tcp ip封装过程(tcpip封装过程)

      最后更新:2022-11-09 22:32:04 手机定位技术交流文章

      按照tcp/ip的数据通信模型将访问过程的具体数据封装及流程详细描述一下

      如果是数据封装应该是osi模型更清楚明白些,应用层的数据会一层一层的进行到底封装,会话层,表示层不关心,也用不到,到传输层会加上一个tcp或者udp的头部,网络层会加一个ip的头部,数据链路层会封装帧头帧尾进行通过光纤传输,接受到数据包,再一层一层的解开封装,
      按照tcp/ip的数据通信模型将访问过程的具体数据封装及流程详细描述一下

      TCP/IP四层模型

      ISO制定的OSI参考模型的过于庞大、复杂招致了许多批评。与此对照,由技术人员自己开发的TCP/IP协议栈获得了更为广泛的应用。 如图所示,是TCP/IP参考模型和OSI参考模型的对比示意图。在TCP/IP参考模型中,去掉了OSI参考模型中的会话层和表示层(这两层的功能被合并到应用层实现)。同时将OSI参考模型中的数据链路层和物理层合并为主机到网络层。下面,分别介绍各层的主要功能。实际上TCP/IP参考模型没有真正描述这一层的实现,只是要求能够提供给其上层-网络互连层一个访问接口,以便在其上传递IP分组。由于这一层次未被定义,所以其具体的实现方法将随着网络类型的不同而不同。网络互连层是整个TCP/IP协议栈的核心。它的功能是把分组发往目标网络或主机。同时,为了尽快地发送分组,可能需要沿不同的路径同时进行分组传递。因此,分组到达的顺序和发送的顺序可能不同,这就需要上层必须对分组进行排序。网络互连层定义了分组格式和协议,即IP协议(Internet Protocol)。网络互连层除了需要完成路由的功能外,也可以完成将不同类型的网络(异构网)互连的任务。除此之外,网络互连层还需要完成拥塞控制的功能。在TCP/IP模型中,传输层的功能是使源端主机和目标端主机上的对等实体可以进行会话。在传输层定义了两种服务质量不同的协议。即:传输控制协议TCP(transmission control protocol)和用户数据报协议UDP(user datagram protocol)。TCP协议是一个面向连接的、可靠的协议。它将一台主机发出的字节流无差错地发往互联网上的其他主机。在发送端,它负责把上层传送下来的字节流分成报文段并传递给下层。在接收端,它负责把收到的报文进行重组后递交给上层。TCP协议还要处理端到端的流量控制,以避免缓慢接收的接收方没有足够的缓冲区接收发送方发送的大量数据。UDP协议是一个不可靠的、无连接的协议,主要适用于不需要对报文进行排序和流量控制的场合。TCP/IP模型将OSI参考模型中的会话层和表示层的功能合并到应用层实现。应用层面向不同的网络应用引入了不同的应用层协议。其中,有基于TCP协议的,如文件传输协议(File Transfer Protocol,FTP)、虚拟终端协议(TELNET)、超文本链接协议(Hyper Text Transfer Protocol,HTTP),也有基于UDP协议的。IP协议是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。在局域网环境,IP协议往往被封装在以太网帧中传送。而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。IP报文格式:IP头部格式:其中:● 版本(Version)字段:占4比特。用来表明IP协议实现的版本号,当前一般为IPv4,即0100。● 报头长度(Internet Header Length,IHL)字段:占4比特。是头部占32比特的数字,包括可选项。普通IP数据报(没有任何选项),该字段的值是5,即160比特=20字节。此字段最大值为60字节。● 服务类型(Type of Service ,TOS)字段:占8比特。其中前3比特为优先权子字段(Precedence,现已被忽略)。第8比特保留未用。第4至第7比特分别代表延迟、吞吐量、可靠性和花费。当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。这4比特的服务类型中只能置其中1比特为1。可以全为0,若全为0则表示一般服务。● 总长度字段:占16比特。指明整个数据报的长度(以字节为单位)。最大长度为65535字节。● 标志字段:占16比特。用来唯一地标识主机发送的每一份数据报。通常每发一份报文,它的值会加1。● 标志位字段:占3比特。标志一份数据报是否要求分段。● 段偏移字段:占13比特。如果一份数据报要求分段的话,此字段指明该段偏移距原始数据报开始的位置。● 生存期(TTL:Time to Live)字段:占8比特。用来设置数据报最多可以经过的路由器数。由发送数据的源主机设置,通常为32、64、128等。每经过一个路由器,其值减1,直到0时该数据报被丢弃。● 协议字段:占8比特。指明IP层所封装的上层协议类型,如ICMP(1)、IGMP(2) 、TCP(6)、UDP(17)等。● 头部校验和字段:占16比特。内容是根据IP头部计算得到的校验和码。计算方法是:对头部中每个16比特进行二进制反码求和。(和ICMP、IGMP、TCP、UDP不同,IP不对头部后的数据进行校验)。● 源IP地址、目标IP地址字段:各占32比特。用来标明发送IP数据报文的源主机地址和接收IP报文的目标主机地址。可选项字段:占32比特。用来定义一些任选项:如记录路径、时间戳等。这些选项很少被使用,同时并不是所有主机和路由器都支持这些选项。可选项字段的长度必须是32比特的整数倍,如果不足,必须填充0以达到此长度要求。TCP是一种可靠的、面向连接的字节流服务。源主机在传送数据前需要先和目标主机建立连接。然后,在此连接上,被编号的数据段按序收发。同时,要求对每个数据段进行确认,保证了可靠性。如果在指定的时间内没有收到目标主机对所发数据段的确认,源主机将再次发送该数据段。 TCP是一种可靠的、面向连接的字节流服务。源主机在传送数据前需要先和目标主机建立连接。然后,在此连接上,被编号的数据段按序收发。同时,要求对每个数据段进行确认,保证了可靠性。如果在指定的时间内没有收到目标主机对所发数据段的确认,源主机将再次发送该数据段。TCP头部结构:其中:● 源、目标端口号字段:占16比特。TCP协议通过使用"端口"来标识源端和目标端的应用进程。端口号可以使用0到65535之间的任何数字。● 顺序号字段:占32比特。用来标识从TCP源端向TCP目标端发送的数据字节流,它表示在这个报文段中的第一个数据字节。● 确认号字段:占32比特。只有ACK标志为1时,确认号字段才有效。它包含目标端所期望收到源端的下一个数据字节。● 头部长度字段:占4比特。给出头部占32比特的数目。没有任何选项字段的TCP头部长度为20字节;最多可以有60字节的TCP头部。● 标志位字段(U、A、P、R、S、F):占6比特。各比特的含义如下:◆ URG:紧急指针(urgent pointer)有效。◆ ACK:确认序号有效。◆ PSH:接收方应该尽快将这个报文段交给应用层。◆ RST:重建连接。◆ SYN:发起一个连接。◆ FIN:释放一个连接。● 窗口大小字段:占16比特。此字段用来进行流量控制。单位为字节数,这个值是本机期望一次接收的字节数。● TCP校验和字段:占16比特。对整个TCP报文段,即TCP头部和TCP数据进行校验和计算,并由目标端进行验证。● 紧急指针字段:占16比特。它是一个偏移量,和序号字段中的值相加表示紧急数据最后一个字节的序号。● 选项字段:占32比特。可能包括"窗口扩大因子"、"时间戳"等选项。UDP是一种不可靠的、无连接的数据报服务。源主机在传送数据前不需要和目标主机建立连接。数据被冠以源、目标端口号等UDP报头字段后直接发往目的主机。这时,每个数据段的可靠性依靠上层协议来保证。在传送数据较少、较小的情况下,UDP比TCP更加高效。UDP头部结构:● 源、目标端口号字段:占16比特。作用与TCP数据段中的端口号字段相同,用来标识源端和目标端的应用进程。● 长度字段:占16比特。标明UDP头部和UDP数据的总长度字节。● 校验和字段:占16比特。用来对UDP头部和UDP数据进行校验。和TCP不同的是,对UDP来说,此字段是可选项,而TCP数据段中的校验和字段是必须项。在每个TCP、UDP数据段中都包含源端口和目标端口字段。有时,我们把一个IP地址和一个端口号合称为一个套接字(Socket),而一个套接字对(Socket pair)可以唯一地确定互连网络中每个TCP连接的双方(客户IP地址、客户端口号、服务器IP地址、服务器端口号)。如图所示,是常见的一些协议和它们对应的服务端口号。需要注意的是,不同的应用层协议可能基于不同的传输层协议,如FTP、TELNET、SMTP协议基于可靠的TCP协议。TFTP、SNMP、RIP基于不可靠的UDP协议。同时,有些应用层协议占用了两个不同的端口号,如FTP的20、21端口,SNMP的161、162端口。这些应用层协议在不同的端口提供不同的功能。如FTP的21端口用来侦听用户的连接请求,而20端口用来传送用户的文件数据。再如,SNMP的161端口用于SNMP管理进程获取SNMP代理的数据,而162端口用于SNMP代理主动向SNMP管理进程发送数据。还有一些协议使用了传输层的不同协议提供的服务。如DNS协议同时使用了TCP 53端口和UDP 53端口。DNS协议在UDP的53端口提供域名解析服务,在TCP的53端口提供DNS区域文件传输服务。 来自陈十一
      TCP/IP四层模型

      运用tcp/ip协议传输数据时,数据时如何封装的?

      电脑或者设备发送数据的时候封装,接收数据的时候解封装。其中封装是指依据tcp/ip参考模型从上向下,也就是从应用层到数据链路层依次打上一个相应的头部字段,完成封装的过程发送出去。接收的时候过程正好相反。其中每一层的作用就是靠相应层次的头部字段来完成的。
      运用tcp/ip协议传输数据时,数据时如何封装的?

      简述tcp/ip网络模型数据封装的过程

      TCP/IP数据包的封装不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报(datagram),在链路层叫做帧(frame)。数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,最后将应用层数据交给应用程序处理。
      简述tcp/ip网络模型数据封装的过程

      OSI和TCP/IP中,数据传递时是怎么封装和解封装的

      在了解封装和解封装之前,你必须要知道什么是协议数据单元(PDU)! 在OSI七层模型或者TCP/IP协议栈的每一层都有一个PDU,各层的PDU负责属于所在层的功能。因为所有的网络设备都是基于OSI和TCP/IP标准开发的,所以这些PDU在数据传递的过程中,各个厂家的网络设备都可以识别。如下面两张图,分别是OSI参考模型和TCP/IP协议栈在各层加上PDU后的封装格式:OSI的各层的PDU封装如下:TCP/IP各层的PDU封装如下:数据封装:数据的封装,就是在用户发出的原始数据上,从最上层应用层开始,每层在把数据递交给下层之前,先添加上该层的PDU。使这个用户的原始数据包具有所有层次的功能属性,用来帮助该数据完成传递。例如:现有一个项目,需要由销售部、技术部、财务部、工程部来协同完成。首先,该项目由老板提出,由技术部在这个想法的基础上给出解决方案,再由财务部在解决方案的基础上进行项目经费预算,工程部在经费预算的基础上选择合适的零部件来完成产品的加工,然后由销售部门将产品销往各地。在这个项目的整个完成过程中,各个部门各兼所职,但是缺一不可,而且整个项目的流程都是固定的,依次要经过老板技术部财务部工程部销售部,才能完成。这些部门就好比OSI或者TCP/IP的层次,每个层次各兼所职,缺一不可,且流程固定。数据解封装:将收到的数据,逐层来解读该层的PDU,看看与本台电脑上的每层所负责的信息或者服务是否匹配,如果匹配,则会将数据的PDU在每层解开,最终剩下里面的原始数据。OSI的封装过程如下:用户准备好要传出去的原始数据加上应用层PDU表加上示层PDU加上会话层PDU加上传输层PDU加上网络层PDU加上数据链路层PDU将数据帧转成bit流从物理层传出OSI的解封装过程如下:从物理层收到bit流,转成数据帧交给数据链路层去掉数据链路层PDU去掉网络层的PDU去掉传输层的PDU去掉应用层的PDU得到原始数据TCP/IP的封装过程如下:用户准备好要传出去的原始数据加上应用层PDU加上传输层PDU加上网络层PDU加上数据链路层PDU转成bit流从物理层传出TCP/IP的解封装过程如下:从物理层收到bit流,转成数据帧交给数据链路层去掉数据链路层PDU去掉网络层的PDU去掉传输层的PDU去掉应用层的PDU得到原始数据参考:http://www.ctowhy.com/117.html
      OSI和TCP/IP中,数据传递时是怎么封装和解封装的

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/44348.html

          热门文章

          文章分类