tcp三次握手四次挥手面试题(三次握手和四次挥手图解)

      最后更新:2022-11-12 10:33:07 手机定位技术交流文章

      TCP为什么需要3次握手与4次挥手

      三次握手(建立连接) 1)客户端发送一个带SYN标志的TCP报文到服务器,这是第1个报文;2)服务端回应客户端,是第2个报文,同时带有ACK标志和SYN标志,以此回应第1步,SYN用于询问客户端是否准备好进行通讯;3)客户再次回应服务端一个ACK报文,是第3个报文。为什么要进行3次握手?当服务端的LISTEN状态下的SOCKET收到SYN报文的请求后,可以把ACK和SYN放在1个报文中来发送,其中ACK的作用是应答,而SYN的作用是同步。四次挥手(连接终止协议)1)TCP客户端发哦是那个一个FIN,用于关闭客户发送到服务器的数据传送;2)服务器收到这个FIN,返回一个ACK,和SYN一样,一个FIN将占用一个序号;3)服务器关闭客户端的连接,发送FIN给客户端;4)客户端返回ACK报文,并将确认序号设置为收到的序号+1。为什么要进行4次挥手? 在TCP连接时,是将SYN和ACK一起发送的,但为什么挥手却没有一起发送呢?因为TCP是全双工模式,接收到FIN时将没有数据再发来,但还是可以继续发送数据。
      安全考虑,需要通信双方确认
      TCP为什么需要3次握手与4次挥手

      一文搞懂TCP的三次握手和四次挥手

      TCP的三次握手和四次挥手实质就是TCP通信的连接和断开。 三次握手:为了对每次发送的数据量进行跟踪与协商,确保数据段的发送和接收同步,根据所接收到的数据量而确认数据发送、接收完毕后何时撤消联系,并建立虚连接。四次挥手:即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。TCP三次握手、四次挥手时序图TCP协议位于传输层,作用是提供可靠的字节流服务,为了准确无误地将数据送达目的地,TCP协议采纳三次握手策略。三次握手原理:第1次握手:客户端发送一个带有SYN(synchronize)标志的数据包给服务端;第2次握手:服务端接收成功后,回传一个带有SYN/ACK标志的数据包传递确认信息,表示我收到了;第3次握手:客户端再回传一个带有ACK标志的数据包,表示我知道了,握手结束。其中:SYN标志位数置1,表示建立TCP连接;ACK标志表示验证字段。可通过以下趣味图解理解三次握手:三次握手过程详细说明:1、客户端发送建立TCP连接的请求报文,其中报文中包含seq序列号,是由发送端随机生成的,并且将报文中的SYN字段置为1,表示需要建立TCP连接。(SYN=1,seq=x,x为随机生成数值);2、服务端回复客户端发送的TCP连接请求报文,其中包含seq序列号,是由回复端随机生成的,并且将SYN置为1,而且会产生ACK字段,ACK字段数值是在客户端发送过来的序列号seq的基础上加1进行回复,以便客户端收到信息时,知晓自己的TCP建立请求已得到验证。(SYN=1,ACK=x+1,seq=y,y为随机生成数值)这里的ack加1可以理解为是确认和谁建立连接;3、客户端收到服务端发送的TCP建立验证请求后,会使自己的序列号加1表示,并且再次回复ACK验证请求,在服务端发过来的seq上加1进行回复。(SYN=1,ACK=y+1,seq=x+1)。由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。四次挥手原理:第1次挥手:客户端发送一个FIN,用来关闭客户端到服务端的数据传送,客户端进入FIN_WAIT_1状态;第2次挥手:服务端收到FIN后,发送一个ACK给客户端,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),服务端进入CLOSE_WAIT状态;第3次挥手:服务端发送一个FIN,用来关闭服务端到客户端的数据传送,服务端进入LAST_ACK状态;第4次挥手:客户端收到FIN后,客户端t进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,服务端进入CLOSED状态,完成四次挥手。其中:FIN标志位数置1,表示断开TCP连接。可通过以下趣味图解理解四次挥手:四次挥手过程详细说明:1、客户端发送断开TCP连接请求的报文,其中报文中包含seq序列号,是由发送端随机生成的,并且还将报文中的FIN字段置为1,表示需要断开TCP连接。(FIN=1,seq=x,x由客户端随机生成);2、服务端会回复客户端发送的TCP断开请求报文,其包含seq序列号,是由回复端随机生成的,而且会产生ACK字段,ACK字段数值是在客户端发过来的seq序列号基础上加1进行回复,以便客户端收到信息时,知晓自己的TCP断开请求已经得到验证。(FIN=1,ACK=x+1,seq=y,y由服务端随机生成);3、服务端在回复完客户端的TCP断开请求后,不会马上进行TCP连接的断开,服务端会先确保断开前,所有传输到A的数据是否已经传输完毕,一旦确认传输数据完毕,就会将回复报文的FIN字段置1,并且产生随机seq序列号。(FIN=1,ACK=x+1,seq=z,z由服务端随机生成);4、客户端收到服务端的TCP断开请求后,会回复服务端的断开请求,包含随机生成的seq字段和ACK字段,ACK字段会在服务端的TCP断开请求的seq基础上加1,从而完成服务端请求的验证回复。(FIN=1,ACK=z+1,seq=h,h为客户端随机生成)至此TCP断开的4次挥手过程完毕。LISTEN:等待从任何远端TCP 和端口的连接请求。SYN_SENT:发送完一个连接请求后等待一个匹配的连接请求。SYN_RECEIVED:发送连接请求并且接收到匹配的连接请求以后等待连接请求确认。ESTABLISHED:表示一个打开的连接,接收到的数据可以被投递给用户。连接的数据传输阶段的正常状态。FIN_WAIT_1:等待远端TCP 的连接终止请求,或者等待之前发送的连接终止请求的确认。FIN_WAIT_2:等待远端TCP 的连接终止请求。CLOSE_WAIT:等待本地用户的连接终止请求。CLOSING:等待远端TCP 的连接终止请求确认。LAST_ACK:等待先前发送给远端TCP 的连接终止请求的确认(包括它字节的连接终止请求的确认)TIME_WAIT:等待足够的时间过去以确保远端TCP 接收到它的连接终止请求的确认。TIME_WAIT 两个存在的理由:1.可靠的实现tcp全双工连接的终止;2.允许老的重复分节在网络中消逝。 CLOSED:不在连接状态(这是为方便描述假想的状态,实际不存在)。
      一文搞懂TCP的三次握手和四次挥手

      三次握手&&四次挥手

      TCP是面向连接的协议。传输连接是用来传送TCP报文的,TCP连接传输的三个阶段分别为:连接建立、数据传送和连接释放。TCP连接的建立采用客户服务器模式。主动发起连接建立的应用进程叫做客户,而被动等待连接建立的应用进程叫做服务器。TCP建立连接的过程叫做握手,握手需要在客户和服务器之间交换三个TCP报文段,三次握手的过程如下图所示。(2)第二次握手:服务器收到 SYN报文段后,如同意连接,则服务器会为该TCP连接分配缓存和变量,并向客户端返回确认报文段,在确认报文段中同步位 SYN = 1 和 确认位 ACK= 1,确认号 ack = x + 1,同时也为自己选择一个初始序号 seq = y。这时TCP服务器进程进入同步收到(SYN-RCVD)状态。(3)第三次握手:客户进程在收到服务器进程的确认报文后,客户端为该TCP连接分配缓存和变量,并向服务器端返回一个报文段,这个报文段是对服务器确认报文段进行确认,该报文段中 ACK = 1,确认号 seq = y + 1,而自己序号为 x + 1(即第二次握手服务器确认报文段的确认号)。客户端在发送ACK报文段后进入已建立连接(ESTABLISHED)状态,这时TCP连接已经建立。当服务器收到客户端的确认后,也进入ESTABLISHED状态。这样选择序号的目的是为了防止由于网络路由TCP报文段可能存在延迟抵达与排序混乱的问题,从而而导致某个连接的一方对它作错误的解释。下图表示了建立连接使用固定的序号存在的问题:由于一个TCP连接是被一对端点所表示的,其中包括2个IP地址和2个端口号构成的4元组,因此即便是同一个连接也会出现不同的实例,如果连接由于某个报文段长时间延迟而关闭,然后又以相同的4元组被重新打开,那么可以相信延迟的报文段又会被视为有效据重新进入新连接的数据流中,这就会导致数据乱序问题。为了避免上述的问题,避免连接实例间的序号重叠可以将风险降至最低。如前文所述,一个TCP报文段只有同时具备连接的4元组与当前活动窗口的序列号,才会在通信过程中被对方认为是正确的。然而,这也反应了TCP连接的脆弱性:如果选择合适的序列号、IP地址和端口号,那么任何人都能伪造一个TCP报文段,从而打断TCP的正常连接。所以使用初始化序号的方式(通常随机生成序号)使得序列号变得难猜,或者使用加密来避免利用这种缺点被攻击。所以,可以明白在建立TCP连接时,客户端和服务器端初始化序列号,就避免了上述的问题。前面说过,TCP序号占32位,范围是0~232- 1,并且可以重用。假如 第一次握手可以携带数据的话,如果有人使用伪TCP报文段恶意攻击服务器,那么每次都在第一次握手中的SYN报文中携带大量的数据,因为它不会理会服务器的发送和接收能力是否正常,不断地给服务器重复发送这样携带大量数据的SYN报文,这会导致服务器需要花费大量的时间和内存来接收这些报文数据,这会将导致服务器连接资源和内存消耗殆尽。所以,之所以第一次握手不能携带数据,其中的一个原因就是避免让服务器受到攻击。而对于第三次握手,此时客户端已经建立了连接,通过前两次已经知道了服务器的接收正常,并且也知道了服务器的接收能力是多少,所以可以携带数据。根据前面描述,在第一次握手,客户端向服务发送建立连接请求,第二次握手,服务器同意建立连接,并向客户端返回一个确认报文,至此客户端已经知道了服务器同意建立连接,为什么客户端还需要对服务器的允许连接报文段进行确认?第三个ACK报文段的目的简单来说主要是为了实现可靠数据传输。三次握手的目的不仅在于让通信双方了解一个连接正在建立,还在于利用数据包的选项来承载特殊的信息,交换初始序列号(Initial Sequence,ISN)。为了实现可靠传输,TCP协议通信双方,都必须维护一个序列号,以标识发送出去的数据报中,哪些是已经被对方收到的。三次握手的过程是通信双方想要告知序列号起始值,并确认已经收到序列号的必经过程。如上图,在两次握手过程中,通信双方都随机选择了自己的初始段序号,并且第二次握手的时候客户端收到了自己的确认序号,确认了自己的序列号,而服务器端还没有确认自己的序列号,没有收到确认序号, 如果这时候两次握手下就进行数据传递, 序号没有同步,数据就会乱序。即如果只是两次握手,最多只有客户端的起始序列号能被确认,而服务器断的序列号则得不到确认。在三次握手的过程中,服务器为了响应一个受到的SYN报文段,会分配并初始化连接变量和缓存,然后服务器发送一个SYNACK报文段进行响应,并等待客户端的ACK报文段。如果客户不发送ACK来完成该三次握手的第三步,最终(通常在一分多钟之后)服务器将终止该半开连接并回收资源。这种TCP连接管理协议的特性就会有这样一个漏洞,攻击者发送大量的TCP SYN报文段,而不完成第三次握手的步骤。随着这种SYN报文段的不断到来,服务器不断为这些半开连接分配资源,从而导致服务器连接资源被消耗殆尽。这种攻击就是SYN泛供攻击。为了应对这种攻击,现在有一种有效的防御系统,称为SYN cookie。SYN cookie的工作方式如下:连接释放的四次挥手过程如下图所示:(2)第二次挥手:服务器收到连接释放报文段后即发出确认,确认为ACK = 1,确认号为ack = u + 1,序号seq = v(其值是服务器前面已传送过的数据最后一个字节的序号加1),然后服务器就进入了关闭等待(CLOSE-WAIT)状态。(3)第三次挥手:如果此时服务器没有数据要发送了,此时服务器向客户端发出连接释放报文段,其FIN = 1,假设器序号为seq = w(在半关闭状态下服务器可能又发送了一些数据),服务器必须重复上次以发送的确认号ack = u + 1(因为客户端没有向服务器发送过数据,所以确认号和上次一致)。这时,服务器进入最后确认(LAST-ACK)状态,等待客户端的确认。(4)第四次挥手:客户端在收到服务器端发出的连接释放报文段后,必须对此发出确认,在确认报文段中将ACK置位1,确认号ack = w + 1,而自己的序号为seq = u + 1。之后客户端进入时间等待(TIME-WAIT)状态。在经过时间等待计时器设置的时间2MSL后,客户端才进入关闭(CLOSE)状态这是为了保证客户端发送的最后一个ACK报文段能够到达服务器端。客户端发送的ACK报文段可能丢失,因而使服务器收不到对自己已发送的释放连接报文段的确认。服务器会重传连接释放报文段,重新启动2MSL计时器,最终,客户端和服务器端都能进入CLOSE状态。在建立连接时,服务器端处于LISTEN状态时,当收到SYN报文段的建立连接请求后,它可以把ACK报文段和SYN报文段(ACK报文段起确认作用,即确认客户端的连接建立请求;SYN报文段起同步作用)放在一起发送,所以在连接建立时四次握手(即第二次握手时,服务器的ACK报文段和SYN报文段分开发送)可以合并为三次握手。而在释放连接时需要四次是因为TCP连接的半关闭造成的。由于TCP是全双工的(即数据可在两个方向上同时传递),因此,每个方向都必须要单独进行关闭,这个单方向的关闭就叫半关闭。在关闭连接时,当服务器收到客户端的FIN报文通知时,它仅仅表示客户端没有数据发送服务器了;但服务器未必将所有的数据都全部发送给了客户端,所以服务器端未必马上也要关闭连接,也即服务器端可能还需要发送一些数据给客户端之后,再发送FIN报文给客户端来表示现在可以关闭连接了,所以它这里的ACK报文和FIN报文多数情况下都是分开发送的,这也是为什么释放连接时需要交换四次报文了。
      三次握手&&四次挥手

      TCP三次握手与四次挥手

      传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。 TCP旨在适应支持多网络应用的分层协议层次结构。 连接到不同但互连的计算机通信网络的主计算机中的成对进程之间依靠TCP提供可靠的通信服务。TCP假设它可以从较低级别的协议获得简单的,可能不可靠的数据报服务。 原则上,TCP应该能够在从硬线连接到分组交换或电路交换网络的各种通信系统之上操作。传输控制协议(TCP,Transmission Control Protocol)是为了在不可靠的互联网络上提供可靠的端到端字节流而专门设计的一个传输协议。互联网络与单个网络有很大的不同,因为互联网络的不同部分可能有截然不同的拓扑结构、带宽、延迟、数据包大小和其他参数。TCP的设计目标是能够动态地适应互联网络的这些特性,而且具备面对各种故障时的健壮性。三次握手过程理解第一次握手:建立连接时,客户端发送syn包(syn=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(syn=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。举个例子一对情侣准备周天去看电影。第一次握手 男孩发送:周天去看电影吧。第二次握手 女孩回应:好的。第三次握手 男孩回应:那说好了。1、为什么不能用两次握手进行连接?3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。两次握手出现意外时,将会出现资源的浪费。握手分为Server s,Client c。两次握手,当C想要建立连接时发送一个SYN,然后等待ACK,结果这个SYN因为网络问题没有及时到达S,所以C在一段时间内没收到ACK后,再发送一个SYN,这次S顺利收到,接着C也收到ACK,这时C发送的第一个SYN终于到了S,对于S来说这是一个新连接请求,然后S又为这个连接申请资源,返回ACK,然而这个SYN是个无效的请求,C收到这个SYN的ACK后也并不会理会它,而S却不知道,S会一直为这个连接维持着资源,造成资源的浪费。三次握手出现错误时的应对措施第一次握手A发送SYN传输失败,A,B都不会申请资源,连接失败。如果一段时间内发出多个SYN连接请求,那么A只会接受它最后发送的那个SYN的SYN+ACK回应,忽略其他回应全部回应,B中多申请的资源也会释放第二次握手B发送SYN+ACK传输失败,A不会申请资源,B申请了资源,但收不到A的ACK,过一段时间释放资源。如果是收到了多个A的SYN请求,B都会回复SYN+ACK,但A只会承认其中它最早发送的那个SYN的回应,并回复最后一次握手的ACK第三次握手ACK传输失败,B没有收到ACK,释放资源,对于后序的A的传输数据返回RST。实际上B会因为没有收到A的ACK会多次发送SYN+ACK,次数是可以设置的,如果最后还是没有收到A的ACK,则释放资源,对A的数据传输返回RST。TCP的四次挥手(1)首先客户端想要释放连接,向服务器端发送一段TCP报文,其中:标记位为FIN,表示“请求释放连接“;序号为Seq=U;随后客户端进入FIN-WAIT-1阶段,即半关闭阶段。并且停止在客户端到服务器端方向上发送数据,但是客户端仍然能接收从服务器端传输过来的数据。注意:这里不发送的是正常连接时传输的数据(非确认报文),而不是一切数据,所以客户端仍然能发送ACK确认报文。(2)服务器端接收到从客户端发出的TCP报文之后,确认了客户端想要释放连接,随后服务器端结束ESTABLISHED阶段,进入CLOSE-WAIT阶段(半关闭状态)并返回一段TCP报文。前"两次挥手"既让服务器端知道了客户端想要释放连接,也让客户端知道了服务器端了解了自己想要释放连接的请求。于是,可以确认关闭客户端到服务器端方向上的连接了(3)服务器端自从发出ACK确认报文之后,经过CLOSED-WAIT阶段,做好了释放服务器端到客户端方向上的连接准备,再次向客户端发出一段TCP报文,其中:标记位为FIN,ACK,表示“已经准备好释放连接了”。注意:这里的ACK并不是确认收到服务器端报文的确认报文。序号为Seq=W;确认号为Ack=U+1;表示是在收到客户端报文的基础上,将其序号Seq值加1作为本段报文确认号Ack的值。随后服务器端结束CLOSE-WAIT阶段,进入LAST-ACK阶段。并且停止在服务器端到客户端的方向上发送数据,但是服务器端仍然能够接收从客户端传输过来的数据。(4)客户端收到从服务器端发出的TCP报文,确认了服务器端已做好释放连接的准备,结束FIN-WAIT-2阶段,进入TIME-WAIT阶段,并向服务器端发送一段报文,其中:标记位为ACK,表示“接收到服务器准备好释放连接的信号”。序号为Seq=U+1;表示是在收到了服务器端报文的基础上,将其确认号Ack值作为本段报文序号的值。确认号为Ack=W+1;表示是在收到了服务器端报文的基础上,将其序号Seq值作为本段报文确认号的值。随后客户端开始在TIME-WAIT阶段等待2MSL服务器端收到从客户端发出的TCP报文之后结束LAST-ACK阶段,进入CLOSED阶段。由此正式确认关闭服务器端到客户端方向上的连接。客户端等待完2MSL之后,结束TIME-WAIT阶段,进入CLOSED阶段,由此完成“四次挥手”。后“两次挥手”既让客户端知道了服务器端准备好释放连接了,也让服务器端知道了客户端了解了自己准备好释放连接了。于是,可以确认关闭服务器端到客户端方向上的连接了,由此完成“四次挥手”。与“三次挥手”一样,在客户端与服务器端传输的TCP报文中,双方的确认号Ack和序号Seq的值,都是在彼此Ack和Seq值的基础上进行计算的,这样做保证了TCP报文传输的连贯性,一旦出现某一方发出的TCP报文丢失,便无法继续"挥手",以此确保了"四次挥手"的顺利完成。为何要四次分手呢?我们在此之前先说说TCP异常断开的情况TCP异常断开1、如果已经建立了连接,但是一方突然出现故障了怎么办?TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。心跳检测机制在TCP网络通信中,经常会出现客户端和服务器之间的非正常断开,需要实时检测查询链接状态。常用的解决方法就是在程序中加入心跳机制。此外,还有Heart-Beat线程、设置TCP属性等机制。通俗理解断电、死机、这意味着所有状态信息的失,如同-个失忆的人,对外界的一-切是陌生的,即使重新启动、程序征常运行也是如此。另一方肯定还是有正常记忆的,但双方状态(记忆)不对称已经无法完成正常意义的沟通,所以最好的方法,就是让好的一方检测到记忆的不对称,然后把自己的记忆也释放( reset) ,双方再重新谈-场恋爰(TCP重连)。好的一方如何检测呢?TCP Keepalive默认情况下, TCP 120分钟会发送检测信号,如果对方没有回复, 会重试几次到放弃,然后宣布对方翘辫子,发送Reset释放连接。对方收到会莫名其妙,会默默地忽视,因为压根没有这个连接(掉电释放掉了)。2个小时是一个漫长的等待 ,滞留的TCP会话会-直站用资源, 这是一种浪费!Application Keepalive为了更快地检测对方已经Dead的事实,应用程序层面可以发送检测信号,比如5 -10分钟检测一次。通过以上两种常用方法,可以克服好的一方永久驻留在内存里的现状,释放是唯一正确的方法 !实, Application Keepalive除了检测对方是否在线,大的作用是为了避免存在于通信双方之间的NAT设备表超时删除,需要周期性地刷新保活。所以四次挥手也是为了能实时的断开连接,释放资源这也是为了应对意外情况比如客户端在发送一次断开报文后直接自行断开了连接。而这个连接服务器端却没有收到。此时服务器并不知道客户端已经断开了连接。在此期间会一直发送请求判断客户端是否连接。直到最后还没有回应,才会断开连接。TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。举个例子本来一对情侣约好周天去看电影如果是一次挥手即一方发送断开请求之后立即关闭连接。女孩不想去了,就发送:周天不去了,手机就关掉了(关闭连接),如果这个消息没有发送成功。男孩认为约会还是算数的。就一直等待,等待超时的时候询问:还在不在?此时女孩已经关机了,所以接受不到这个信息。男孩可能会等待两个小时之后才选择回去。如果是两次挥手。女孩不想去了,就发送:周天不去了。然后手机没有关机,想确认男孩有没有收到。因为是两次挥手。男孩接到信息后回应:好的。 就选择关机(断开连接,这里先看成男孩已经没有其他数据要发送,因为是两次挥手)。但是回应没有发送到。此时女孩就会一直等,并反复发送消息。但此时男孩已经关机了。女孩可能会反复发送很长时间才选择断开连接。或者男孩回复好的之后,女孩也接受到了,但男孩还有话没说完,想继续聊一聊之前的那个话题,这个话题还很重要。但是因为对面关闭连接也接收不到了。(这就可能出现传输过程中数据的不完整,不满足数据可靠)所以要等双方数据都传输完毕的四次挥手。 可以实时的关闭掉连接。
      TCP三次握手与四次挥手

      TCP和UDP的区别(三次握手四次挥手全过程图解)

      首先OSI有七层模型,从上往下依次是应用层、表示层、会话层、传输层、网络层、数据链路层、物理层,而TCP/UDP则属于传输层1、TCP和UDP的区别一般我们进行网络通信时,会使用TCP/UDP进行通信,那么我们首先介绍下TCP和UDP到底有什么区别,应用场景又有什么区别?TCP是一种面向连接,可靠稳定的传输协议,建立连接需要经历三次握手,握手成功才可通信,但是速度比较慢,效率比较低,容易被DOS,DDOS攻击。UDP是一种面向无连接,不可靠的传输协议,会直接建立连接,速度快,没有三次握手的机制,所以会相对安全,但是UDP还是可能会被flood攻击,在网络不好的情况,容易发生丢包。2、那么TCP又是如何准确无误的传输数据的呢?当客户端与服务器通过三次握手建立了TCP连接过后,当数据传送完毕,相应的就要断开TCP连接了,于是就有了四次分手的步骤。TCP头部:ACK : TCP协议规定,只有ACK=1时有效,也规定连接建立后所有发送的报文的ACK必须为1SYN:当SYN为1时,表明此数据包是一个同步包,用来表明正在请求连接。可能会形成死锁。假设客户端给服务器发送了一个连接请求报文,服务端成功接收并给客户端发送了确认应答报文,此时服务端并不能确认该应答报文是否成功到了客户端,但因为两次握手,所以这时候服务端就处于成功连接的状态了,并给客户端发送数据。如果客户端未收到服务端的应答报文,则不知道服务器是否确认好建立连接,甚至不知道自己发送给服务器的报文是否成功抵达,此时客户端会认为连接并未成功建立,会忽略服务端发送过来的任何数据。而服务端发送的数据未得到相应超时时,会重复发送同样的数据,这样就形成了死锁。(1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。(2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。(3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。(4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,我们也未必全部数据都发送给对方了,所以我们不可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,我们的ACK和FIN一般都会分开发送。
      TCP和UDP的区别(三次握手四次挥手全过程图解)

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/44727.html

          热门文章

          文章分类