TCP/IP协议是什么
TCP/IP协议是什么TCP和UDP处在同一层---运输层,但是TCP和UDP最不同的地方是,TCP提供了一种可靠的数据传输服务,TCP是面向连接的,也就是说,利用TCP通信的两台主机首先要经历一个“拨打电话”的过程,等到通信准备结束才开始传输数据,最后结束通话。所以TCP要比UDP可靠的多,UDP是把数据直接发出去,而不管对方是不是在收信,就算是UDP无法送达,也不会产生ICMP差错报文,这一经时重申了很多遍了。把TCP保证可靠性的简单工作原理:应用数据被分割成TCP认为最适合发送的数据块。这和UDP完全不同,应用程序产生的 数据报长度将保持不变。由TCP传递给IP的信息单位称为报文段或段当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能 及时收到一个确认,将重发这个报文段.当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常将推迟几分之一秒.TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输 过程中的任何变化。如果收到段的检验和有差错, T P将丢弃这个报文段和不确认收到此报文段(希望发端超时并重发)。既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段 的到达也可能会失序。如果必要, TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。TCP还能提供流量控制。TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。从这段话中可以看到,TCP中保持可靠性的方式就是超时重发,这是有道理的,虽然TCP也可以用各种各样的ICMP报文来处理这些,但是这也不是可靠的,最可靠的方式就是只要不得到确认,就重新发送数据报,直到得到对方的确认为止。TCP的首部和UDP首部一样,都有发送端口号和接收端口号。但是显然,TCP的首部信息要比UDP的多,可以看到,TCP协议提供了发送和确认所需要的所有必要的信息。可以想象一个TCP数据的发送应该是如下的一个过程。双方建立连接发送方给接受方TCP数据报,然后等待对方的确认TCP数据报,如果没有,就重新发,如果有,就发送下一个数据报。接受方等待发送方的数据报,如果得到数据报并检验无误,就发送ACK(确认)数据报,并等待下一个TCP数据报的到来。直到接收到FIN(发送完成数据报)中止连接可以想见,为了建立一个TCP连接,系统可能会建立一个新的进程(最差也是一个线程),来进行数据的传送--TCP协议TCP是一个面向连接的协议,在发送输送之前 ,双方需要确定连接。而且,发送的数据可以进行TCP层的分片处理。TCP连接的建立过程 ,可以看成是三次握手 。而连接的中断可以看成四次握手 。1.连接的建立在建立连接的时候,客户端首先向服务器申请打开某一个端口(用SYN段等于1的TCP报文),然后服务器端发回一个ACK报文通知客户端请求报文收到,客户端收到确认报文以后再次发出确认报文确认刚才服务器端发出的确认报文(绕口么),至此,连接的建立完成。这就叫做三次握手。如果打算让双方都做好准备的话,一定要发送三次报文,而且只需要三次报文就可以了。可以想见,如果再加上TCP的超时重传机制,那么TCP就完全可以保证一个数据包被送到目的地。2.结束连接TCP有一个特别的概念叫做half-close,这个概念是说,TCP的连接是全双工(可以同时发送和接收)连接,因此在关闭连接的`时候,必须关闭传和送两个方向上的连接。客户机给服务器一个FIN为1的TCP报文,然后服务器返回给客户端一个确认ACK报文,并且发送一个FIN报文,当客户机回复ACK报文后(四次握手),连接就结束了。3.最大报文长度在建立连接的时候,通信的双方要互相确认对方的最大报文长度(MSS),以便通信。一般这个SYN长度是MTU减去固定IP首部和TCP首部长度。对于一个以太网,一般可以达到1460字节。当然如果对于非本地的IP,这个MSS可能就只有536字节,而且,如果中间的传输网络的MSS更加的小的话,这个值还会变得更小。4.客户端应用程序的状态迁移图客户端的状态可以用如下的流程来表示:CLOSED->SYN_SENT->ESTABLISHED->FIN_WAIT_1->FIN_WAIT_2->TIME_WAIT->CLOSED以上流程是在程序正常的情况下应该有的流程,从书中的图中可以看到,在建立连接时,当客户端收到SYN报文的ACK以后,客户端就打开了数据交互地连接。而结束连接则通常是客户端主动结束的,客户端结束应用程序以后,需要经历FIN_WAIT_1,FIN_WAIT_2等状态,这些状态的迁移就是前面提到的结束连接的四次握手。5.服务器的状态迁移图服务器的状态可以用如下的流程来表示:CLOSED->LISTEN->SYN收到->ESTABLISHED->CLOSE_WAIT->LAST_ACK->CLOSED在建立连接的时候,服务器端是在第三次握手之后才进入数据交互状态,而关闭连接则是在关闭连接的第二次握手以后(注意不是第四次)。而关闭以后还要等待客户端给出最后的ACK包才能进入初始的状态。6.TCP服务器设计前面曾经讲述过UDP的服务器设计,可以发现UDP的服务器完全不需要所谓的并发机制,它只要建立一个数据输入队列就可以。但是TCP不同,TCP服务器对于每一个连接都需要建立一个独立的进程(或者是轻量级的,线程),来保证对话的独立性。所以TCP服务器是并发的。而且TCP还需要配备一个呼入连接请求队列(UDP服务器也同样不需要),来为每一个连接请求建立对话进程,这也就是为什么各种TCP服务器都有一个最大连接数的原因。而根据源主机的IP和端口号码,服务器可以很轻松的区别出不同的会话,来进行数据的分发。TCP的交互数据流对于交互性要求比较高的应用,TCP给出两个策略来提高发送效率和减低网络负担:(1)捎带ACK。(2)Nagle算法(一次尽量多的发数据)捎带ACK的发送方式这个策略是说,当主机收到远程主机的TCP数据报之后,通常不马上发送ACK数据报,而是等上一个短暂的时间,如果这段时间里面主机还有发送到远程主机的TCP数据报,那么就把这个ACK数据报“捎带”着发送出去,把本来两个TCP数据报整合成一个发送。一般的,这个时间是200ms。可以明显地看到这个策略可以把TCP数据报的利用率提高很多。Nagle算法上过bbs的人应该都会有感受,就是在网络慢的时候发贴,有时键入一串字符串以后,经过一段时间,客户端“发疯”一样突然回显出很多内容,就好像数据一下子传过来了一样,这就是Nagle算法的作用。Nagle算法是说,当主机A给主机B发送了一个TCP数据报并进入等待主机B的ACK数据报的状态时,TCP的输出缓冲区里面只能有一个TCP数据报,并且,这个数据报不断地收集后来的数据,整合成一个大的数据报,等到B主机的ACK包一到,就把这些数据“一股脑”的发送出去。虽然这样的描述有些不准确,但还算形象和易于理解,我们同样可以体会到这个策略对于低减网络负担的好处。在编写插口程序的时候,可以通过TCP_NODELAY来关闭这个算法。并且,使用这个算法看情况的,比如基于TCP的X窗口协议,如果处理鼠标事件时还是用这个算法,那么“延迟”可就非常大了。 ;

传输层协议(TCP, UDP)
传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram Protocol)。为了简化问题说明,本课程以Telnet为例描述相关技术。设备支持通过Telnet协议和Stelnet协议登录。使用Telnet,Stelnet v1协议存在安全风险,建议你使用STelnet v2登录设备。为了简化问题说明,本课程以FTP为例来描述相关技术。设备支持通过FTP协议,TFTP以及SFTP传输文件。使用FTP,TFTP,SFTP v1协议存在风险,建议使用SFTP v2方式进行文件操作。TCP是一种面向连接的传输层协议,提供可靠的传输服务。TCP是一种面向连接的端到端协议。TCP作为传输控制协议,可以为主机提供可靠的数据传输。TCP需要依赖网络协议为主机提供可用的传输路径。TCP允许一个主机同事运行多个应用进程。每台主机可以拥有多个应用端口,没对端口号,源和目标IP地址的组合唯一地标识了一个会话。端口分为知名端口和动态端口。有些网络服务会使用固定的端口,这类端口称为知名端口,端口号范围为 0~1023 。比如:FTP,HTTP,Telnet,SNMP服务均使用知名端口。动态端口范围 1024~65535 ,这些端口号一般不会固定分配给某个服务,也就是说许多服务都可以使用这些端口。只要运行的程序向系统提出访问网络的申请,那么系统就可以从这些端口号中分配一个供该程序使用。TCP通常使用IP作为网络层协议,这是TCP数据被封装在IP数据包内。TCP数据段由TCP Header(头部)和TCP Data(数据)组成。TCP最多可以有60个字节的头部,如果没有Options字段,正常的长度是20字节。TCP Header是由如上图标识一些字段组成,这里列出几个常用字段。注意:1)主机A(通常也叫客户端)发送一个标识了SYN数据段,标识期望与服务器A建立连接,此数据段的序列号(seq)为a;2)服务器A回复标识了SYN+ACK的数据段,此数据段的序列号(seq)为b,确认序列号为主机A的序列号加1(a+1),以此作为对主机A的SYN报文的确认。3)主机A发送一个标识了ACK的数据段,此数据段的序列号(seq)为a+1,确认序列号为服务器A的序列号加1(b+1),以此作为对服务器A的SYN报文段的确认。TCP是一种可靠的,面向连接的全双工传输层协议。TCP连接的简历是一个三次握手的过程。TCP的可靠传输还提现在TCP使用了确认技术来确保目的设备收到了从源设备发来的数据,并且是准确无误的。确认技术的工作原理如下:目的设备接收到源设备发送的数据段时,会向源端发送确认报文,源设备收到确认报文后,继续发送数据段,如此重复。如图所示,主机A向服务器A发送TCP数据段,为描述方便假设每个数据段的长度都是500个字节。当服务器A成功收到序列号是M+1499的字节以及之前的所有字节时,会以序列号M+1400+1=M+1500进行确认。另外,由于数据段N+3传输失败,所以服务器A未能收到序列号为M+1500的字节,因此服务器A还会再次以序列号M+1500进行确认。注意:上面说到,数据段 N+3 传输失败,那么第二次确认号M+1500,主机A会将N+3,N+4,N+5全部发送一次。TCP滑动窗口技术通过动态改变窗口大小来实现对端到端设备之间的数据传输进行流量控制。如图所示,主机A和服务器A之间通过滑动窗口来实现流量控制。为了方便理解,此例中只考虑主机A发送数据给服务器A时,服务器A通过滑动窗口进行流量控制。例子中:主机A向服务器发送4个长度为1024字节的数据段,其中主机的窗口大小为4096个字节。服务器A收到第3个字节之后,缓存区满,第4个数据段被丢弃。服务器以ACK3073(1024*3=3072)响应,窗口大小调整为3072,表明服务器的缓冲区只能处理3072个字节的数据段。于是主机A改变其发送速率,发送窗口大小为3072的数据段。主机在关闭连接之前,要确认收到来自对方的ACK。TCP支持全双工模式传输数据,这意味着统一时刻两个方向都可以进行数据的传输。在传输数据之前,TCP通过三次握手建立的实际上是两个方向的连接,一次在传输完毕后,两个方向的连接必须都关闭。TCP连接的建立是一个三次握手过程,而TCP连接的终止则要经过四次挥别。如图:1.主机A想终止连接,于是发送一个标识了FIN,ACK的数据段,序列号为a,确认序列号为b。2.服务器A回应一个标识了ACK的数据段,序列号为b,确认序号为a+1,作为对主机A的FIN报文的确认。3.服务器A想终止连接,于是向主机A发送一个标识了FIN,ACK的数据段,序列号为b,确认好为a+1。4.主机A回应一个标识了ACK的数据段,序列号为a+1,确认序号为b+1,作为对服务器A的FIN报文的确认。以上四次交互完成了两个方向连接的关闭。TCP断开连接的步骤,这个比较详细:https://blog.csdn.net/ctrl_qun/article/details/52518479UDP是一种面向无连接的传输层协议,传输可靠性没有保证。当应用程序对传输的可靠性要求不高时,但是对传输速度和延迟要求较高时,可以用UDP协议来替代TCP协议在传输层控制数据的转发。UDP将数据从源端发送到目的端时,无需事先建立连接。UDP采用了简单,容易操作的机制在应用程序间传输数据,没有使用TCP中的确认技术或滑动窗口机制,因此UDP不能保证数据传输的可靠性,也无法避免接受到重复数据的情况。UDP头部仅占8个字节,传输数据时没有确认机制(注意,但是有校验和)。UDP报文分为UDP报文头和UDP数据区域两个部分。报头由源端口,目的端口,报文长度以及校验和组成。UDP适合于实时数据传输,比如语音和视频通信。相比TCP,UDP的传输效率更高,开销更小,但是无法保证数据传输可靠性。UDP头部的标识如下:1)16位源端口号:源主机的应用程序使用的端口号。2)16位目的端口号:目的主机的应用程序使用的端口号。3)16位UDP长度:是指UDP头部和UDP数据的字节长度。因为UDP头部长度是8字节,所以字段的最小值为8。4)16位UDP校验和:该字段提供了与TCP校验字段同样的功能;该字段是可选的。使用UDP传输数据时,由应用程序根据需要提供报文到达确认,排序,流量控制等功能。主机A发送数据包时,这些数据包是以有序的方式发送到网络中的,每个数据包独立地在网络中被发送,所以不同的数据包可能会通过不同的网路径叨叨主机B。这样的情况下,先发送的数据包不一定先到达主机B。因为UDP数据包没有序号,主机B将无法通过UDP协议将数据包按照原来的顺序重新组合,所以此时需要应用程序提供报文的到达确认,排序和流量控制等功能(也就是说UDP报文的到达确认,排序和流量控制是应用程序来确定的)。通常情况下,UDP采用实时传输机制和时间戳来传输语音和视频数据。UDP适合传输对延迟敏感的流量,如语音和视频。在使用TCP协议传输数据时,如果一个数据段丢失或者接受端对某个数据段没有确认,发送端会重新发送该数据段。TCP重新发送数据会带来传输延迟和重复数据,降低了用户的体验。对于延迟敏感的应用,少量的数据丢失一般可以被忽略,这是使用UDP传输能够提升用户的体验。总结:1.TCP头部中的确认标识位有什么作用呢?TCP报文头中的ACK标识位用于目的端对已接受到数据的确认。目的端成功收到序列号为x的字节后,会以序列号x+1进行确认。2.TCP头部中有哪些标识位参与TCP三次握手?在TCP三次握手过程中,要使用SYN和ACK标识位来请求建立连接和确认建立连接。

【网络】TCP的连接建立
TCP是面向连接的协议。运输连接是用来传送TCP报文的。TCP运输连接的建立和释放是每一次连接通信过程中必不可少的。因此,运输连接就有三个阶段:连接建立,数据传送和连接释放。需要解决以下3个问题:连接建立这个过程,需要在客户端和服务器之间,交换3个TCP报文段,也就是三次握手????x3。????请注意,在本例中,A主动打开连接,B被动打开连接一开始,B就在准备接受客户进程的连接请求,然后服务器进程就处于 LISTEN (收听)状态,等待客户的连接请求。如有,即作出响应。A的TCP客户进程像B发出连接请求报文段,这时,首部中的同步位SYN = 1,同时选择一个初始序号 seq = x 。TCP规定????,SYN报文段不能携带数据,但要消耗掉一个序号。这时,TCP客户进程进入SYN-SENT(同步已发送)状态。B收到连接请求的报文段后,如同意建立连接,则向A发送确认。在确认报文段中,应把SYN位和ASK位都置1,确认号是 ack = x + 1 ,同时也为自己选择一个初始序号 seq = y 。请注意,这个报文段也不能携带数据。但同样要消耗掉一个序号。这时,TCP服务器进程进入SYN-RCVD(同步收到)状态。TCP客户进程收到B的确认后,还要向B给出确认。确认报文段的ACK置1,确认号 ack = y + 1 ,而自己的序号 seq = x + 1 。TCP的标准规定????,ACK报文段可以携带数据。但如果不携带数据则不消耗序号,在这种情况下,下一个数据报文段的序号仍是 seq = x +1 。这时,TCP连接已经建立????,A进入ESTABLISHED(已建立连接)状态。当B收到A的确认后,也进入ESTABLISHED(已建立连接)???? Q:为什么A最后还有发送一次确认呢?????A:主要是为了防止已失效的连接请求报文段突然又传送到B,因而产生错误。所谓“已失效的连接请求报文段”是这样产生的。????考虑一种正常情况,A 发出连接请求????,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。A共发出了两个连接请求的报文段,其中第一个丢失????,第二个到达了B????,没有“已失效的连接请求报文段”。????现假定出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某个网络节点长时间的滞留????,以至延误到连接释放以后的某个时间才到达B。本来这是一个 早已失效的报文段 ,但是B收到此时小的连接请求的报文段之后,误以为是A又发出一次新的连接请求。于是向A发出确认报文段,同意建立连接。假定不采用报文握手。那么只要B发出确认之后,新的连接就建立了。由于现在A并没有发出建立连接的请求,因此不会理睬B的确认????,也不会向B发送数据,但B确以为新的运输连接已经建立,并一直等待A发来的数据。B的许多资源就这样白白浪费了。

t pc建立链接的过程称为
三次握手。TCP协议建立连接的过程:在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态, 完成三次握手。完成三次握手,客户端与服务器开始传送数据。

传输层TCP协议连接的建立和断开
什么是TCP呢?由三个单词组成的Transport Control Protocol,字面理解是传输控制协议,可以理解为比特同学要想在网络泳池里游泳,那么他必须学习传输层控制技能,并且要掌握相应的动作——协议,他才能在畅游世界网络这个超大型游泳池。TCP:一个传输层协议,提供Host-To-Host的可靠传输,支持全双工,是一个面向连接的协议。TCP工作在传输层,它的上层是应用层,应用就是人们常用的微信、抖音、王者荣耀等服务工作的协议。两台不同的设备使用微信聊天,发送语音,需要实现Host-To-Host的数据通信,那么就可以直接调用TCP协议进行。调用TCP通信时需要指定通信的端口,不同的端口对应不同应用,不同IP对应不同的主机,也就是不同的设备。这就涉及到网络地址——IP地址,工作在网络层,当然TCP层只负责把对应的IP地址和端口传给网络层即可,具体业务由网络层来实现。互联网层,即Network Layer,提供地址和地址间的通信,只关注地址到地址Address-To-Address间通信,具体设备间通信由数据链路层实现,数据链路层关注MAC地址间通信,具体的物理设备,传输介质由物理层负责。以上就是TCP/IP协议常用的层级分割,最终目的就是为Host-To-Host服务,实现应用到应用的通信服务。什么是连接和会话呢?连接事需要通信双方相互配合来实现的,是双方达成的一种即时的状态约定,保证通信双方都在线,都有能力为接下来的数据传输做出尽快的响应,我们称之为连接。连接是网络行为状态的记录,既然连接需要双方共同努力,那么就需要双方都有一个对象来记忆当前传输的数据类型,对方的端口、已经传输了多少,效率怎么样等等一些关注点。那么与之相关联的另一个名词会话(Session),是什么意思呢,会话是应用的行为。大家每次用微信聊天时都会有一个窗口,用来发送信息,你来我往,这个窗口中会有很多条信息,我们称之为会话,当我们在会话进行中,连接一定是在通信状态的。聊一会,累了,退出微信了,但是一般我们不会删除我们的会话内容,这时会话还在,但是连接已经中断。双工/单工问题想想自己理解的是什么?单工:任何时间,数据只能单向发送,单工至少需要一条线路半全双工:某一时候可以双向发送数据,至少需要一条线路全双工:任何时刻都可以双向发送数据,大于一条线路这里线路不一定真实存在物理线路,可能采用模拟的形式实现TCP是一个全双工协议,数据任何时刻都可以双向发送,这说明服务器和客户端可以根据需要选择任意时刻发送和接收信息,所以呢都可以被称为主机(Host)可靠性的定义TCP可以提供可靠性,那么可靠性具体的实现方式是什么呢?可靠性指数据无损传输。发送主机按照顺序发送数据,数据通过网络传输,收不同网络条件限制,数据不会按照发送时的顺序到达接收方,这时我们就需要一种算法来保证接收方可以还原出发送方的顺序。这里还有一个概念叫多播,发送方同时发送给多个接收方信息,如果接收方中有一个接收到了这条信息,我们的可靠性就必须保证其他接收方也必须接收到相同的信息,这里我们不讨论多播。TCP的握手和挥手TCP是一个面向连接的连接的协议,握手是建立连接的过程,挥手是断开连接的过程。TCP的基本操作以上三种操作以后,另一方必须立即给发起方返回一个ACK(Ackknowledgement),这是TCP保证可靠性的要求。如果一方不回复发送方ACK,发送方则认为接收方没有收到信息,会重新发送。建立连接的过程-三次握手三次握手的形成和TCP要求每次发送方发送信息以后,接收方必须返回ACK确认有直接的关系上图描述了TCP建立连接的过程,分为6步:TCP建立连接的过程如上,那么为什么是三次呢?第二步服务端做准备,因为是首次收到发送数据请求,无需处理,可以立刻进入数据交互状态,所以可以立刻发送给客户端SYN,告诉客户端,我已准备好,所以第三步和第四步可以合并为一次握手——ACK-SYN,然后客户端回应ACK,连接建立完成以上就是三次握手了具体在数据交互过程,ACK和SYN等需要用标识位来标记,在实际应用中,我们一般使用1来表示开启,0表示关闭。那么四次挥手为什么是四次呢,主要是因为,挥手时服务端收到FIN以后,不能马上回复FIN,因为自身还有任务没有处理完,所以上面所说的6步中,第3、4步就不能一起回复,只能先回复ACK,等自身任务处理完毕,才能告诉客户端,我已经准备好,可以关闭连接,这样就需要4次数据交互,如下图:

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/42383.html。