http和https的区别?http与TCP/IP区别?http/TCP三次握手四次挥手
https, 全称Hyper Text Transfer Protocol Secure,相比http,多了一个secure,这一个secure是怎么来的呢?这是由TLS(SSL)提供的,这个又是什么呢?估计你也不想知道。大概就是一个叫openSSL的library提供的。https和http都属于application layer,基于TCP(以及UDP)协议,但是又完全不一样。TCP用的port是80, https用的是443(值得一提的是,google发明了一个新的协议,叫QUIC,并不基于TCP,用的port也是443, 同样是用来给https的。谷歌好牛逼啊。)总体来说,https和http类似,但是比http安全。 http缺省工作在TCP协议80端口(需要国内备案),用户访问网站http://打头的都是标准http服务,http所封装的信息都是明文的,通过抓包工具可以分析其信息内容,如果这些信息内容包含你的银行卡账号、密码,你肯定无法接受这种服务,那有没有可以加密这些敏感信息的服务呢?那就是https!https是http运行在SSL/TLS之上,SSL/TLS运行在TCP之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。此外客户端可以验证服务器端的身份,如果配置了客户端验证,服务器方也可以验证客户端的身份。https缺省工作在tcp协议443端口,它的工作流程一般如以下方式:1、完成tcp三次同步握手;2、客户端验证服务器数字证书,通过,进入步骤3;3、DH算法协商对称加密算法的密钥、hash算法的密钥;4、SSL安全加密隧道协商完成;5、网页以加密的方式传输,用协商的对称加密算法和密钥加密,保证数据机密性;用协商的hash算法进行数据完整性保护,保证数据不被篡改。附:https一般使用的加密与hash算法如下:非对称加密算法:RSA,DSA/DSS对称加密算法:AES,RC4,3DEShash算法:MD5,SHA1,SHA256如果https是网银服务,以上SSL安全隧道成功建立才会要求用户输入账户信息,账户信息是在安全隧道里传输,所以不会泄密!TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。Web使用HTTP协议作应用层协议,以封装HTTP 文本信息,然后使用TCP/IP做传输层协议将它发到网络上。下面的图表试图显示不同的TCP/IP和其他的协议在最初OSI(Open System Interconnect)模型中的位置:CA证书是什么?CA(Certificate Authority)是负责管理和签发证书的第三方权威机构,是所有行业和公众都信任的、认可的。CA证书,就是CA颁发的证书,可用于验证网站是否可信(针对HTTPS)、验证某文件是否可信(是否被篡改)等,也可以用一个证书来证明另一个证书是真实可信,最顶级的证书称为根证书。除了根证书(自己证明自己是可靠),其它证书都要依靠上一级的证书,来证明自己。https大致过程:1、建立服务器443端口连接 ;2、SSL握手:随机数,证书,密钥,加密算法;3、发送加密请求 ;4、发送加密响应;5、关闭SSL;6、关闭TCP.SSL握手大致过程:1、客户端发送随机数1,支持的加密方法(如RSA公钥加密);2、服务端发送随机数2,和服务器公钥,并确认加密方法;3、客户端发送用服务器公钥加密的随机数3;4、服务器用私钥解密这个随机数3,用加密方法计算生成对称加密的密钥给客户端;5、接下来的报文都用双方协定好的加密方法和密钥,进行加密.1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流(流模式);UDP是面向报文的(报文模式),UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信5、TCP要求系统资源较多,UDP较少。TCP首部开销20字节;UDP的首部开销小,只有8个字节SYN:同步序列编号; ACK=1: 确认序号 ; FIN附加标记的报文段(FIN表示英文finish)一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,只简单的 描述下这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步 (同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同 步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。为什么需要“三次握手”?在谢希仁著《计算机网络》第四版中讲“三次握手”的目的是“ 为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误 ”。在另一部经典的《计算机网络》一书中讲“三次握手”的目的是为了解决“网络中存在延迟的重复分组”的问题。这两种不一样的表述其实阐明的是同一个问题。谢希仁版《计算机网络》中的例子是这样的,“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。 本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。 采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”。 主要目的防止server端一直等待,浪费资源。为什么需要“四次挥手”?可能有人会有疑问,在tcp连接握手时为何ACK是和SYN一起发送,这里ACK却没有和FIN一起发送呢。原因是 因为tcp是全双工模式,接收到FIN时意味将没有数据再发来,但是还是可以继续发送数据。握手,挥手过程中各状态介绍:3次握手过程状态:LISTEN: 这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。SYN_SENT : 当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。(发送端)SYN_RCVD : 这个状态与SYN_SENT遥想呼应这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个 ACK报文不予发送。因此这种状态时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。(服务器端)ESTABLISHED :这个容易理解了,表示连接已经建立了。4次挥手过程状态:(可参考下图):FIN_WAIT_1:这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是: FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态, 当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。(主动方)FIN_WAIT_2: 上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示 半连接 ,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你(ACK信息),稍后再关闭连接。(主动方)TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文 ,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。(主动方)CLOSING(比较少见):这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的 ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。CLOSE_WAIT:这种状态的含义其实是表示在等待关闭。怎么理解呢? 当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以 close这个SOCKET,发送FIN报文给对方,也即关闭连接。 所以你在 CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。 (被动方)LAST_ACK:这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。(被动方)CLOSED:表示连接中断。 TCP的具体状态图可参考:

TCP状态转换图、TCP连接3次握手4次挥手
两将军问题:红蓝两军作战,蓝军战斗力强大,红1军或红2军与其单独作战都打不过蓝军,所以需要红一军与红二军联合对蓝军发起进攻,红军1首先通知红军2明早10点发起总攻,如图1-1,红军2接到消息需要回复“好的红军1,我已经收到你得消息,确认明早10点发动总攻”。因为消息传递路线必须经过蓝军营地,所以双方传递消息的信使很有可能被蓝军俘获。为了确保消息的可靠性,红1、红2双方在发出一个消息之后都想得到对方的消息回执。但是这会导致消息无线循环下去,如图1-2。那么如何解决这个可靠性的问题呢,其实没有办法解决,只要保证双方各自都有一次成功的发送、回执就可以了。两将军问题也存在网络世界里,客户端、服务器建立连接不可能无限的确认下去,只要保证客户端和服务器分别对自己的收、发能力做一次确认即可,如下图。 客户端和服务器分别对自己的收、发能力做一次确认至少需要3次握手。3次握手的具体过程、状态如下:(1)首先客户端和服务器都处于CLOSED状态。(2)服务器处于LISTEN状态,具体为服务器调用Socket、bind、listen函数,进入阻塞状态。(3)客户端发送SYN(同步序列编号),发送完毕客户端进入SYN_SENT状态。(4)服务端收到SYN,发送SYN+ASK,发送完毕进入SYN_RCVD状态。(5)客户端收到服务端发来的SYN+ASK,发送服务端等待的ASK,发送完毕客户端进入ESTABLISHED状态,准备数据传输,到此客户端已经满足了对自己收发能力的一次验证。(6)服务端收到客户端发来的ASK,与客户端一样,到此服务端也已经满足了对自己收发能力的一次验证,所以也进入ESTABLISHED状态,准备数据传输。(7)准备开始传输数据TCP断开连接有两种情况或者说是场景,1 客户端先断开连接,当然也可能是服务器先断开连接,总之是一前一后。 2 双方同时发起断开连接操作。下面分别介绍两种场景:(1)客户端先发起断开连接操作,客户端向服务端发送FIN,发送完毕客户端进入FIN_WAIT_1状态。(2)服务端收到客户端发来的FIN,服务端发送ACK,发送完毕进入CLOSED_WAIT状态。(3)客户端收到服务端的ACK回复,客户端进入FIN_WAIT_2状态,如果后面服务端没有回应客户端,在TCP协议层面来讲,客户端将永远停留在这个状态了,不过还好,操作系统着这块做了处理,有一个超时时间。(4)此时TCP连接进入半关闭状态,即客户端主,服务端从的这条线路已经关闭,不过服务端主,客户端从的这条线路还处于打开状态。(5)服务端向客户端发送FIN,发送完毕,服务端进入LAST_ASK状态。(6)客户端收到服务端的FIN后回复服务端ACK,回复完毕进入TIME_WAIT状态,为什么要进入这个状态?因为第6步是客户端的最后一条回复,服务端很有可能收不到,收不到服务端就会重发,所以客户端还要等待一会。(7)服务端收到客户端的ACK回复之后,不再做响应,回到初始的CLOSED状态,在连接池中等待下一次的复用。(8)客户端保持TIME_WAIT状态,超时之后同样进入CLOSED状态。场景二(1)客户端、服务器双方同时发送FIN,双方同时进入FIN_WAIT_1状态(2)双方都接到了对方的ACK,此时双方都会进入CLOSING状态。(3)双方同时进入TIME_WAIT状态,为什么要进入这个状态而不是直接进入CLOSED状态呢?假设客户端和服务端本次是第X次建立连接、关闭连接。如果立即关闭,随后建立第X+1次连接,建立连接成功之后,第X次的丢包的数据有可能绕了一大圈又回来了,那就会出现数据错误,为了避免这种情况所以要进入TIME_WAIT状态,以保证旧连接的数据不会再回来。(4)TIME_WAIT超时之后,双双进入CLOSED状态。有了上面对TCP连接3次握手4次挥手的介绍,再来理解TCP的状态图就不困难了,无非就是对TCP连接3次握手4次挥手过程的打包概述而已。

三次握手及四次挥手在TCP/ip模型的哪一层进行的?最好有理由~
在传输层进行的。 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这个原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。(1)客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送(报文段4)。(2)服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。(3)服务器B关闭与客户端A的连接,发送一个FIN给客户端A(报文段6)。 (4)客户端A发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。
在TCP/IP(即DoD模型)的第三层,即“主机到主机”层。相当于OSI参考模型的传输层(第四层)。一般只说TCP的三次握手。当然,你要把拆除连接也算上,也可以叫四次握手。
TCP/IP由四个层次组成:网络接口层、网络层、传输层、应用层。 三次握手和四次挥手发生在第三层:传输层。 原因:三次握手四次挥手是tcp协议保证可靠全连接的手段,而tcp协议属于传输层协议,理所当然三次握手四次挥手是发生在第三层----传输层

TCP协议解析
主要特点:面向连接、面向字节流、全双工通信、通信可靠。优缺点:应用场景:要求通信数据可靠时,即 数据要准确无误地传递给对方。如:传输文件:HTTP、HTTPS、FTP等协议;传输邮件:POP、SMTP等协议ps:首部的前 20 个字节固定,后面有 4n 字节根据需要增加。故 TCP首部最小长度 = 20字节(最大60个字节)。TCP报头中的源端口号和目的端口号同IP数据报中的源IP与目的IP唯一确定一条TCP连接。重要字段:客户端与服务器来回共发送三个TCP报文段来建立运输连接,三个TCP报文段分别为:(1)客户端A向服务器B发送的TCP请求报段“SYN=1,seq=x”;(2)服务器B向客户端A发送的TCP确认报文段“SYN=1,ACK=1,seq=y,ack=x+1”;(3)客户端A向服务器B发送的TCP确认报文段“ACK=1,seq=x+1,ack=y+1”。ps:在建立TCP连接之前,客户端和服务器都处于关闭状态(CLOSED),直到客户端主动打开连接,服务器才被动打开连接(处于监听状态 = LISTEN),等待客户端的请求。TCP 协议是一个面向连接的、安全可靠的传输层协议,三次握手的机制是为了保证能建立一个安全可靠的连接。通过上述三次握手,双方确认自己与对方的发送与接收是正常的,就建立起一条TCP连接,即可传送应用层数据。ps:因 TCP提供的是全双工通信,故通信双方的应用进程在任何时候都能发送数据;三次握手期间,任何1次未收到对面的回复,则都会重发。为什么两次握手不行呢?结论:防止服务器接收了早已经失效的连接请求报文,服务器同意连接,从而一直等待客户端请求,最终导致形成死锁、浪费资源。ps:SYN洪泛攻击:(具体见下文)为什么不需要四次握手呢?SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK确认序号标志消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。如何来解决半连接攻击?如何来解决全连接攻击?请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,客户端才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果服务器一收到 客户端的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,服务器结束 TCP 连接的时间要早于客户端。TCP是全双工的连接,必须两端同时关闭连接,连接才算真正关闭。简言之,客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器才会发送 FIN 连接释放报文,对方确认后就完全关闭了TCP连接。举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。ps:设想这样一个情景:客户端已主动与服务器建立了 TCP 连接。但后来客户端的主机突然发生故障。显然,服务器以后就不能再收到客户端发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就需要使用TCP的保活计时器。基本原理:tcp11种状态及变迁其实基本包含在正常的三次握手和四次挥手中,除开CLOSING。正常的三次握手包括4中状态变迁:服务器打开监听(LISTEN)->客户端先发起SYN主动连接标识->服务器回复SYN及ACK确认->客户端再确认即三次握手TCP连接成功。这里边涉及四种状态及变迁:正常的四次握手包含6种tcp状态变迁,如主动发起关闭方为客户端:客户端发送FIN进入FIN_WAIT1 -> 服务器发送ACK确认并进入CLOSE_WAIT(被动关闭)状态->客户端收到ACK确认后进入FIN_WAIT2状态 -> 服务器再发送FIN进入LAST_ACK状态 -> 客户端收到服务器的FIN后发送ACK确认进入TIME_WAIT状态 -> 服务器收到ACK确认后进入CLOSED状态断开连接 -> 客户端在等待2MSL的时间如果期间没有收到服务器的相关包,则进入CLOSED状态断开连接。CLOSING状态:连接断开期间,一般是客户端发送一个FIN,然后服务器回复一个ACK,然后服务器发送完数据后再回复一个FIN,当客户端和服务器同时接受到FIN时,客户端和服务器处于CLOSING状态,也就是此时双方都正在关闭同一个连接。在进入CLOSING状态后,只要收到了对方对自己发送的FIN的ACK,收到FIN的ACK确认就进入TIME_WAIT状态,因此,如果RTT(Round Trip Time TCP包的往返延时)处在一个可接受的范围内,发出的FIN会很快被ACK从而进入到TIME_WAIT状态,CLOSING状态持续的时间就特别短,因此很难看到这种状态。我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。应用场景:UDP协议比TCP协议的效率更高,TCP协议比UDP协议更加安全可靠。下面主要对数据传输出现错误/无应答/堵塞/超时/重复等问题。注意:TCP丢包:TCP是基于不可靠的网路实现可靠传输,肯定会存在丢包问题。如果在通信过程中,发现缺少数据或者丢包,那边么最大的可能性是程序发送过程或者接受过程中出现问题。总结:为了满足TCP协议不丢包,即保证可靠传输,规定如下:注意:TCP丢包有三方面的原因,一是网络的传输质量不好,二是安全策略,三是服务器性能瓶颈先理解2个基础概念:发送窗口、接收窗口工作原理:注意点:关于滑动窗口的知识点:滑动窗口中的数据类型:ARQ解决的问题:出现差错时,让发送方重传差错数据:即 出错重传类型:流量控制和拥塞控制解决的问题:当接收方来不及接收收到的数据时,可通知发送方降低发送数据的效率:即 速度匹配流量控制:注意:拥塞控制:慢开始与拥塞避免:快重传和快恢复:补充:流量控制和拥塞控制的区别什么情况造成TCP粘包和拆包?解决TCP粘包和拆包的方法:传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式,只是实现不在传输层,实现转移到了应用层。最简单的方式是在应用层模仿传输层TCP的可靠性传输。下面不考虑拥塞处理,可靠UDP的简单设计。https://www.jianshu.com/p/65605622234bhttp://www.open-open.com/lib/view/open1517213611158.htmlhttps://blog.csdn.net/dangzhangjing97/article/details/81008836https://blog.csdn.net/qq_30108237/article/details/107057946https://www.jianshu.com/p/6c73a4585eba

TCP三次握手和四次挥手是什么意思?
1、建立连接协议(三次握手) (1)客户端发送一个带SYN标志的TCP报文到服务器。这是三次握手过程中的报文1。(2) 服务器端回应客户端的,这是三次握手中的第2个报文,这个报文同时带ACK标志和SYN标志。因此它表示对刚才客户端SYN报文的回应;同时又标志SYN给客户端,询问客户端是否准备好进行数据通讯。(3) 客户必须再次回应服务段一个ACK报文,这是报文段3。 2、连接终止协议(四次挥手)由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。(1) TCP客户端发送一个FIN,用来关闭客户到服务器的数据传送(报文段4)。(2) 服务器收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。(3) 服务器关闭客户端的连接,发送一个FIN给客户端(报文段6)。(4) 客户段发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。 CLOSED:这个没什么好说的了,表示初始状态。 LISTEN:这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。 SYN_RCVD:这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个ACK报文不予发送。因此这种状态时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。 SYN_SENT:这个状态与SYN_RCVD遥想呼应,当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。 ESTABLISHED:这个容易理解了,表示连接已经建立了。 FIN_WAIT_1:这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。 FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你,稍后再关闭连接。 TIME_WAIT:表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。 CLOSING:这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。 CLOSE_WAIT: 这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。 LAST_ACK:这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/41950.html。