哪些应用使用udp协议(以下哪些不是UDP协议的特性)

      最后更新:2022-11-03 15:59:24 手机定位技术交流文章

      为什么传输SNMP报文时采用的是UDP协议

      SNMP的基本功能包括监视网络性能、检测分析网络差错和配置网络。只需将监回测到的问题发送到网络答管理工作站。UDP协议是面向无连接的,它的格式与TCP相比少了很多的字段,简单了很多,这也是传输数据时效率高、SNMP采用的一个主要原因。扩展资料:UDP协议与TCP协议一样用于处理数据包,在OSI模型中,两者都位于传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。UDP用来支持那些需要在计算机之间传输数据的网络应用。包括网络视频会议系统在内的众多的客户/服务器模式的网络应用都需要使用UDP协议。参考资料来源:百度百科-UDP
      SNMP的基本功能包括监视网络性能、检测分析网络差错和配置网络。只需将监测到的问题发送到网络管理工作站。 UDP协议是面向无连接的,它的格式与TCP相比少了很多的字段,简单了很多,这也是传输数据时效率高、SNMP采用的一个主要原因。
      就是这么规定的吧。
      为什么传输SNMP报文时采用的是UDP协议

      传输层协议(TCP, UDP)

      传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram Protocol)。为了简化问题说明,本课程以Telnet为例描述相关技术。设备支持通过Telnet协议和Stelnet协议登录。使用Telnet,Stelnet v1协议存在安全风险,建议你使用STelnet v2登录设备。为了简化问题说明,本课程以FTP为例来描述相关技术。设备支持通过FTP协议,TFTP以及SFTP传输文件。使用FTP,TFTP,SFTP v1协议存在风险,建议使用SFTP v2方式进行文件操作。TCP是一种面向连接的传输层协议,提供可靠的传输服务。TCP是一种面向连接的端到端协议。TCP作为传输控制协议,可以为主机提供可靠的数据传输。TCP需要依赖网络协议为主机提供可用的传输路径。TCP允许一个主机同事运行多个应用进程。每台主机可以拥有多个应用端口,没对端口号,源和目标IP地址的组合唯一地标识了一个会话。端口分为知名端口和动态端口。有些网络服务会使用固定的端口,这类端口称为知名端口,端口号范围为 0~1023 。比如:FTP,HTTP,Telnet,SNMP服务均使用知名端口。动态端口范围 1024~65535 ,这些端口号一般不会固定分配给某个服务,也就是说许多服务都可以使用这些端口。只要运行的程序向系统提出访问网络的申请,那么系统就可以从这些端口号中分配一个供该程序使用。TCP通常使用IP作为网络层协议,这是TCP数据被封装在IP数据包内。TCP数据段由TCP Header(头部)和TCP Data(数据)组成。TCP最多可以有60个字节的头部,如果没有Options字段,正常的长度是20字节。TCP Header是由如上图标识一些字段组成,这里列出几个常用字段。注意:1)主机A(通常也叫客户端)发送一个标识了SYN数据段,标识期望与服务器A建立连接,此数据段的序列号(seq)为a;2)服务器A回复标识了SYN+ACK的数据段,此数据段的序列号(seq)为b,确认序列号为主机A的序列号加1(a+1),以此作为对主机A的SYN报文的确认。3)主机A发送一个标识了ACK的数据段,此数据段的序列号(seq)为a+1,确认序列号为服务器A的序列号加1(b+1),以此作为对服务器A的SYN报文段的确认。TCP是一种可靠的,面向连接的全双工传输层协议。TCP连接的简历是一个三次握手的过程。TCP的可靠传输还提现在TCP使用了确认技术来确保目的设备收到了从源设备发来的数据,并且是准确无误的。确认技术的工作原理如下:目的设备接收到源设备发送的数据段时,会向源端发送确认报文,源设备收到确认报文后,继续发送数据段,如此重复。如图所示,主机A向服务器A发送TCP数据段,为描述方便假设每个数据段的长度都是500个字节。当服务器A成功收到序列号是M+1499的字节以及之前的所有字节时,会以序列号M+1400+1=M+1500进行确认。另外,由于数据段N+3传输失败,所以服务器A未能收到序列号为M+1500的字节,因此服务器A还会再次以序列号M+1500进行确认。注意:上面说到,数据段 N+3 传输失败,那么第二次确认号M+1500,主机A会将N+3,N+4,N+5全部发送一次。TCP滑动窗口技术通过动态改变窗口大小来实现对端到端设备之间的数据传输进行流量控制。如图所示,主机A和服务器A之间通过滑动窗口来实现流量控制。为了方便理解,此例中只考虑主机A发送数据给服务器A时,服务器A通过滑动窗口进行流量控制。例子中:主机A向服务器发送4个长度为1024字节的数据段,其中主机的窗口大小为4096个字节。服务器A收到第3个字节之后,缓存区满,第4个数据段被丢弃。服务器以ACK3073(1024*3=3072)响应,窗口大小调整为3072,表明服务器的缓冲区只能处理3072个字节的数据段。于是主机A改变其发送速率,发送窗口大小为3072的数据段。主机在关闭连接之前,要确认收到来自对方的ACK。TCP支持全双工模式传输数据,这意味着统一时刻两个方向都可以进行数据的传输。在传输数据之前,TCP通过三次握手建立的实际上是两个方向的连接,一次在传输完毕后,两个方向的连接必须都关闭。TCP连接的建立是一个三次握手过程,而TCP连接的终止则要经过四次挥别。如图:1.主机A想终止连接,于是发送一个标识了FIN,ACK的数据段,序列号为a,确认序列号为b。2.服务器A回应一个标识了ACK的数据段,序列号为b,确认序号为a+1,作为对主机A的FIN报文的确认。3.服务器A想终止连接,于是向主机A发送一个标识了FIN,ACK的数据段,序列号为b,确认好为a+1。4.主机A回应一个标识了ACK的数据段,序列号为a+1,确认序号为b+1,作为对服务器A的FIN报文的确认。以上四次交互完成了两个方向连接的关闭。TCP断开连接的步骤,这个比较详细:https://blog.csdn.net/ctrl_qun/article/details/52518479UDP是一种面向无连接的传输层协议,传输可靠性没有保证。当应用程序对传输的可靠性要求不高时,但是对传输速度和延迟要求较高时,可以用UDP协议来替代TCP协议在传输层控制数据的转发。UDP将数据从源端发送到目的端时,无需事先建立连接。UDP采用了简单,容易操作的机制在应用程序间传输数据,没有使用TCP中的确认技术或滑动窗口机制,因此UDP不能保证数据传输的可靠性,也无法避免接受到重复数据的情况。UDP头部仅占8个字节,传输数据时没有确认机制(注意,但是有校验和)。UDP报文分为UDP报文头和UDP数据区域两个部分。报头由源端口,目的端口,报文长度以及校验和组成。UDP适合于实时数据传输,比如语音和视频通信。相比TCP,UDP的传输效率更高,开销更小,但是无法保证数据传输可靠性。UDP头部的标识如下:1)16位源端口号:源主机的应用程序使用的端口号。2)16位目的端口号:目的主机的应用程序使用的端口号。3)16位UDP长度:是指UDP头部和UDP数据的字节长度。因为UDP头部长度是8字节,所以字段的最小值为8。4)16位UDP校验和:该字段提供了与TCP校验字段同样的功能;该字段是可选的。使用UDP传输数据时,由应用程序根据需要提供报文到达确认,排序,流量控制等功能。主机A发送数据包时,这些数据包是以有序的方式发送到网络中的,每个数据包独立地在网络中被发送,所以不同的数据包可能会通过不同的网路径叨叨主机B。这样的情况下,先发送的数据包不一定先到达主机B。因为UDP数据包没有序号,主机B将无法通过UDP协议将数据包按照原来的顺序重新组合,所以此时需要应用程序提供报文的到达确认,排序和流量控制等功能(也就是说UDP报文的到达确认,排序和流量控制是应用程序来确定的)。通常情况下,UDP采用实时传输机制和时间戳来传输语音和视频数据。UDP适合传输对延迟敏感的流量,如语音和视频。在使用TCP协议传输数据时,如果一个数据段丢失或者接受端对某个数据段没有确认,发送端会重新发送该数据段。TCP重新发送数据会带来传输延迟和重复数据,降低了用户的体验。对于延迟敏感的应用,少量的数据丢失一般可以被忽略,这是使用UDP传输能够提升用户的体验。总结:1.TCP头部中的确认标识位有什么作用呢?TCP报文头中的ACK标识位用于目的端对已接受到数据的确认。目的端成功收到序列号为x的字节后,会以序列号x+1进行确认。2.TCP头部中有哪些标识位参与TCP三次握手?在TCP三次握手过程中,要使用SYN和ACK标识位来请求建立连接和确认建立连接。
      传输层协议(TCP, UDP)

      列举TCP和UDP协议的常用应用

      一般来说,TCP对应的是可靠性要求高的应用,而UDP对应的则是可靠性要求低、传输经济的应用。在现场测控领域,面向的是分布化的控制器、监测器等,其应用场合环境比较恶劣,这样就对待传输数据提出了不同的要求,如实时、抗干扰性、安全性等。基于此,现场通信中,若某一应用要将一组数据传送给网络中的另一个节点,可由UDP进程将数据加上报头后传送给IP进程,UDP协议省去了建立连接和拆除连接的过程!取消了重发检验机制,能够达到较高的通信速率。TCP和UDP协议是TCP/IP协议的核心。TCP传输协议:TCP 协议是一TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议。其中TCP提供IP环境下的数据可靠传输,它提供的服务包括数据流传送、可靠性、有效流控、全双工操作和多路复用。通过面向连接、端到端和可靠的数据包发送。通俗说,它是事先为所发送的数据开辟出连接好的通道,然后再进行数据发送;而UDP则不为IP提供可靠性、流控或差错恢复功能。
      TCP提供的是面向连接的、可靠的数据流传输,如web/网页应用 而UDP提供的是非面向连接的、不可靠的数据流传输,如QQ
      TCP提供的是面向连接的、可靠的数据流传输,而UDP提供的是非面向连接的、不可靠的数据流传输。面向连接的协议在任何数据传输前就建立好了点到点的连接。ATM和帧中继是面向连接的协议,但它们工作在数据链路层,而不是在传输层。普通的音频电话也是面向连接的。
      列举TCP和UDP协议的常用应用

      哪些端口用的是udp协议?

      UDP 1=Sockets des Troie UDP 9=ChargenUDP 19=ChargenUDP 69=PasanaUDP 80=PenroxUDP 371=ClearCase版本管理软件UDP 445=公共Internet文件系统(CIFS)UDP 500=Internet密钥交换UDP 1025=Maverick‘s Matrix 1.2 - 2.0UDP 1026=Remote Explorer 2000UDP 1027=UC聊天软件,Trojan.Huigezi.eUDP 1028=3721上网助手(用途不明,建议用户警惕!),KiLo,SubSARIUDP 1029=SubSARIUDP 1031=XotUDP 1032=Akosch4UDP 1104=RexxRaveUDP 1111=DaodanUDP 1116=LurkerUDP 1122=Last 2000,SingularityUDP 1183=Cyn,SweetHeart UDP 1200=NoBackOUDP 1201=NoBackOUDP 1342=BLA trojanUDP 1344=PtakksUDP 1349=BO dllUDP 1561=MuSka52UDP 1772=NetControleUDP 1978=SlapperUDP 1985=Black DiverUDP 2000=A-trojan,Fear,Force,GOTHIC Intruder,Last 2000,Real 2000UDP 2001=ScalperUDP 2002=SlapperUDP 2015=raid-csUDP 2018=rellpackUDP 2130=Mini BackLashUDP 2140=Deep Throat,Foreplay,The InvasorUDP 2222=SweetHeart, WayUDP 2339=Voice SpyUDP 2702=Black DiverUDP 2989=RATUDP 3150=Deep ThroatUDP 3215=XHXUDP 3333=DaodanUDP 3801=EclypseUDP 3996=Remote AnythingUDP 4128=RedShadUDP 4156=SlapperUDP 4500=sae-urnUDP 5419=DarkSkyUDP 5503=Remote Shell TrojanUDP 5555=DaodanUDP 5882=Y3K RATUDP 5888=Y3K RATUDP 6112=Battle.net GameUDP 6666=KiLoUDP 6667=KiLoUDP 6766=KiLoUDP 6767=KiLo,UandMeUDP 6838=Mstream Agent-handlerUDP 7028=未知木马UDP 7424=Host ControlUDP 7788=SingularityUDP 7983=MStream handler-agentUDP 8012=PtakksUDP 8090=Aphex‘s Remote Packet SnifferUDP 8127=9_119,ChonkerUDP 8488=KiLoUDP 8489=KiLoUDP 8787=BackOrifice 2000UDP 8879=BackOrifice 2000UDP 9325=MStream Agent-handlerUDP 10000=XHXUDP 10067=Portal of DoomUDP 10084=SyphillisUDP 10100=SlapperUDP 10167=Portal of DoomUDP 10498=MstreamUDP 10666=AmbushUDP 11225=CynUDP 12321=ProtossUDP 12345=BlueIce 2000UDP 12378=W32/Gibe@MMUDP 12623=ButtMan,DUN ControlUDP 15210=UDP remote shell backdoor serverUDP 15486=KiLoUDP 16514=KiLoUDP 16515=KiLoUDP 18753=Shaft handler to AgentUDP 20433=ShaftUDP 21554=GirlFriendUDP 22784=Backdoor.IntruzzoUDP 23476=Donald DickUDP 25123=MOTDUDP 26274=Delta SourceUDP 26374=Sub-7 2.1UDP 26444=Trin00/TFN2KUDP 26573=Sub-7 2.1UDP 27184=Alvgus trojan 2000UDP 27444=TrinooUDP 29589=KiLoUDP 29891=The UnexplainedUDP 30103=NetSphereUDP 31320=Little WitchUDP 31335=Trin00 DoS AttackUDP 31337=Baron Night, BO client, BO2, Bo Facil, BackFire, Back Orifice, DeepBOUDP 31338=Back Orifice, NetSpy DK, DeepBO UDP 31339=Little Witch UDP 31340=Little WitchUDP 31416=LithiumUDP 31787=Hack aTackUDP 31789=Hack aTackUDP 31790=Hack aTackUDP 31791=Hack aTackUDP 33390=未知木马UDP 34555=TrinooUDP 35555=TrinooUDP 43720=KiLoUDP 44014=IaniUDP 44767=School BusUDP 46666=TaskmanUDP 47262=Delta SourceUDP 47785=KiLoUDP 49301=OnLine keyLoggerUDP 49683=FensterUDP 49698=KiLoUDP 52901=OmegaUDP 54320=Back OrificeUDP 54321=Back Orifice 2000UDP 54341=NetRaider TrojanUDP 61746=KiLOUDP 61747=KiLOUDP 61748=KiLOUDP 65432=The TraitorUDP端口31 = Masters Paradise木马41 = DeepThroat木马53 = 域名解析67 = 动态IP服务68 = 动态IP客户端135 = 本地服务137 = NETBIOS名称138 = NETBIOS DGM服务139 = 文件共享146 = FC-Infector木马161 = SNMP服务162 = SNMP查询445 = SMB(交换服务器消息块)500 = VPN密钥协商666 = Bla木马999 = DeepThroat木马1027 = 灰鸽子1042 = Bla木马1561 = MuSka52木马1900 = UPNP(通用即插即用)2140 = Deep Throat木马2989 = Rat木马3129 = Masters Paradise木马3150 = DeepThroat木马3700 = Portal of Doom木马4000 = QQ聊天4006 = 灰鸽子5168 = 高波蠕虫6670 = DeepThroat木马6771 = DeepThroat木马6970 = ReadAudio音频数据8000 = QQ聊天8099 = VC远程调试8225 = 灰鸽子9872 = Portal of Doom木马9873 = Portal of Doom木马9874 = Portal of Doom木马9875 = Portal of Doom木马10067 = Portal of Doom木马10167 = Portal of Doom木马22226 = 高波蠕虫26274 = Delta Source木马31337 = Back-Orifice木马31785 = Hack Attack木马31787 = Hack Attack木马31788 = Hack-A-Tack木马31789 = Hack Attack木马31791 = Hack Attack木马31792 = Hack-A-Tack木马34555 = Trin00 DDoS木马40422 = Master-Paradise木马40423 = Master-Paradise木马40425 = Master-Paradise木马40426 = Master-Paradise木马47262 = Delta Source木马54320 = Back-Orifice木马54321 = Back-Orifice木马 60000 = DeepThroat木马
      比如说 DNS(域名解析服务端口53)用的是udp协议。
      哪些端口用的是udp协议?

      UDP是什么,UDP协议及优缺点

      UDP,全称 User Datagram Protocol,中文名称为用户数据报协议,主要用来支持那些需要在计算机之间传输数据的网络连接。UDP协议从问世至今已经被使用了很多年,虽然目前 UDP 协议的应用不如 TCP 协议广泛,但 UDP 依然是一种非常实用和可行的网络传输层协议。尤其是在一些实时性很强的应用场景中,比如网络游戏、视频会议等,UDP 协议的快速能力更具有独特的魅力。UDP 是一种面向非连接的协议,面向非连接指的是在正式通信前不必与对方先建立连接,不管对方状态就直接发送数据。至于对方是否可以接收到这些数据,UDP 协议无法控制,所以说 UDP 是一种不可靠的协议。UDP 协议适用于一次只传送少量数据、对可靠性要求不高的应用环境。与前面介绍的 TCP 协议一样,UDP 协议直接位于 IP 协议之上。实际上,IP 协议属于 OSI 参考模型的网络层协议,而 UDP 协议和 TCP 协议都属于传输层协议。因为 UDP 是面向非连接的协议,没有建立连接的过程,因此它的通信效率很高,但也正因为如此,它的可靠性不如 TCP 协议。UDP 协议的主要作用是完成网络数据流和数据报之间的转换在信息的发送端,UDP 协议将网络数据流封装成数据报,然后将数据报发送出去;在信息的接收端,UDP 协议将数据报转换成实际数据内容。可以认为 UDP 协议的 socket 类似于码头,数据报则类似于集装箱。码头的作用就是负责友送、接收集装箱,而 socket 的作用则是发送、接收数据报。因此,对于基于 UDP 协议的通信双方而言,没有所谓的客户端和服务器端的概念。UDP 协议和 TCP 协议简单对比如下:TCP 协议:可靠,传输大小无限制,但是需要连接建立时间,差错控制开销大。UDP 协议:不可靠,差错控制开销较小,传输大小限制在 64 KB以下,不需要建立连接。?相比较 TCP,UDP 是一种不可靠的网络协议,它在通信实例的两端各建立一个 socket,但这两个 socket 之间并没有虚拟链路,它们只是发送、接收数据报的对象。
      UDP是什么,UDP协议及优缺点

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/42126.html

          热门文章

          文章分类