tcp端口和udp端口的区别(udp端口和tcp端口是分开的么)

      最后更新:2022-11-03 14:58:25 手机定位技术交流文章

      TCP端口和UDP端口都是什么意思?

      1、TCP端口是指就是为TCP协议通信提供服务的端口。在TCP传输控制协议中,建立端对端的连接是靠IP地址和TCP的端口号的共同作用。UDP端口是指就是为UDP协议通信提供服务的端口。UDP 是User Datagram Protocol的简称, 中文名是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一种无连接的传输层协议。服务器一般都是通过知名端口号来识别的。任何TCP/IP实现所提供的服务都用知名的1~1023之间的端口号。这些知名端口号由Internet号分配机构(InternetAssignedNumbersAuthority,IANA)来管理。扩展资料TCP与UDP段结构中端口地址都是16比特,可以有在0---65535范围内的端口号。对于这65536个端口号有以下的使用规定:(1)端口号小于256的定义为常用端口,服务器一般都是通过常用端口号来识别的。任何TCP/IP实现所提供的服务都用1---1023之间的端口号,是由ICANN来管理的;(2)客户端只需保证该端口号在本机上是惟一的就可以了。客户端口号因存在时间很短暂又称临时端口号;(3)大多数TCP/IP实现给临时端口号分配1024---5000之间的端口号。大于5000的端口号是为其他服务器预留的。参考资料:百度百科-UDP参考资料:百度百科-TCP端口
      1、TCP端口就是为TCP协议通信提供服务的端口。TCP (Transmission Control Protocol) ,TCP是一种面向连接(连接导向)的、可靠的、基于字节流的运输层(Transport layer)通信协议,由IETF的RFC 793说明(specified)。在计算机网络OSI模型中,它完成第四层传输层所指定的功能。我们的电脑与网络连接的许多应用都是通过TCP端口所实现的。2、UDP(User Datagram Protocol) 用户数据报协议用户数据报协议(UDP)是 ISO 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。 UDP 协议基本上是 IP 协议与上层协议的接口。 UDP 协议适用端口分辨运行在同一台设备上的多个应用程序。在选择使用协议的时候,选择UDP必须要谨慎。在网络质量令人十分不满意的环境下,UDP协议数据包丢失会比较严重。但是由于UDP的特性:它不属于连接型协议,因而具有资源消耗小,处理速度快的优点,所以通常音频、视频和普通数据在传送时使用UDP较多,因为它们即使偶尔丢失一两个数据包,也不会对接收结果产生太大影响。比如我们聊天用的ICQ和QQ就是使用的UDP协议。扩展资料:TCP与UDP段结构中端口地址都是16比特,可以有在0---65535范围内的端口号。对于这65536个端口号有以下的使用规定:1、端口号小于256的定义为常用端口,服务器一般都是通过常用端口号来识别的。任何TCP/IP实现所提供的服务都用1---1023之间的端口号,是由ICANN来管理的。2、客户端只需保证该端口号在本机上是惟一的就可以了。客户端口号因存在时间很短暂又称临时端口号。3、大多数TCP/IP实现给临时端口号分配1024---5000之间的端口号。大于5000的端口号是为其他服务器预留的。参考资料:百度百科_UDP百度百科_TCP端口
      TCP端口就是为TCP协议通信提供服务的端口。是一种面向连接(连接导向)的、可靠的、基于字节流的运输层(Transport layer)通信协议,由IETF的RFC 793说明(specified)。在计算机网络OSI模型中,它完成第四层传输层所指定的功能。我们的电脑与网络连接的许多应用都是通过TCP端口所实现的。UDP端口则是为UDP协议提供服务的端口。UDP协议使用端口号为不同的应用保留其各自的数据传输通道。UDP端口号指定有两种方式,分别是由管理机构指定端口和动态绑定的方式。扩展资料:TCP与UDP段结构中端口地址都是16比特,可以有在0---65535范围内的端口号。对于这65536个端口号有以下的使用规定:1、端口号小于256的定义为常用端口,服务器一般都是通过常用端口号来识别的。任何TCP/IP实现所提供的服务都用1---1023之间的端口号,是由ICANN来管理的。2、客户端只需保证该端口号在本机上是惟一的就可以了。客户端口号因存在时间很短暂又称临时端口号。3、大多数TCP/IP实现给临时端口号分配1024---5000之间的端口号。大于5000的端口号是为其他服务器预留的。参考资料:百度百科-TCP端口百度百科-UDP
      从专业的角度说,TCP的可靠保证,是它的三次握手机制,这一机制保证校验了数据,保证了他的可靠性。而UDP就没有了,所以不可靠。不过UDP的速度是TCP比不了的,而且UDP的反应速度更快,QQ就是用UDP协议传输的,HTTP是用TCP协议传输的,不用我说什么,自己体验一下就能发现区别了。再有就是UDP和TCP的目的端口不一样(这句话好象是多余的),而且两个协议不在同一层,TCP在三层,UDP不是在四层就是七层。 TCP/IP协议介绍TCP/IP的通讯协议这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。TCP/IP整体构架概述TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。TCP/IP中的协议以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:1. IP网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。2. TCP如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。3.UDPUDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。4.ICMPICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。5. TCP和UDP的端口结构TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:源IP地址 发送包的IP地址。目的IP地址 接收包的IP地址。源端口 源系统上的连接的端口。目的端口 目的系统上的连接的端口。 端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。
      从专业的角度说,TCP的可靠保证,是它的三次握手机制,这一机制保证校验了数据,保证了他的可靠性。而UDP就没有了,所以不可靠。不过UDP的速度是TCP比不了的,而且UDP的反应速度更快,QQ就是用UDP协议传输的,HTTP是用TCP协议传输的,不用我说什么,自己体验一下就能发现区别了。再有就是UDP和TCP的目的端口不一样(这句话好象是多余的),而且两个协议不在同一层,TCP在三层,UDP不是在四层就是七层。 TCP/IP协议介绍TCP/IP的通讯协议这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。TCP/IP整体构架概述TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。TCP/IP中的协议以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:1. IP网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。2. TCP如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。3.UDPUDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。4.ICMPICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。5. TCP和UDP的端口结构TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:源IP地址 发送包的IP地址。目的IP地址 接收包的IP地址。源端口 源系统上的连接的端口。目的端口 目的系统上的连接的端口。 端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。
      TCP端口和UDP端口都是什么意思?

      tcp和udp的区别

      tcp和udp的区别有:1、安全方面的区别;2、传播速度的区别;3、连接对象数量的区别。 1、安全方面的区别:tcp的安全性没有udp的安全性高,并且udp的漏洞比较少,不容易被一些不法分子利用。2、传播速度的区别:udp的传送速度也比tcp的快。因为tcp在传送的时候要先建立连接,建立连接的时候是比较耗时的,而且在传送数据的时候还要确认一些东西,而udp无连接传送数据的。 3、连接对象数量的区别:tcp是一对一的连接,而udp是一对多个或多对多个连接的。
      tcp和udp的区别

      什么是tcp以及tcp与udp的区别?

      UDPUDP是面向无连接的通讯协议,UDP数据包含目的端口号和源端口号信息。主要优点速度快、操作简单、要求系统资源较少,由于通讯不需要连接,可以实现广播发送;缺点是传输数据前并不与对方建立连接,对接收到的数据也不发送确认信号,发送端不知道数据是否会正确接收,也不重复发送,不可靠。TCP是面向连接的通讯协议,通过三次握手建立连接,通讯完成时四次握手,主要优点是TCP在数据传输时,有确认、窗口、重传、阻塞等控制机制,能保证数据正确性,较为可靠;缺点是相对于UDP速度慢,要求系统资源较多。TCP和UDP区别:TCP是面向连接的协议,而UDP是无连接的协议,意味着当一个客户端和一个服务端通过TCP发送数据前,必须先建立连接,建立连接的过程被称为TCP三次握手;TCP提供交付保证,意味着一个使用TCP协议发送的信息是保证交付给客户端的,如果消息在传输过程中丢失,将重发;UDP是不可靠的,不提供任何交付的保证,一个数据报包在运输过程中可能会丢失;消息到达网络的另一端时可能是无序的,TCP协议将会为你排序,UDP不提供任何有序性的保证;TCP速度比较慢,而UDP速度比较快,因为TCP必须建立连接,以保证消息的可靠交付和有序性,需要做比UDP多的事;TCP是重量级的协议,UDP协议则是轻量级的协议。一个TCP数据报的报头大小最少是20个字节,UDP数据报的报头固定是8个字节。TCP报头中包含序列号,ACK号,数据偏移量,保留,控制位,窗口,紧急指针,可选项,填充项,校验位,源端口和目的端口。
      TCP发送的包有序号,对方收到包后要给一个反馈,如果超过一定时间还没收到反馈就自动执行超时重发,因此TCP最大的优点是可靠。一般网页(http)、邮件(SMTP)、远程连接(Telnet)、文件(FTP)传送就用TCP UDP是面向消息的协议,通信时不需要建立连接,数据的传输自然是不可靠的,一般用于多点通信和实时的数据业务,比如语音广播、视频、QQ、TFTP(简单文件传送)、SNMP(简单网络管理协议)、RTP(实时传送协议)RIP(路由信息协议,如报告股票市场,航空信息)、DNS(域名解释)。注重速度流畅。 要了解TCP,一定要知道【三次握手,四次拜拜】,上网一搜就知道了 ,而所谓的三次握手,就是发送数据前必须建立的连接叫三次握手,握手完了才开始发的,这也就是面向连接的意思。
      1、TCP是计算机网络中的传输层协议,是面向连接的 2、TCP与UDP的区别:TCP是面向连接的 而UDP是无连接的 TCP的服务是有保证的而UDP是无保证的
      什么是tcp以及tcp与udp的区别?

      TCP和UDP的区别

      首先TCP是面向连接的,UDP是无需连接的,TCP有着三握四挥,并且三次握手和四次挥手是对TCP建立的连接有着重要意义的两步,并且TCP是对IP无可靠性提供可靠性的源头,UDP继承了IP的特性,不保证不丢失包,不保证按顺序到达TCP面向字节流,发送的时候是一个流,没有头尾,IP包不是一个流,而是一个个的IP包,UDP也是如此TCP是有拥塞控制的,但是UDP没有MAC层去掉之后,IP层首部会有一个8位的协议,这里会存放着数据里到底是TCP还是UDP,当然这里是UDP,如果我们知道UDP格式就可以解析出来了下一步就通过UDP包中的目标端口号,将这个包交给应用程序处理源端口和目标端口不可少,包的序号是为了解决乱序问题,为了解决包的先后顺序,还有就是确认序号,发出去的包要有确认,不然无法知道是否收到,若没有收到就要重新发送,直到送达,这就是TCP的不丢包的实质对于TCP来说,IP层丢不丢包管不着,但是在TCP层,会努力保证可靠性一开始,客户端和服务端都处于CLOSED状态,先是服务端主动监听某个端口,处于LISTEN状态,然后客户端主动发起连接SYN,之后处于SYN-SENT状态,服务端收到发起的连接,返回SYN,并且ACK客户端的SYN,之后处于SYN-RCVD状态。客户端收到服务端发送的SYN和ACK之后,发送ACK的ACK,之后处于ESTABLISHED状态,因为它一发一收成功了,服务端收到ACK的ACK之后,处于ESTABLISHED,因为它也一发一收了所以三次握手就能确认双发收发功能都正常,缺一不可。最后客户端A的TIME-WAIT状态时间要足够长,长到如果B没有收到ACK的话,B会再次发送FIN关闭连接,A会重新发送一个ACK并且时间足够长到这个包到BA如果直接跑路的话,它的端口就空出来了,但是B不知道,原来发的包如果在路上,但是这时突然另一个应用开启在了这个端口上,那不就混乱了,所以A也需要等待足够时间,等到B发送的包在网络中挂掉之后再空出端口来等待时间设置为2MSL,报文最大的生存时间,协议规定MSL为2分钟,实际应用中常用的是30s,1分钟和2分钟等为了记录所有发送的包和接收的包,TCP也需要发送端和接收端分别都有缓存来保存这些记录,发送端的缓存里是按照包的ID一个个排列,根据处理情况分为下面四个部分在TCP里,接收端会给发送端报一个窗口的大小,叫做Advertised window,这个窗口大小应该等于上面说的第二部分加上第三部分也就是已经发送了但是没有得到确认的加上还没有发送,并且正在准备发送的,超过这个窗口的,接收端忙不过来,就不能发送了第二部分的窗口有多大?NextByteExpected 和 LastByteRead的差其实是还没有被应用层读取的部分占用调MaxRcvBuffer的量,定义为A,窗口大小其实是MaxRcvBuffer减去A其中第二部分里面,由于收到的包可能不是顺序的,会出现空档,只有和第一部分连续的,可以马上进行回复,中间空着的部分需要等待,哪怕后面的已经来了(可以看到接收端的窗口出现了虚线和实线的区别)发送端接收端在发送端看来,1、2、3都已经发送并且确认的;4、5、6、7、8、9都是发送了还没有确认;10、11、12是还没有发出的;13、14、15是接收方没有空间不准备发送的在接收端看来,1、2、3、4、5都是已经完成ACK的,但是是没有被应用层读取的;6、7是等待接收的;8、9是已经接收,但是还没有ACK的当前的状态假设4的ACK到了,不幸的是5的ACK丢了,6、7的数据包丢失了,这应该怎么做?对每一个发送了,但是没有ACK的包,都设有一个定时器,超过了一定的时间就重新尝试,但是这个超时的时间如何进行评估呢,这个时间不宜过短,时间必须大于往返时间RTT,否则将会引起不必要的重传,也不宜过长,这样的超时时间变长,访问就变慢了RTT(Round-Trip Time): 往返时延。在计算机网络中它是一个重要的性能指标,表示从发送端发送数据开始,到发送端收到来自接收端的确认(接收端收到数据后便立即发送确认),总共经历的时延。估计往返时间需要TCP通过采样RTT的时间,然后进行加权平均,计算出来一个值,并且这个值还是随着网络的状况不断变化的,我们成为自适应重传算法如果过一段时间,5、6、7都超时了,就会重新发送,接收方发现5原来接受过,于是丢弃5;6收到了,发送ACK,要求下一个是7,7不幸又丢了,当7再次超时的时候,有需要重传的时候,TCP的策略是超时间隔加倍,每当遇到一次超时重传的时候,都会将下一次超时时间间隔设为先前的两倍,两次超时就说明网络环境差,不适合频繁反复发送超时触发重传存在的问题是,超时周期可能相对较长有一个快速重传的机制,当接收方收到一个序号大于下一个所期望的报文段时,就检测到了数据流中的一个间隔,于是发送三个冗余的ACK,客户端收到后,在定时器过期之前,重传丢失的报文段例如,接收方发现6、8、9都已经接收了,7还没来,那肯定是丢了,于是发送三个6的ACK要求下一个是7,客户端收到3个ACK就会发现7的包确实又丢了,不再等待超时,马上重发SACK,这种方式需要在TCP头加一个SACK的东西,可以将缓存的地图发送给发送方,例如有了ACK6、ACK8、ACK9就会知道7丢了在对于包的确认中,同时会携带一个窗口的大小假设窗口不变,始终为9,4的确认来的时候,会右移一个,这个时候第13个包也可以发送了这个时候,假设发送端发送过猛,会将第三部分的10、11、12、13全部发送完毕,之后就停止发送了,未发送可发送部分为0当对于包5的确认到达的时候,在客户端相当于窗口滑动了一格,这个时候才可以有更多的包可以发送了,接下来14可以被发送如果接收方实在处理太慢,导致缓存中没有了空间,可以通过确认信息修改窗口的大小,甚至可以设置为0,让发送端暂时停止发送假设接收端应用一直不读取缓存中的数据,当数据包6被确认后,窗口大小就会减小一个变为8这个时候可以看到,接收端的窗口并没有向右移动,只是简单地将左边的标记右移一格,窗口大小变为8如果接收端一直不处理数据,则随着确认包越来越多,窗口越来越小直到为0如果情况变成这样,发送方会定时发送窗口探测数据包,看看是否有机会调整窗口的大小,当接收方比较慢的时候,要防止低能窗口综合征,不要空出一个字节就告诉发送方,然后立马被填满,可以当窗口太小的时候,不更新窗口,直到达到一定大小,或者缓冲区一般为空的时候再更新窗口拥塞控制同样通过窗口的大小来控制,滑动窗口是为了防止发送方把接收方缓存塞满,而拥塞窗口是为了不把网络填满LastByteSent - LastByteAcked <= min{滑动窗口, 拥塞窗口}TCP协议是不知道真个网络路径都是什么,TCP包常被比喻为往一个谁管理灌水TCP拥塞控制就是在不堵塞,不丢包的情况下,尽量发挥带宽网路通道的容量 = 带宽 x 往返延迟假设往返时间为8s,发送的过程4s,返回的时间4s,每个包1024byte,过了8s,8个包都发出去了,其中4个已经到达了接收端,但是ACK还在路上,不能算是发送成功了,5-8后四个包还在路上没被接收,这个时候,整个管道刚好被撑满如果我们在这个基础上再将窗口调大一点,会出现什么现象?如果从发送端到接收端会经过四个设备,每个设备处理包的时间需要1s,所以4个包的话,总共的处理时间为4s,如果窗口调大,也就有可能增加发送速度,单位时间内,会有更多的包到达这些中间设备,那么处理中的设备会丢弃到多余的包,这是我们不想看到的这个时候,我们可以为这四台设备增加缓存,处理不过来的包在队列里等待,这样就不会丢失了,但是缺点是会增加时间,在之前我们分析过只需要4s一个包即可到达发送端,但是进入缓存中多余的包肯定到达的时间是要超过4s的,如果这个时候发送方还是没有收到ACK那么就会触发超时重传,TCP的拥塞控制就是为了处理包的丢失和超时重传一条TCP连接的开始,cwnd设置为一个报文段,一次只能发送一个,当收到这个确认的时候,cwnd +1,于是一次能够发送2个,当这两个的确认到来的时候,每个确认的cwnd + 1 ,两个确认的cwnd就可以 +2,现在可以发送4个,这是指数级别的增长,但是有一个值sshthresh为65535字节,当超过这个值的时候不要增长得这么快了,可能快满了,再慢下来于是,每收到一个确认后,cwnd增长1/cwnd,一共发送8个的话,当8个确认到来的时候,每个确认增加1/8,八个确认一共cwnd + 1,于是一次能够发送9个,变成了线性增长,但是肯定有一天会满,这个时候就会出现拥堵,就需要慢慢等待包的处理拥塞的一种形式是丢包,需要超时重传,这个时候重新开始慢启动,这样的话,只要超时重传就感觉会回到解放前快速重传,当接收端发现丢了一个中间包的时候,发送三次前一个包的ACK,于是发送端就会快速重传,不必等待超时再重传,TCP认为这种情况不严重,因为大部分没丢,只丢了一小部分正是这种知道该快还是慢的情况下,使得时延很重要的情况下,反而降低了速度,但是拥塞控制还是存在问题为了优化这两个问题,有了TCP BBR拥塞算法,它企图找到一个平衡点,通过不断的加快发送速度,将管道填满,但是不会填满中间设备的缓存,因为这样时延会增加,这个平衡的时点可以很好的达到高带宽和低时延的平衡
      TCP和UDP的区别

      tcp与udp的区别?

      tcp---传输控制协议,提供的是面向连接、可靠的字节流服务。当客户和服务器彼此交换数据前,必须先在双方之间建立一个tcp连接,之后才能传输数据。tcp提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端。 udp---用户数据报协议,是一个简单的面向数据报的运输层协议。udp不提供可靠性,它只是把应用程序传给ip层的数据报发送出去,但是并不能保证它们能到达目的地。由于udp在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快现在internet上流行的协议是tcp/ip协议,该协议中对低于1024的端口都有确切的定义,他们对应着internet上一些常见的服务。这些常见的服务可以分为使用tcp端口(面向连接)和使用udp端口(面向无连接)两种。说到tcp和udp,首先要明白“连接”和“无连接”的含义,他们的关系可以用一个形象地比喻来说明,就是打电话和写信。两个人如果要通话,首先要建立连接——即打电话时的拨号,等待响应后——即接听电话后,才能相互传递信息,最后还要断开连接——即挂电话。写信就比较简单了,填写好收信人的地址后将信投入邮筒,收信人就可以收到了。从这个分析可以看出,建立连接可以在需要痛心地双方建立一个传递信息的通道,在发送方发送请求连接信息接收方响应后,由于是在接受方响应后才开始传递信息,而且是在一个通道中传送,因此接受方能比较完整地收到发送方发出的信息,即信息传递的可靠性比较高。但也正因为需要建立连接,使资源开销加大(在建立连接前必须等待接受方响应,传输信息过程中必须确认信息是否传到及断开连接时发出相应的信号等),独占一个通道,在断开连接钱不能建立另一个连接,即两人在通话过程中第三方不能打入电话。而无连接是一开始就发送信息(严格说来,这是没有开始、结束的),只是一次性的传递,是先不需要接受方的响应,因而在一定程度上也无法保证信息传递的可靠性了,就像写信一样,我们只是将信寄出去,却不能保证收信人一定可以收到。tcp是面向连接的,有比较高的可靠性, 一些要求比较高的服务一般使用这个协议,如ftp、telnet、smtp、http、pop3等,而udp是面向无连接的,使用这个协议的常见服务有dns、snmp、qq等。对于qq必须另外说明一下,qq2003以前是只使用udp协议的,其服务器使用8000端口,侦听是否有信息传来,客户端使用4000端口,向外发送信息(这也就不难理解在一般的显ip的qq版本中显示好友的ip地址信息中端口常为4000或其后续端口的原因了),即qq程序既接受服务又提供服务,在以后的qq版本中也支持使用tcp协议了。
      TCP全称为Transmission Control Protocol,即传输控制协议; UDP全称为User Datagram Protocol,即用户数据报协议。两者区别在于以下几点:1、连接性TCP面向连接,也就是在发送和接收数据之前,必须和对方建立连接,也就是我们常说的用来建立连接的3次握手和负责断开连接的4次挥手;而UDP面向无连接,也就是不需要建立连接即可发送和接收数据。2、可靠性TCP提供可靠的服务,传输过程中可以确保连接可靠稳定,如编号确认、流量控制、计时器等,确保数据不丢失不出错。3、报文首部TCP报文首部有20个字节,额外开销大;UDP报文首部有8个字节,标题短开销小。4、报文结构TCP面向字节流,将应用层报文分解成多个TCP报文段进行传输,到底目的站后重新分配;UDP面向报文,不拆分报文,1次发送1个报文。5、吞吐量控制TCP拥塞控制、流量控制、重传机制、滑动窗口等机制保证传输质量,而UDP却没有。6、双工性 TCP只能点对点全双工通信,UDP支持一对一、一对多、多对一、多对多的交互通信。
      tcp与udp的区别?

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/42111.html

          热门文章

          文章分类