tcp/ip协议主要包括哪些协议
tcp/ip协议是一个协议族,主要功能是为网络传输提供服务。 tcp/ip协议分为4层,链路层、传输层、网络层和应用层。每一层完成不同的功能,共同作用完成网络传输服务。其中,下面的3层:链路层、传输层、网络层主要是完成网络传输的,只有应用层对用户来说可见,例如:常见的http、ftp都是应用层协议。 如果想了解更详细的,我推荐你看一下《tcpip协议详解卷1-协议》、《tcpip协议详解卷2-实现》、《tcpip协议详解卷3-tcp事务协议》,看完这些我相信一般的问题都难不倒你了。

TCP/IP协议是什么?
TCP/IP协议(又名:网络通讯协议)即传输控制协议/互联网协议,是一个网络通信模型,以及一整个网络传输协议家族。这一模型是Internet最基本的协议,也是Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。 其定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。TCP负责发现传输的问题,而IP是给因特网的每一台联网设备规定一个地址。 为了减少网络设计的复杂性,大多数网络都采用分层结构。对于不同的网络,层的数量、名字、内容和功能都不尽相同。在相同的网络中,一台机器上的第N层与另一台机器上的第N层可利用第N层协议进行通信,协议基本上是双方关于如何进行通信所达成的一致。不同机器中包含的对应层的实体叫做对等进程。在对等进程利用协议进行通信时,实际上并不是直接将数据从一台机器的第N层传送到另一台机器的第N层,而是每一层都把数据连同该层的控制信息打包交给它的下一层,它的下一层把这些内容看做数据,再加上它这一层的控制信息一起交给更下一层,依此类推,直到最下层。最下层是物理介质,它进行实际的通信。相邻层之间有接口,接口定义下层向上层提供的原语操作和服务。相邻层之间要交换信息,对等接口必须有一致同意的规则。层和协议的集合被称为网络体系结构。每一层中的活动元素通常称为实体,实体既可以是软件实体,也可以是硬件实体。第N层实体实现的服务被第N+1层所使用。在这种情况下,第N层称为服务提供者,第N+1层称为服务用户。服务是在服务接入点提供给上层使用的。服务可分为面向连接的服务和面向无连接的服务,它在形式上是由一组原语来描述的。这些原语可供访问该服务的用户及其他实体使用。TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。 面向连接的服务(例如 Telnet、 FTP、 rlogin、 X Windows和 SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收 域名数据库),但使用UDP传送有关单个主机的信息。

网络--TCP/IP(四)TCP 与 UDP 协议简介
从本节开始,我们开始学习最重要的传输层。传输层位于OSI七层模型的第四层(从下往上)。顾名思义,传输层的作用是实现应用程序间的通信。网络层的作用是保证数据在不同数据链路上传输的可达性,至于如何传输则是由传输层负责。常见的传输层协议主要有TCP和UDP协议。UDP协议最大的特点就是简单,UDP首部如图:和UDP首部相比,TCP首部要复杂的多。解析这个首部的时间也会相应的增加,这也是TCP连接的效率低于UDP的原因之一。TCP是面向有连接的协议,连接在每次通信前被建立,通信结束后被关闭。了解连接建立和关闭的过程通常是考察的重点。连接的建立和关闭可以用一张图来表示:通常情况下我们认为客户端首先发起连接请求。1.发送端发送一个SYN=1,ACK=0标志的数据包给接收端,请求进行连接,这是第一次握手;2.接收端收到请求并且允许连接的话,就会发送一个SYN=1,ACK=1标志的数据包给发送端,告诉它,可以通讯了,并且让发送端发送一个确认数据包,这是第二次握手;3.最后,发送端发送一个SYN=0,ACK=1的数据包给接收端,告诉它连接已被确认,这就是第三次握手。之后,一个TCP连接建立,开始通讯。*SYN:同步标志同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立TCP连接时有效。它提示TCP连接的服务端检查序列编号,该序列编号为TCP连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP序列编号看作是一个范围从0到4,294,967,295的32位计数器。通过TCP连接交换的数据中每一个字节都经过序列编号。在TCP报头中的序列编号栏包括了TCP分段中第一个字节的序列编号。*ACK:确认标志确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。TCP报头内的确认编号栏内包含的确认编号(w+1,Figure-1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。*RST:复位标志复位标志有效。用于复位相应的TCP连接。*URG:紧急标志紧急(The urgent pointer) 标志有效。紧急标志置位,*PSH:推标志该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用处理。在处理 telnet 或 rlogin 等交互模式的连接时,该标志总是置位的。*FIN:结束标志带有该标志置位的数据包用来结束一个TCP回话,但对应端口仍处于开放状态,准备接收后续数据根据一般思路,我们认为第三次是多余的,TCP协议为什么还要增加第三次的握手呢?这是因为在网络请求的时候,我们应该时刻记住“网络是不安全的,数据包是可能丢失的”。假设没有第三次确认,客户端向服务端发送了SYN包,请求建立连接。由于网络原因,服务器没有及时收到这个包,于是客户端重新发送了SYN包。正常建立了连接。此时超时的那个确认包到达了服务端,如果是两次握手此连接就建立了,服务端就建立了一个空连接,白白浪费资源。如果是三次,客户端判断这个确认包是无效的,就丢弃了。三次握手实际其实解决了第二步丢包问题。那么第三步的ACK包丢失了,TCP协议是如何处理的呢?按照TCP协议处理丢包问题的一般方法,服务器会重新向客户端发送确认包,知道ACK确认为止。但实际上这种做法有可能遭到SYN泛洪攻击。所谓的泛洪攻击,是指发送方伪造多个IP地址,模拟三次握手的过程。当服务器返回ACK后,攻击方故意不确认,从而使服务器不断重发ACK。由于服务器长时间处于半连接状态,最后消耗过多的CUP和内存资源导致死机。所以服务端采用的是这种方法,发送RST数据包,进入close状态,这个RST数据包中的TCP首部中的控制位中的RST位被置为1。这表示连接信息全部被初始化,原有的TCP通信不能继续。客户端如果还想建立TCP连接,需要从第一步握手重新开始。(1)客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送(报文段4)。(2)服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。(3)服务器B关闭与客户端A的连接,发送一个FIN给客户端A(报文段6)。(4)客户端A发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。

TCP/IP网络体系结构中,各层内分别有什么协议,每一种协议的作用是什么?
一、TCP/IP网络体系结构中,常见的接口层协议有:Ethernet 802.3、Token Ring 802.5、X.25、Frame relay、HDLC、PPP ATM等。1.网络层网络层包括:IP(Internet Protocol)协议、ICMP(Internet Control Message Protocol) 、控制报文协议、ARP(Address Resolution Protocol)地址转换协议、RARP(Reverse ARP)反向地址转换协议。2.传输层传输层协议主要是:传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram protocol)。3.应用层应用层协议主要包括如下几个:FTP、TELNET、DNS、SMTP、RIP、NFS、HTTP。二、TCP/IP网络体系结构中,每一种协议的作用有:TCP/IP协议不依赖于任何特定的计算机硬件或操作系统,提供开放的协议标准,即使不考虑Internet,TCP/IP协议也获得了广泛的支持。所以TCP/IP协议成为一种联合各种硬件和软件的实用系统。2.TCP/IP协议并不依赖于特定的网络传输硬件,所以TCP/IP协议能够集成各种各样的网络。用户能够使用以太网(Ethernet)、令牌环网(Token Ring Network)、拨号线路(Dial-up line)、X.25网以及所有的网络传输硬件。3.统一的网络地址分配方案,使得整个TCP/IP设备在网中都具有惟一的地址4.标准化的高层协议,可以提供多种可靠的用户服务。
TCP/IP传输协议是一个四层的体系结构,应用层、传输层、网络层和网络接口层都包含其中。1、应用层:可以建立或解除与其他节点的联系,这样可以充分节省网络资源。2、运输层:运输层在整个TCP/IP协议中起到了中流砥柱的功能,在运输层中,TCP和UDP也同样起到了中流砥柱的作用。3、网络层:在TCP/IP协议中网络层可以进行网络连接的建立和终止以及IP地址的寻找等功能。4、网络接口层:由于网络接口层兼并了物理层和数据链路层,所以网络接口层既是传输数据的物理媒介。参考模型TCP/IP由它的2个主要协议即TCP协议和IP协议而得名。TCP/IP是Internet上所有网络和主机之间进行交流时所使用的共同“语言”,是Internet上使用的一组完整的标准网络连接协议。通常所说的TCP/IP协议实际上包含了大量的协议和应用,且由多个独立定义的协议组合在一起,因此,更确切地说,应该称其为TCP/IP协议集。以上内容参考:百度百科-计算机网络体系结构
一、网络接入层:1、MAC:媒体接入控制,主要功能是调度,把逻辑信道映射到传输信道,负责根据逻辑信道的瞬时源速率为各个传输信道选择适当的传输格式。MAC层主要有3类逻辑实体,第一类是MAC-b,负责处理广播信道数据;第二类是MAC-c,负责处理公共信道数据;第三类是MAC-d,负责处理专用信道数据。2、LC:无线链路控制,不仅能载控制面的数据,而且也承载用户面的数据。RLC子层有三种工作模式,分别是透明模式、非确认模式和确认模式,针对不同的业务采用不同的模式。3、BMC:广播/组播控制,负责控制多播/组播业务。4、PDCP:分组数据汇聚协议,负责对IP包的报头进行压缩和解压缩,以提高空中接口无线资源的利用率。二、网络层:1、IP:IP协议提供不可靠、无连接的传送服务。IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制。IP地址是重要概念2、ARP:地址解析协议。基本功能就是通过目标设备的IP地址,查询目标设备的MAC地址,以保证通信的顺利进行。以太网中的数据帧从一个主机到达网内的另一台主机是根据48位的以太网地址(硬件地址)来确定接口的,而不是根据32位的IP地址。3、RARP:反向地址转换协议。允许局域网的物理机器从网关服务器的 ARP 表或者缓存上请求其 IP 地址。局域网网关路由器中存有一个表以映射MAC和与其对应的 IP 地址。当设置一台新的机器时,其 RARP 客户机程序需要向路由器上的 RARP 服务器请求相应的 IP 地址。4、IGMP:组播协议包括组成员管理协议和组播路由协议。组成员管理协议用于管理组播组成员的加入和离开,组播路由协议负责在路由器之间交互信息来建立组播树。5、ICMP:Internet控制报文协议。用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但是对于用户数据的传递起着重要的作用。6 、BGP :边界网关协议。处理像因特网大小的网络和不相关路由域间的多路连接。7、RIP:路由信息协议。是一种分布式的基于距离矢量的路由选择协议。三、传输层:1、TCP: 一种面向连接的、可靠的、基于字节流的传输层通信协议。2、UDP: 用户数据报协议,一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。3、RTP: 实时传输协议,为数据提供了具有实时特征的端对端传送服务,如在组播或单播网络服务下的交互式视频音频或模拟数据。4、SCTP:一个面向连接的流控制传输协议,它可以在两个端点之间提供稳定、有序的数据传递服务。SCTP可以看做是TCP协议的改进,它继承了TCP较为完善的拥塞控制并改进TCP的一些不足。四、应用层:1、HTTP:超文本传输协议,基于TCP,是用于从WWW服务器传输超文本到本地浏览器的传输协议。它可以使浏览器更加高效,使网络传输减少。2、SMTP:简单邮件传输协议,是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。3、SNMP:简单网络管理协议,由一组网络管理的标准组成,包含一个应用层协议、数据库模型和一组资源对象。4、FTP:文件传输协议,用于Internet上的控制文件的双向传输。同时也是一个应用程序。5、Telnet:是Internet远程登陆服务的标准协议和主要方式。为用户提供了在本地计算机上完成远程主机工作的能力。在终端使用者的电脑上使用telnet程序,用它连接到服务器。6、SSH:安全外壳协议,为建立在应用层和传输层基础上的安全协议。SSH是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。7、NFS:网络文件系统,是FreeBSD支持的文件系统中的一种,允许网络中的计算机之间通过TCP/IP网络共享资源。TCP/IP网络体系结构中,各层作用:1、网络接入层:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性,确保原始的数据可在各种物理媒体上传输,为设备之间的数据通信提供传输媒体及互联设备,为数据传输提供可靠的环境。2、网络层:提供阻塞控制,路由选择(静态路由,动态路由)等。3、传输层:提供分割与重组数据,按端口号寻址,连接管理差错控制和流量控制,纠错的功能。传输层要向会话层提供通信服务的可靠性,避免报文的出错、丢失、延迟时间紊乱、重复、乱序等差错。4、应用层:与其它计算机进行通讯的一个应用,它是对应应用程序的通信服务的。
TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。TCP/IP中的协议以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:1. IP网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。2. TCP如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。3.UDPUDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。4.ICMPICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。5. TCP和UDP的端口结构TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:源IP地址发送包的IP地址。目的IP地址 接收包的IP地址。源端口 源系统上的连接的端口。目的端口目的系统上的连接的端口。 端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。
网络接口层 常见的接口层协议有:Ethernet 802.3、Token Ring 802.5、X.25、Frame relay、HDLC、PPP ATM等。网络层网络层包括:IP(Internet Protocol)协议、ICMP(Internet Control Message Protocol)控制报文协议、ARP(Address Resolution Protocol)地址转换协议、RARP(Reverse ARP)反向地址转换协议。传输层传输层协议主要是:传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram protocol)。应用层应用层协议主要包括如下几个:FTP、TELNET、DNS、SMTP、RIP、NFS、HTTP。 。。。。。。

常见的网络协议有哪几种,分别是如何定义的?
常见的网络协议有TCP/IP协议、NetBEUI、IPX/SPX协议。1、TCP/IP协议,是这三大协议中最重要的一个,是互联网的基础协议,任何和互联网有关的操作都离不开TCP/IP协议。但TCP/IP协议在局域网中的通信效率不高,使用它在浏览“网上邻居”中的计算机时,会出现不能正常浏览的现象。2、NetBEUI,即NetBios增强用户接口。它是NetBIOS协议的增强版本,曾被许多操作系统采用。NETBEUI协议在许多情形下很有用,是WINDOWS98之前的操作系统的缺省协议。NetBEUI协议是一种短小精悍、通信效率高的广播型协议。3,、IPX/SPX协议,是Novell开发的专用于NetWare网络中的协议,但大部分可以联机的游戏都支持IPX/SPX协议。虽然这些游戏通过TCP/IP协议也能联机,但显然还是通过IPX/SPX协议更省事,因为根本不需要任何设置。扩展资料:由于网络节点之间联系的复杂性,在制定协议时,通常把复杂成分分解成一些简单成分,然后再将它们复合起来。网络协议的层次结构如下:1、结构中的每一层都规定有明确的服务及接口标准。2、把用户的应用程序作为最高层3、除了最高层外,中间的每一层都向上一层提供服务,同时又是下一层的用户。参考资料来源:百度百科-网络协议
网络协议(Protocol)是一种特殊的软件,是计算机网络实现其功能的最基本机制。网络协议的本质是规则,即各种硬件和软件必须遵循的共同守则。网络协议并不是一套单独的软件,它融合于其他所有的软件系统中,因此可以说,协议在网络中无所不在。网络协议遍及OSI通信模型的各个层次,从我们非常熟悉的TCP/IP、HTTP、FTP协议,到OSPF、IGP等协议,有上千种之多。对于普通用户而言,不需要关心太多的底层通信协议,只需要了解其通信原理即可。在实际管理中,底层通信协议一般会自动工作,不需要人工干预。但是对于第三层以上的协议,就经常需要人工干预了,比如TCP/IP协议就需要人工配置它才能正常工作。 常用的三个网络协议网络中不同的工作站,服务器之间能传输数据,源于协议的存在。随着网络的发展,不同的开发商开发了不同的通信方式。为了使通信成功可靠,网络中的所有主机都必须使用同一语言,不能带有方言。因而必须开发严格的标准定义主机之间的每个包中每个字中的每一位。这些标准来自于多个组织的努力,约定好通用的通信方式,即协议。这些都使通信更容易。已经开发了许多协议,但是只有少数被保留了下来。那些协议的淘汰有多中原因---设计不好、实现不好或缺乏支持。而那些保留下来的协议经历了时间的考验并成为有效的通信方法。当今局域网中最常见的三个协议是MICROSOFT的NETBEUI、NOVELL的IPX/SPX和交叉平台TCP/IP。一:NETBEUINETBEUI是为IBM开发的非路由协议,用于携带NETBIOS通信。NETBEUI缺乏路由和网络层寻址功能,既是其最大的优点,也是其最大的缺点。因为它不需要附加的网络地址和网络层头尾,所以很快并很有效且适用于只有单个网络或整个环境都桥接起来的小工作组环境。因为不支持路由,所以NETBEUI永远不会成为企业网络的主要协议。NETBEUI帧中唯一的地址是数据链路层媒体访问控制(MAC)地址,该地址标识了网卡但没有标识网络。路由器靠网络地址将帧转发到最终目的地,而NETBEUI帧完全缺乏该信息。网桥负责按照数据链路层地址在网络之间转发通信,但是有很多缺点。因为所有的广播通信都必须转发到每个网络中,所以网桥的扩展性不好。NETBEUI特别包括了广播通信的记数并依赖它解决命名冲突。一般而言,桥接NETBEUI网络很少超过100台主机。近年来依赖于第二层交换器的网络变得更为普遍。完全的转换环境降低了网络的利用率,尽管广播仍然转发到网络中的每台主机。事实上,联合使用100-BASE-T Ethernet,允许转换NetBIOS网络扩展到350台主机,才能避免广播通信成为严重的问题。二:IPX/SPXIPX是NOVELL用于NETWARE客户端/服务器的协议群组,避免了NETBEUI的弱点。但是,带来了新的不同弱点。IPX具有完全的路由能力,可用于大型企业网。它包括32位网络地址,在单个环境中允许有许多路由网络。IPX的可扩展性受到其高层广播通信和高开销的限制。服务广告协议(Service Advertising Protocol,SAP)将路由网络中的主机数限制为几千。尽管SAP的局限性已经被智能路由器和服务器配置所克服,但是,大规模IPX网络的管理员仍是非常困难的工作。三:TCP/IP每种网络协议都有自己的优点,但是只有TCP/IP允许与Internet完全的连接。TCP/IP是在60年代由麻省理工学院和一些商业组织为美国国防部开发的,即便遭到核攻击而破坏了大部分网络,TCP/IP仍然能够维持有效的通信。ARPANET就是由基于协议开发的,并发展成为作为科学家和工程师交流媒体的Internet。TCP/IP同时具备了可扩展性和可靠性的需求。不幸的是牺牲了速度和效率(可是:TCP/IP的开发受到了政府的资助)。Internet公用化以后,人们开始发现全球网的强大功能。Internet的普遍性是TCP/IP至今仍然使用的原因。常常在没有意识到的情况下,用户就在自己的PC上安装了TCP/IP栈,从而使该网络协议在全球应用最广。TCP/IP的32位寻址功能方案不足以支持即将加入Internet的主机和网络数。因而可能 代替当前实现的标准是IPv6。
常见的协议有:TCP/IP协议、IPX/SPX协议、NetBEUI协议

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/44350.html。