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端当收到序列号为3的报文(2已丢失),发送ack为4的确认报文,发送端正等待ack为2的确认报文,面对跳跃的报文,那么发送端会一直等待,直到超出指定时间,重传报文2。为什么不跳跃确认呢?tcp是累积确认方式,如果确认报文3,那么意味着报文1和报文2都已经成功接收。超时处理方式:思考:上面计时器是以时间为标准重传,那么可以通过确认报文的次数来决定重传。发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端收到报文3、4、5,但是没收到报文2,那么接收端发送三个ACK为2的确认报文,发送端收到这个三个确认报文,重传报文2。思考:如果快速重传中丢失包的地方很多(报文2,报文,7,报文9,报文30,报文300....),那么需要从头到尾都重传,这很蛋疼?思考:SACK重传对于接收到重复数据段怎样运作没有明确规定,通过DSACK重传可以让发送方知道哪些数据被重复接收了,而且明确是什么原因造成的。发送端没有收到100-199的ACK包,超过指定时间,重传报文。接收端都已经收到200-299的发送报文了,又来100-199是重复报文。再向发送端发送一个ACK报文,设置SACK 100-199,告知发送端,已经收到了100-199包,只是回应ACK包丢失。发送端发送包100-199,由于网络延迟,一直没有达到接收端。接收端连续发送三个ACK 200确认报文,触发快速重传,发送端收到了ACK 500的确认报文,表明之前的报文都已经交付成功。接收端又收到了延迟的报文100-199,再次向发送端发送一个SACK 100-199的ACK 500报文。发送端发现这是重复报文,判断为网络延迟造成的。计时器重传:根据超时,重传。快速重传:根据接收三次相同ACK报文,重传。选择确认重传:根据接收端提供的SACK信息,重传。DSACK重传:根据重复报文,明确丢失ACK报文还是网络延迟。Category1:已发送且已确认(已经收到ACK报文的数据)。Category2:已发送但未收到确认。Category3:即将发送。Category4:窗口移动前都不能发送。可用窗口:46-51字节。发送窗口:32-51字节。RCV.NXT:左边界RCV.WND:接收窗口RCV.NXT+RCV.WND:右边界接收端接收到序列号小于左边界,那么被认为重复数据而被丢弃。接收端接收到序列号大于右边界,那么被认为超出处理范围,丢弃。注意:tcp协议为累积ACK结构,只有当达到数据序列号等于左边界时,数据才不会被丢弃。如果窗口更新ACK丢失,对于发送端,窗口左边界右移,已发送数据得到ACK确认之后,左右边界距离减小,发送端窗口会减小,当左右边界相等时,称为零窗口。零窗口之后:接收端发送窗口更新能会发生窗口更新ACK丢失。<>解释:TCP是通过接收端的通告窗口来实现流量控制的,通告窗口指示了接收端可接收的数据量。当窗口值变为0时,可以有效阻止发送端继续发送,直到窗口大小恢复为非零值。当接收端重新获得可用空间时,会给发送端传输一个窗口更新告知其可继续发送数据。这样的窗口更新通常都不包含数据(纯ACK),接收端向发送端发送的窗口更新ACK可能丢失。结果双方处于等待状态,发生死锁。解决方案:发送端会采用一个持续计时器间歇性地查询接收端,看其窗口是否已增长。触发窗口探测,强制要求接收端返回ACK。发送几次探测,窗口大小还是0,那么断开连接。出现SWS的情况:① 接收端通告窗口太小。② 发送端发送的数据太小。解决方案:① 针对接收端:不应通告小窗口值[RFC1122]描述:在窗口可增至一个全长的报文段(接收端MSS)或者接收端缓存空间的一半(取两者中较小值)之前,不能通告比当前窗口更大的窗口值。标准:min(MSS , 缓存空间/2)。② 针对发送端:不应发送小的报文至少满足以下其一:(1)可以发送MSS字节的报文。window size >= MSS或者 数据大小>=MSS(2)数据段长度>=接收端通告过的最大窗口值的一半,才可以发送。收到之前发送的数据的ack回包,再发送数据,否则一直攒数据。(3) -1 没有未经确认的在传数据或者-2 连接禁用Nagle算法。tcp基于ACK数据包中的通告窗口大小字段实现了流量控制。当网络大规模通信负载而瘫痪,默认网络进入拥塞状态,减缓tcp的传输。发送方和接收方被要求承担超负荷的通信任务时,采取降低发送速率或者最终丢弃部分数据的方法。反映网络传输能力的变量称为拥塞窗口(cwnd)。通告窗口(awnd)。发送窗口swnd=min(cwnd,awnd)目的:tcp在用拥塞避免算法探寻更多可用带宽之前得到cwnd值,帮助tcp建立ACK时钟。[RFC5681] :在传输初始阶段,由于未知网络传输能力,需要缓慢探测可用传输资源,防止短时间内大量数据注入导致拥塞。慢启动算法针对这一问题而设计。在数据传输之初或者重传计时器检测到丢包后,需要执行慢启动。拥塞窗口值:每收到一个ACK值,cwnd扩充一倍。所以假设没有丢包且每个数据包都有相应ACK值,在k轮后swnd=,成指数增长。SMSS是发送方的最大段大小。慢启动阶段,cwnd会指数增长,很快,帮助确立一个慢启动阙值(ssthresh)。有了阙值,tcp会进入拥塞避免阶段,cwnd每次增长值近似于成功传输的数据段大小,成线性增长。实现公式:cwnd+=SMSS*SMSS/cwnd刚建立连接使用慢启动算法,初始窗口为4,收到一次ACK后,cwnd变为8,再收到一次ACK后,cwnd变为16,依次继续,32、64,达到阙值ssthresh为64。开始使用拥塞避免算法,设置ssthresh为ssthresh/2,值为32。重新从初始窗口4,线性递增到ssthresh=32。当cwnd < ssthresh时,使用慢启动算法当cwnd > ssthresh时,使用拥塞避免算法应用快速恢复算法时机:启动快速重传且正常未失序ACK段达到之前。启动快速恢复算法。实现过程:① 将ssthresh设置为1/2 cwnd,将cwnd设置为ssthresh+3*SMSS。② 每接收一个重复ACK,cwnd值暂时增加1 SMSS。③当接收到新数据ACK后,将cwnd设置为ssthresh。参考:<>

TCP拥塞控制及BBR原理分析
导语:TCP拥塞控制不仅仅是网络层的概念,可以将其归属于控制论的范畴。在TCP的演进过程中,出现了很多优秀的思想和算法,以实现网络传输过程中,在公平竞争性的前提下,尽可能地利用带宽资源。本文介绍TCP发展过程中出现的几种拥塞控制算法,并着重介绍BBR的原理。TCP拥塞控制不仅仅是网络层的概念,可以将其归属于控制论的范畴。在TCP的演进过程中,出现了很多优秀的思想和算法,以实现网络传输过程中,在公平竞争性的前提下,尽可能地利用带宽资源。公平性是在发生拥塞时各源端(或同一源端建立的不同TCP连接或UDP数据报)能公平地共享同一网络资源(如带宽、缓存等)。处于相同级别的源端应该得到相同数量的网络资源。产生公平性的根本原因在于拥塞发生必然导致数据包丢失,而数据包丢失会导致各数据流之间为争抢有限的网络资源发生竞争,争抢能力弱的数据流将受到更多损害。因此,没有拥塞,也就没有公平性问题。TCP层上的公平性问题表现在两方面:(1)面向连接的TCP和无连接的UDP在拥塞发生时对拥塞指示的不同反应和处理,导致对网络资源的不公平使用问题。在拥塞发生时,有拥塞控制机制的TCP会按拥塞控制步骤进入拥塞避免阶段,从而主动减小发送到网络的数据量。但对无连接的数据报UDP,由于没有端到端的拥塞控制机制,即使网络出现了拥塞,也不会减少向网络发送的数据量。结果遵守拥塞控制的TCP数据流得到的网络资源越来越少,没有拥塞控制的UDP则会得到越来越多的网络资源。(2)TCP连接之间也存在公平性问题。产生问题的原因在于使用了不同的拥塞控制算法,一些TCP在拥塞前使用了大窗口尺寸,或者它们的RTT较小,或者数据包比其他TCP大,这样它们也会多占带宽。拥塞控制主要包括四个过程:1)慢启动;2)拥塞避免;3)拥塞发生;4)快速恢复。RTT:数据包从发出去到收到对它的ack的来回时间,采用平滑方式计算RTTRTO:重传超时。简单的如RTO=n*RTT, n=3(或其他RTO计算方法)SACK:TCP Option携带多组ACK信息FR:Fast Retransmission,收到3个dup ack后,即可认为发生了丢包。不需要等待RTO超时即可重传丢失的包。ER:Early Retransmission,无法产生足够的dupack和没有新的数据包可以发送进入网络的情况下,减少触发FR的dup ack数量,以达到触发FR的目的。TLP:如果发生了尾丢包,由于尾包后面没有更多的数据包,也就没有办法触发任何的dupack。实际上,Google统计超过70%的RTO是尾丢包导致没有任何dupack。TLP算法是通过发送一个loss probe包,来产生足够的SACK/FACK的信息以触发RF。Pacing:控制发送速率,防止bursting流控:Flow control站在单条TCP连接的维度,目的是让发送方发包的速度,不超过接收方收包的能力。所以流控解决的问题是,如何在接收方可承受的范围内,让单条 TCP 连接的速度最大化。通过滑动窗口机制实现。拥塞控制:Congestion control站在整个互联网的维度,让网络里所有TCP连接最大化共享网络通道的同时,尽可能的少出现网络拥塞现象,让网络世界里的每一个参与者既公平又高效。cwnd:发送窗口,拥塞窗口;在拥塞控制过程中窗口大小值变化。rwnd:接收窗口,通知发送者能够发送的数据大小。sliding window:滑动窗口,只是一种抽象机制概念;在发送请求及收到ack的过程中滑动。历史上出现的各种TCP拥塞控制算法,其本质是针对拥塞控制的四个过程做策略调整。按照算法依据的因素,可以简单的分为以下类型:因为Reno等算法是后续算法的基础,这里详细的描述下Reno算法的过程。(1)慢热启动算法 – Slow Start(2)拥塞避免算法 – Congestion Avoidance当cwnd >= ssthresh时,就会进入“拥塞避免算法”。算法如下:(3)拥塞状态算法 – Fast RetransmitTahoe是等RTO超时,FR是在收到3个duplicate ACK时就开启重传,而不用等到RTO超时。拥塞发生时:(4)快速恢复 – Fast RecoveryReno算法以其简单、有效和鲁棒性,应用最广泛。该算法所包含的慢启动、拥塞避免和快速重传、快速恢复机制,是现有的众多算法的基础。从Reno运行机制中很容易看出,为了维持一个动态平衡,必须周期性地产生一定量的丢失,再加上AIMD机制--减少快,增长慢,尤其是在大窗口环境下,由于一个数据报的丢失所带来的窗口缩小要花费很长的时间来恢复,这样,带宽利用率不可能很高且随着网络的链路带宽不断提升,这种弊端将越来越明显。另外,丢包并不一定是网络拥塞,可能是网络常态,但是基于丢包的拥塞控制并不能区分。vegas通过对RTT的非常重的监控来计算一个基准RTT。然后通过这个基准RTT来估计当前的网络实际带宽,如果实际带宽比我们的期望的带宽要小或是要多的活,那么就开始线性地减少或增加cwnd的大小。中间路由器缓存数据导致RTT变大,认为发生拥塞;RTT不公平性,当不同的数据流对网络瓶颈带宽进行竞争时,具有较小RTT的TCP数据流的拥塞窗口增加速率将会快于具有大RTT的TCP数据流,从而将会占有更多的网络带宽资源。在发送端做带宽估计,当探测到丢包时,根据带宽值来设置拥塞窗口、慢启动阈值。 那么,这个算法是怎么测量带宽的?每个RTT时间,会测量一次带宽,测量带宽的公式很简单,就是这段RTT内成功被ACK了多少字节。Westwood会根据RTT变化来判断丢包是否是网络拥塞造成的,还是网络常态的丢包。如果时延变化不明显,就认为是非网络拥塞,此时cwnd减少的比较小。BIC-TCP是Linux 2.6.18默认拥塞控制算法,依赖丢包条件触发。BIC-TCP认为TCP拥塞窗口调整的本质就是找到最适合当前网络的一个发送窗口,为了找到这个窗口值,TCP采取的方式是(拥塞避免阶段)每RTT加1,缓慢上升,丢包时下降一半,接着再来慢慢上升。BIC-TCP的提出者们看穿了事情的本质,其实这就是一个搜索的过程,而TCP的搜索方式类似于逐个遍历搜索方法,可以认为这个值是在1和一个比较大的数(large_window)之间,既然在这个区间内需要搜索一个最佳值,那么显然最好的方式就是二分搜索思想。BIC-TCP就是基于这样一个二分思想的:当出现丢包的时候,说明最佳窗口值应该比这个值小,那么BIC就把此时的cwnd设置为max_win,把乘法减小后的值设置为min_win,然后BIC就开始在这两者之间执行二分思想--每次跳到max_win和min_win的中点。BIC也具备RTT的不公平性。RTT小的连接,窗口调整发生的速度越快,因此可能更快的抢占带宽。CUBIC在设计上简化了BIC-TCP的窗口调整算法,在BIC-TCP的窗口调整中会出现一个凹和凸(这里的凹和凸指的是数学意义上的凹和凸,凹函数/凸函数)的增长曲线,CUBIC使用了一个三次函数(即一个立方函数),在三次函数曲线中同样存在一个凹和凸的部分,该曲线形状和BIC-TCP的曲线图十分相似,于是该部分取代BIC-TCP的增长曲线。另外,CUBIC中最关键的点在于它的窗口增长函数仅仅取决于连续的两次拥塞事件的时间间隔值,从而窗口增长完全独立于网络的时延RTT,使得连接之间保持良好的RRTT公平性。来看下具体细节:当某次拥塞事件发生时,Wmax设置为此时发生拥塞时的窗口值,然后把窗口进行乘法减小,乘法减小因子设为β,当从快速恢复阶段退出然后进入到拥塞避免阶段,此时CUBIC的窗口增长开始按照“凹”式增长曲线进行增长,该过程一直持续直到窗口再次增长到Wmax,紧接着,该函数转入“凸”式增长阶段。该方式的增长可以使得窗口一直维持在Wmax附近,从而可以达到网络带宽的高利用率和协议本身的稳定性。CUBIC窗口的增长函数:W(t) = C * (t-K)3 + Wmax, 其中C和β为常量。t为当前时间距上一次窗口减小的时间差,而K就代表该函数从W增长到Wmax的时间周期。通俗一点讲,假如我们知道了Wmax,那么CUBIC的核心思想就是需要在连续两次拥塞期间执行完上面的三次函数增长曲线BBR通过实时计算带宽和最小RTT来决定发送速率pacing rate和窗口大小cwnd。完全摒弃丢包作为拥塞控制的直接反馈因素。传统的拥塞控制算法是计算cwnd值来规定当前可以发送多少数据,但是并不关注以什么样的速度发送数据。如果简单而粗暴地将窗口大小(send.cwnd、recv.cwnd的最小值)数据全部突发出去,这往往会造成路由器的排队,在深队列的情况下,会测量出rtt剧烈地抖动。bbr在计算cwnd的同时,还计算了一个与之适配的pacing rate,该pacing rate规定cwnd指示的一窗数据的数据包之间,以多大的时间间隔发送出去。我们知道,网络工作的最优点是在物理链路延迟状态下,以最大速率传输数据。传统的拥塞控制算法思想是根据数据传输及ACK来确定RTT,但是这个RTT并不是物理链路延时,可能包含了路由器缓存耗时,也可能是拥塞状态下的耗时。传统的带宽计算也是在不断的试探逼近最优发送窗口,并在RTT或者统计周期内计算带宽。这种情况下,RTT并不是真正的物理链路延迟,带宽也有可能是在有路由缓存或丢包状况下计算得到,那么必然得到的不是精准的值。BBR摒弃了丢包和实时RTT作为拥塞控制因素。引入BDP管道容量来衡量链路传输水平。BBR追求的是在链路最小RTT(物理链路延迟)的状态下,找到最大带宽。首先我们认为网络最优点是可以达到的。下面描述RTT及收包速率与数据包投递速率的关系。图中上半部分的过程可以描述为:随着数据包投递速率增加,如果没有超过最优带宽,则RTT不会变化,此时的RTT是物理链路延迟。随着投递速率继续增加,这时中间路由节点可能出现需要缓存数据包的情况,这会导致RTT变大。如果投递速率继续增加,超过路由缓存能力,则可能出现丢包。图中下半部分的过程可以描述为:随着数据包投递速率增加,如果没有超过最优带宽,则发送方确认接收端收到的数据速率增加。随着投递速率继续增加,因为数据包缓存在中间路由,这些包并不能及时得到ACK,因此发送方得到的ACK速率,即发送发确认接收方收到数据的速率会维持不变。如果投递速率继续增加,超过路由缓存能力,则可能出现丢包。1)应答了多少数据,记为delivered;2)应答1)中的delivered这么多数据所用的时间,记为interval_us。将上述二者相除,就能得到带宽:bw = delivered/interval_us;该计算方法不关注数据包ack及顺序,是纯粹的标量。我们可以根据图示很容易算出从Delivered为7时的数据包被确认到X被确认为止,一共有12-7=5个数据包被确认,即这段时间网络上清空了5个数据包。我们便很容易算出带宽值了。当10s内没有发现最小RTTProp时,就要进入ProbeRTT状态。在ProbeRTT状态,仅发4MSS/RTT(接近停止发送),从而排空链路上的数据包,测量真实的RTTProp。这里带来的一个问题是,在一个RTT时间内以4MSS速率发送可能会造成抖动,特别是长RTT场景。具体的参考willko文章《GBN手札-BBR实时大数据传输之痛》。

TCP协议采取了哪些机制来进行拥塞控制
最初的TCP协议只有基于窗口的流控制(flow control)机制而没有拥塞控制机制,流控制是一种局部控制机制,其参与者仅仅是发送方和接收方,它只考虑了接收端的接收能力,而没有考虑到网络的传输能力;而拥塞控制则注重于整体,其考虑的是整个网络的传输能力,是一种全局控制机制。拥塞控制机制使得TCP连接在网络发生拥塞时回退(back off),也就是说TCP源端会对网络发出的拥塞指示(congestion notification)(例如丢包、重复的ACK等)作出响应。针对TCP在控制网络拥塞方面的不足,后来又提出了“慢启动”(Slow Start)和“拥塞避免”(Congestion Avoidance)算法。TCP Reno版本增加了“快速重传 ”(Fast Retransmit)、“快速恢复”(Fast Recovery)算法,避免了网络拥塞不严重时采用“慢启动”算法而造成过大地减小发送窗口尺寸的现象,这样TCP的拥塞控制就由这4个核心部分组成。 近几年又出现TCP的改进版本如NewReno和选择性应答(selective acknowledgement,SACK)等。

TCP拥塞窗口的问题
TCP拥塞控制最开始采用慢开始算法,拥塞窗口值cwnd从1开始按指数增加,1、2、4、8(第1——4次的值);这时达到了ssthresh的初始值8,转而采用拥塞避免算法,拥塞窗口值cwnd从ssthresh初始值8按线性+1增加,因此为9、10、11、12(第4——8次的值);到了cwnd=12时网络发生超时,这时改ssthreash的值为发生超时时cwnd的值的一半(即为12/2=6),并重新采用慢开始算法,改cwnd的值为1(这是第9次的值),然后cnwd的值依然按指数增加,2、4(第10、11次),理论上按这个算法再增加就是cnwd=8了,超过了ssthresh=6,所以第12次开始改为拥塞避免算法、cwnd的值从6开始按线性+1,即为6、7、8、9(第12——15次)。 纯手打,希望能帮助你理解。

在TCP的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法
慢开始:在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。拥塞避免:当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。快重传算法:发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。接下来执行的不是慢启动算法而是拥塞避免算法。这就是快速恢复算法。.防止拥塞的方法(1)在传输层可采用:重传策略、乱序缓存策略、确认策略、流控制策略和确定超时策略。(2)在网络层可采用:子网内部的虚电路与数据报策略、分组排队和服务策略、分组丢弃策略、路由算法和分组生存管理。(3)在数据链路层可采用:重传策略、乱序缓存策略、确认策略和流控制策略。
慢开始:在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。拥塞避免:当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。快重传算法:发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。接下来执行的不是慢启动算法而是拥塞避免算法。这就是快速恢复算法。.运作方法TCP使用多种拥塞控制策略来避免雪崩式拥塞。TCP会为每条连接维护一个“拥塞窗口”来限制可能在端对端间传输的未确认分组总数量。这类似TCP流量控制机制中使用的滑动窗口。TCP在一个连接初始化或超时后使用一种“慢启动”机制来增加拥塞窗口的大小。它的起始值一般为最大分段大小的两倍,虽然名为“慢启动”,初始值也相当低,但其增长极快:当每个分段得到确认时,拥塞窗口会增加一个MSS,使得在每次往返时间内拥塞窗口能高效地双倍增长。以上内容参考:百度百科-TCP拥塞控制
慢开始: 在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送端的拥塞窗口cwnd,可以分组注入到网络的速率更加合理。拥塞避免:当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。拥塞避免算法使发送的拥塞窗口每经过一个往返时延RTT就增加一个MSS的大小。快重传算法规定:发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。快恢复算法:当发送端收到连续三个重复的ACK时,就重新设置慢开始门限 ssthresh与慢开始不同之处是拥塞窗口 cwnd 不是设置为 1,而是设置为ssthresh若收到的重复的AVK为n个(n>3),则将cwnd设置为ssthresh若发送窗口值还容许发送报文段,就按拥塞避免算法继续发送报文段。若收到了确认新的报文段的ACK,就将cwnd缩小到ssthresh乘法减小:是指不论在慢开始阶段还是拥塞避免阶段,只要出现一次超时(即出现一次网络拥塞),就把慢开始门限值 ssthresh 设置为当前的拥塞窗口值乘以 0.5。当网络频繁出现拥塞时,ssthresh 值就下降得很快,以大大减少注入到网络中的分组数。加法增大: 是指执行拥塞避免算法后,在收到对所有报文段的确认后(即经过一个往返时间),就把拥塞窗口 cwnd增加一个 MSS 大小,使拥塞窗口缓慢增大,以防止网络过早出现拥塞。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/318827.html。