分析tcp协议原理
原理四个主要方面:一、tcp协议之连接建立、断开二、tcp协议之超时重传三、tcp协议之窗口管理四、tcp协议之拥塞控制TCP是一种面向有连接的协议,也就是说必须确认对方存在时才能发送数据而TCP通过检验和、序列号、确认应答、重发控制、连接管理、窗口控制等机制来实现可靠传输。1. 目的:TCP三次握手是客户端和服务器总共发三个数据包,通过三个数据包来确认主动发送能力和被动接收能力是否正常。2. 实质:通过指定的四元组(源地址、源端口、目标地址、目标端口)来建立TCP连接,同步双方各自发送序列号seq和确认号ACK,同时也会交换窗口大小信息三次握手过程的实现方式就是交换序列号seq。随便在网上找个地址,如果通过域名想看ip地址,可以ping下看连接。① 192.168.3.7发送[SYN]报文段至222.169.228.146,告知序列号x为0。② 222.169.228.146发送[SYN,ACK]报文段至192.168.3.7,告知序列号y为0,确认号ACK为x+1=1。③192.168.3.7发送[ACK]报文段至222.169.228.146,告知确认号ACK为y+1=1。报文段中的其他参数:MSS=1460:允许从对方接收到的最大报文段,图中为1460字节(指承载的数据,不包含报文段的头部)。win=8192:滑动窗口的大小为8192字节。SACK_PERM=1:开启选择确认。为什么会使用SACK:tcp确认方式不是一段报文段一确认,而是采用累积确认方式。服务器接收到的报文段无序所以序列号也是不连续,服务器的接收队列会出现空洞情况。为了解决空洞,提前了解当前空洞,应对丢失遗漏,采取重传。提前了解方式就是通过SACK选项信息,SACK信息包含接收方已经成功接收的数据块的序列号范围。而SACK_PERM字段为1表明,选择开启了SACK功能。网络层可能会出现丢失、重复、乱序的问题,tcp是提供可靠的数据传输服务的,为了保证数据的正确性,tcp协议会重传它认为的已经丢失的包。重传两种机制:一种基于时间重传,一种基于确认报文段提供的信息重传。RTT:数据完全发送完(完成最后一个比特推送到数据链路上)到收到确认信号的时间(往返时间)。RTO:重传超时时间(tcp发送数据时设置一个计时器,当计时器超时没有收到数据确认信息,引发超时而重传,判断的标准就是RTO)。思考:发送序列号为1、2、3、4这4个报文段,但是出现了序列号2报文段丢失,怎么办?发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端当收到序列号为3的报文(2已丢失),发送ack为4的确认报文,发送端正等待ack为2的确认报文,面对跳跃的报文,那么发送端会一直等待,直到超出指定时间,重传报文2。为什么不跳跃确认呢?tcp是累积确认方式,如果确认报文3,那么意味着报文1和报文2都已经成功接收。超时处理方式:思考:上面计时器是以时间为标准重传,那么可以通过确认报文的次数来决定重传。发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端收到报文3、4、5,但是没收到报文2,那么接收端发送三个ACK为2的确认报文,发送端收到这个三个确认报文,重传报文2。思考:如果快速重传中丢失包的地方很多(报文2,报文,7,报文9,报文30,报文300....),那么需要从头到尾都重传,这很蛋疼?思考:SACK重传对于接收到重复数据段怎样运作没有明确规定,通过DSACK重传可以让发送方知道哪些数据被重复接收了,而且明确是什么原因造成的。发送端没有收到100-199的ACK包,超过指定时间,重传报文。接收端都已经收到200-299的发送报文了,又来100-199是重复报文。再向发送端发送一个ACK报文,设置SACK 100-199,告知发送端,已经收到了100-199包,只是回应ACK包丢失。发送端发送包100-199,由于网络延迟,一直没有达到接收端。接收端连续发送三个ACK 200确认报文,触发快速重传,发送端收到了ACK 500的确认报文,表明之前的报文都已经交付成功。接收端又收到了延迟的报文100-199,再次向发送端发送一个SACK 100-199的ACK 500报文。发送端发现这是重复报文,判断为网络延迟造成的。计时器重传:根据超时,重传。快速重传:根据接收三次相同ACK报文,重传。选择确认重传:根据接收端提供的SACK信息,重传。DSACK重传:根据重复报文,明确丢失ACK报文还是网络延迟。Category1:已发送且已确认(已经收到ACK报文的数据)。Category2:已发送但未收到确认。Category3:即将发送。Category4:窗口移动前都不能发送。可用窗口:46-51字节。发送窗口:32-51字节。RCV.NXT:左边界RCV.WND:接收窗口RCV.NXT+RCV.WND:右边界接收端接收到序列号小于左边界,那么被认为重复数据而被丢弃。接收端接收到序列号大于右边界,那么被认为超出处理范围,丢弃。注意:tcp协议为累积ACK结构,只有当达到数据序列号等于左边界时,数据才不会被丢弃。如果窗口更新ACK丢失,对于发送端,窗口左边界右移,已发送数据得到ACK确认之后,左右边界距离减小,发送端窗口会减小,当左右边界相等时,称为零窗口。零窗口之后:接收端发送窗口更新能会发生窗口更新ACK丢失。<>解释:TCP是通过接收端的通告窗口来实现流量控制的,通告窗口指示了接收端可接收的数据量。当窗口值变为0时,可以有效阻止发送端继续发送,直到窗口大小恢复为非零值。当接收端重新获得可用空间时,会给发送端传输一个窗口更新告知其可继续发送数据。这样的窗口更新通常都不包含数据(纯ACK),接收端向发送端发送的窗口更新ACK可能丢失。结果双方处于等待状态,发生死锁。解决方案:发送端会采用一个持续计时器间歇性地查询接收端,看其窗口是否已增长。触发窗口探测,强制要求接收端返回ACK。发送几次探测,窗口大小还是0,那么断开连接。出现SWS的情况:① 接收端通告窗口太小。② 发送端发送的数据太小。解决方案:① 针对接收端:不应通告小窗口值[RFC1122]描述:在窗口可增至一个全长的报文段(接收端MSS)或者接收端缓存空间的一半(取两者中较小值)之前,不能通告比当前窗口更大的窗口值。标准:min(MSS , 缓存空间/2)。② 针对发送端:不应发送小的报文至少满足以下其一:(1)可以发送MSS字节的报文。window size >= MSS或者 数据大小>=MSS(2)数据段长度>=接收端通告过的最大窗口值的一半,才可以发送。收到之前发送的数据的ack回包,再发送数据,否则一直攒数据。(3) -1 没有未经确认的在传数据或者-2 连接禁用Nagle算法。tcp基于ACK数据包中的通告窗口大小字段实现了流量控制。当网络大规模通信负载而瘫痪,默认网络进入拥塞状态,减缓tcp的传输。发送方和接收方被要求承担超负荷的通信任务时,采取降低发送速率或者最终丢弃部分数据的方法。反映网络传输能力的变量称为拥塞窗口(cwnd)。通告窗口(awnd)。发送窗口swnd=min(cwnd,awnd)目的:tcp在用拥塞避免算法探寻更多可用带宽之前得到cwnd值,帮助tcp建立ACK时钟。[RFC5681] :在传输初始阶段,由于未知网络传输能力,需要缓慢探测可用传输资源,防止短时间内大量数据注入导致拥塞。慢启动算法针对这一问题而设计。在数据传输之初或者重传计时器检测到丢包后,需要执行慢启动。拥塞窗口值:每收到一个ACK值,cwnd扩充一倍。所以假设没有丢包且每个数据包都有相应ACK值,在k轮后swnd=,成指数增长。SMSS是发送方的最大段大小。慢启动阶段,cwnd会指数增长,很快,帮助确立一个慢启动阙值(ssthresh)。有了阙值,tcp会进入拥塞避免阶段,cwnd每次增长值近似于成功传输的数据段大小,成线性增长。实现公式:cwnd+=SMSS*SMSS/cwnd刚建立连接使用慢启动算法,初始窗口为4,收到一次ACK后,cwnd变为8,再收到一次ACK后,cwnd变为16,依次继续,32、64,达到阙值ssthresh为64。开始使用拥塞避免算法,设置ssthresh为ssthresh/2,值为32。重新从初始窗口4,线性递增到ssthresh=32。当cwnd < ssthresh时,使用慢启动算法当cwnd > ssthresh时,使用拥塞避免算法应用快速恢复算法时机:启动快速重传且正常未失序ACK段达到之前。启动快速恢复算法。实现过程:① 将ssthresh设置为1/2 cwnd,将cwnd设置为ssthresh+3*SMSS。② 每接收一个重复ACK,cwnd值暂时增加1 SMSS。③当接收到新数据ACK后,将cwnd设置为ssthresh。参考:<>

TCP协议解析
主要特点:面向连接、面向字节流、全双工通信、通信可靠。优缺点:应用场景:要求通信数据可靠时,即 数据要准确无误地传递给对方。如:传输文件:HTTP、HTTPS、FTP等协议;传输邮件:POP、SMTP等协议ps:首部的前 20 个字节固定,后面有 4n 字节根据需要增加。故 TCP首部最小长度 = 20字节(最大60个字节)。TCP报头中的源端口号和目的端口号同IP数据报中的源IP与目的IP唯一确定一条TCP连接。重要字段:客户端与服务器来回共发送三个TCP报文段来建立运输连接,三个TCP报文段分别为:(1)客户端A向服务器B发送的TCP请求报段“SYN=1,seq=x”;(2)服务器B向客户端A发送的TCP确认报文段“SYN=1,ACK=1,seq=y,ack=x+1”;(3)客户端A向服务器B发送的TCP确认报文段“ACK=1,seq=x+1,ack=y+1”。ps:在建立TCP连接之前,客户端和服务器都处于关闭状态(CLOSED),直到客户端主动打开连接,服务器才被动打开连接(处于监听状态 = LISTEN),等待客户端的请求。TCP 协议是一个面向连接的、安全可靠的传输层协议,三次握手的机制是为了保证能建立一个安全可靠的连接。通过上述三次握手,双方确认自己与对方的发送与接收是正常的,就建立起一条TCP连接,即可传送应用层数据。ps:因 TCP提供的是全双工通信,故通信双方的应用进程在任何时候都能发送数据;三次握手期间,任何1次未收到对面的回复,则都会重发。为什么两次握手不行呢?结论:防止服务器接收了早已经失效的连接请求报文,服务器同意连接,从而一直等待客户端请求,最终导致形成死锁、浪费资源。ps:SYN洪泛攻击:(具体见下文)为什么不需要四次握手呢?SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK确认序号标志消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。如何来解决半连接攻击?如何来解决全连接攻击?请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,客户端才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果服务器一收到 客户端的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,服务器结束 TCP 连接的时间要早于客户端。TCP是全双工的连接,必须两端同时关闭连接,连接才算真正关闭。简言之,客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器才会发送 FIN 连接释放报文,对方确认后就完全关闭了TCP连接。举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。ps:设想这样一个情景:客户端已主动与服务器建立了 TCP 连接。但后来客户端的主机突然发生故障。显然,服务器以后就不能再收到客户端发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就需要使用TCP的保活计时器。基本原理:tcp11种状态及变迁其实基本包含在正常的三次握手和四次挥手中,除开CLOSING。正常的三次握手包括4中状态变迁:服务器打开监听(LISTEN)->客户端先发起SYN主动连接标识->服务器回复SYN及ACK确认->客户端再确认即三次握手TCP连接成功。这里边涉及四种状态及变迁:正常的四次握手包含6种tcp状态变迁,如主动发起关闭方为客户端:客户端发送FIN进入FIN_WAIT1 -> 服务器发送ACK确认并进入CLOSE_WAIT(被动关闭)状态->客户端收到ACK确认后进入FIN_WAIT2状态 -> 服务器再发送FIN进入LAST_ACK状态 -> 客户端收到服务器的FIN后发送ACK确认进入TIME_WAIT状态 -> 服务器收到ACK确认后进入CLOSED状态断开连接 -> 客户端在等待2MSL的时间如果期间没有收到服务器的相关包,则进入CLOSED状态断开连接。CLOSING状态:连接断开期间,一般是客户端发送一个FIN,然后服务器回复一个ACK,然后服务器发送完数据后再回复一个FIN,当客户端和服务器同时接受到FIN时,客户端和服务器处于CLOSING状态,也就是此时双方都正在关闭同一个连接。在进入CLOSING状态后,只要收到了对方对自己发送的FIN的ACK,收到FIN的ACK确认就进入TIME_WAIT状态,因此,如果RTT(Round Trip Time TCP包的往返延时)处在一个可接受的范围内,发出的FIN会很快被ACK从而进入到TIME_WAIT状态,CLOSING状态持续的时间就特别短,因此很难看到这种状态。我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。应用场景:UDP协议比TCP协议的效率更高,TCP协议比UDP协议更加安全可靠。下面主要对数据传输出现错误/无应答/堵塞/超时/重复等问题。注意:TCP丢包:TCP是基于不可靠的网路实现可靠传输,肯定会存在丢包问题。如果在通信过程中,发现缺少数据或者丢包,那边么最大的可能性是程序发送过程或者接受过程中出现问题。总结:为了满足TCP协议不丢包,即保证可靠传输,规定如下:注意:TCP丢包有三方面的原因,一是网络的传输质量不好,二是安全策略,三是服务器性能瓶颈先理解2个基础概念:发送窗口、接收窗口工作原理:注意点:关于滑动窗口的知识点:滑动窗口中的数据类型:ARQ解决的问题:出现差错时,让发送方重传差错数据:即 出错重传类型:流量控制和拥塞控制解决的问题:当接收方来不及接收收到的数据时,可通知发送方降低发送数据的效率:即 速度匹配流量控制:注意:拥塞控制:慢开始与拥塞避免:快重传和快恢复:补充:流量控制和拥塞控制的区别什么情况造成TCP粘包和拆包?解决TCP粘包和拆包的方法:传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式,只是实现不在传输层,实现转移到了应用层。最简单的方式是在应用层模仿传输层TCP的可靠性传输。下面不考虑拥塞处理,可靠UDP的简单设计。https://www.jianshu.com/p/65605622234bhttp://www.open-open.com/lib/view/open1517213611158.htmlhttps://blog.csdn.net/dangzhangjing97/article/details/81008836https://blog.csdn.net/qq_30108237/article/details/107057946https://www.jianshu.com/p/6c73a4585eba

TCP/IP协议包括什么
TCP/IP协议包括因特网协议IP、传输控制协议TCP、用户数据报协议UDP、虚拟终端协议TELNET、文件传输协议FTP、电子邮件传输协议SMTP、网上新闻传输协议NNTP、超文本传送协议HTTP八大协议。TCP/IP参考模型是首先由ARPANET所使用的网络体系结构。这个体系结构在它的两个主要协议出现以后被称为TCP/IP参考模型。这一网络协议共分为四层:网络访问层、互联网层、传输层和应用层,各层有相应的协议。1、网络访问层在TCP/IP参考模型中并没有详细描述,只是指出主机必须使用某种协议与网络相连。2、互联网层是整个体系结构的关键部分,其功能是使主机可以把分组发往任何网络,并使分组独立地传向目标。这些分组可能经由不同的网络,到达的顺序和发送的顺序也可能不同。高层如果需要顺序收发,那么就必须自行处理对分组的排序。互联网层使用因特网协议(IP)。3、传输层使源端和目的端机器上的对等实体可以进行会话。在这一层定义了两个端到端的协议:传输控制协议(TCP)和用户数据报协议(UDP)。TCP是面向连接的协议,它提供可靠的报文传输和对上层应用的连接服务。为此,除了基本的数据传输外,它还有可靠性保证、流量控制、多路复用、优先权和安全性控制等功能。UDP是面向无连接的不可靠传输的协议,主要用于不需要TCP的排序和流量控制等功能的应用程序。4、应用层包含所有的高层协议,包括:虚拟终端协议(TELNET)、文件传输协议(FTP)、电子邮件传输协议(SMTP)、域名服务(DNS)、网上新闻传输协议(NNTP)和超文本传送协议(HTTP)等。TELNET允许一台机器上的用户登录到远程机器上,并进行工作;FTP提供有效地将文件从一台机器上移到另一台机器上的方法;SMTP用于电子邮件的收发;DNS用于把主机名映射到网络地址;NNTP用于新闻的发布、检索和获取;HTTP用于在WWW上获取主页。扩展资料:TCP/IP协议的主要特点:1、TCP/IP协议不依赖于任何特定的计算机硬件或操作系统,提供开放的协议标准,即使不考虑Internet,TCP/IP协议也获得了广泛的支持。所以TCP/IP协议成为一种联合各种硬件和软件的实用系统。2、TCP/IP协议并不依赖于特定的网络传输硬件,所以TCP/IP协议能够集成各种各样的网络。用户能够使用以太网、令牌环网、拨号线路、X.25网以及所有的网络传输硬件。3、统一的网络地址分配方案,使得整个TCP/IP设备在网中都具有惟一的地址。4、标准化的高层协议,可以提供多种可靠的用户服务。参考资料来源:百度百科-TCP/IP协议
SLIP协议编辑 SLIP提供在串行通信线路上封装IP分组的简单方法,使远程用户通过电话线和MODEM能方便地接入TCP/IP网络。SLIP是一种简单的组帧方式,但使用时还存在一些问题。首先,SLIP不支持在连接过程中的动态IP地址分配,通信双方必须事先告知对方IP地址,这给没有固定IP地址的个人用户上INTERNET网带来了很大的不便。其次,SLIP帧中无校验字段,因此链路层上无法检测出差错,必须由上层实体或具有纠错能力MODEM来解决传输差错问题。PPP协议编辑为了解决SLIP存在的问题,在串行通信应用中又开发了PPP协议。PPP协议是一种有效的点对点通信协议,它由串行通信线路上的组帧方式,用于建立、配制、测试和拆除数据链路的链路控制协议LCP及一组用以支持不同网络层协议的网络控制协议NCPs三部分组成。PPP中的LCP协议提供了通信双方进行参数协商的手段,并且提供了一组NCPs协议,使得PPP可以支持多种网络层协议,如IP,IPX,OSI等。另外,支持IP的NCP提供了在建立链接时动态分配IP地址的功能,解决了个人用户上INTERNET网的问题。IP协议编辑即互联网协议(Internet Protocol),它将多个网络连成一个互联网,可以把高层的数据以多个数据包的形式通过互联网分发出去。IP的基本任务是通过互联网传送数据包,各个IP数据包之间是相互独立的。ICMP协议编辑即互联网控制报文协议。从IP互联网协议的功能,可以知道IP 提供的是一种不可靠的无连接报文分组传送服务。若路由器或主机发生故障时网络阻塞,就需要通知发送主机采取相应措施。为了使互联网能报告差错,或提供有关意外情况的信息,在IP层加入了一类特殊用途的报文机制,即ICMP。分组接收方利用ICMP来通知IP模块发送方,进行必需的修改。ICMP通常是由发现报文有问题的站产生的,例如可由目的主机或中继路由器来发现问题并产生的ICMP。如果一个分组不能传送,ICMP便可以被用来警告分组源,说明有网络,主机或端口不可达。ICMP也可以用来报告网络阻塞。ARP协议编辑即地址转换协议。在TCP/IP网络环境下,每个主机都分配了一个32位的IP地址,这种互联网地址是在网际范围标识主机的一种逻辑地址。为了让报文在物理网上传送,必须知道彼此的物理地址。这样就存在把互联网地址变换成物理地址的转换问题。这就需要在网络层有一组服务将 IP地址转换为相应物理网络地址,这组协议即ARP。TCP协议编辑即传输控制协议,它提供的是一种可靠的数据流服务。当传送受差错干扰的数据,或举出网络故障,或网络负荷太重而使网际基本传输系统不能正常工作时,就需要通过其他的协议来保证通信的可靠。TCP就是这样的协议。TCP采用“带重传的肯定确认”技术来实现传输的可靠性。并使用“滑动窗口”的流量控制机制来提高网络的吞吐量。TCP通信建立实现了一种“虚电路”的概念。双方通信之前,先建立一条链接然后双方就可以在其上发送数据流。这种数据交换方式能提高效率,但事先建立连接和事后拆除连接需要开销。UDP协议编辑即用户数据包协议,它是对IP协议组的扩充,它增加了一种机制,发送方可以区分一台计算机上的多个接收者。每个UDP报文除了包含数据外还有报文的目的端口的编号和报文源端口的编号,从而使UDP软件可以把报文递送给正确的接收者,然后接收者要发出一个应答。由于UDP的这种扩充,使得在两个用户进程之间递送数据包成为可能。我们频繁使用的OICQ软件正是基于UDP协议和这种机制。FTP协议编辑即文件传输协议,它是网际提供的用于访问远程机器的协议,它使用户可以在本地机与远程机之间进行有关文件的操作。FTP工作时建立两条TCP链接,分别用于传送文件和用于传送控制。FTP采用客户/服务器模式?它包含客户FTP和服务器FTP。客户FTP启动传送过程,而服务器FTP对其作出应答。DNS协议编辑即域名服务协议,它提供域名到IP地址的转换,允许对域名资源进行分散管理。DNS最初设计的目的是使邮件发送方知道邮件接收主机及邮件发送主机的IP地址,后来发展成可服务于其他许多目标的协议。SMTP协议编辑 即简单邮件传送协议互联网标准中的电子邮件是一个简单的基于文本的协议,用于可靠、有效地数据传输。SMTP作为应用层的服务,并不关心它下面采用的是何种传输服务,它可通过网络在TXP链接上传送邮件,或者简单地在同一机器的进程之间通过进程通信的通道来传送邮件,这样,邮件传输就独立于传输子系统,可在TCP/IP环境或X.25协议环境中传输邮件。
TCP/IP协议,或称为TCP/IP协议栈,或互联网协议系列。 TCP/IP协议栈(按TCP/IP参考模型划分),TCP/IP分为4层,不同于OSI,他将OSI中的会话层、表示层规划到应用层。应用层FTP SMTP HTTP ...传输层TCP UDPIP网络层IP ICMP IGMP网络接口层ARP RARP以太网令牌环FDDI ...包含了一系列构成互联网基础的网络协议。 TCP/IP字面上代表了两个协议:TCP传输控制协议和IP互联网协议。

TCP协议详解及实战解析【精心整理收藏】
TCP协议是在TCP/IP协议模型中的运输层中很重要的一个协议、负责处理主机端口层面之间的数据传输。主要有以下特点:1.TCP是面向链接的协议,在数据传输之前需要通过三次握手建立TCP链接,当数据传递完成之后,需要通过四次挥手进行连接释放。2.每一条TCP通信都是两台主机和主机之间的,是点对点传输的协议。3.TCP提供可靠的、无差错、不丢失、不重复,按序到达的服务。4.TCP的通信双方在连接建立的任何时候都可以发送数据。TCP连接的两端都设有发送缓存和接收缓存,用来临时存放双向通信的数据。5.面向字节流。在数据传输的过程中如果报文比较长的话TCP会进行数据分段传输,每一条分段的TCP传输信息都带有分段的序号,每一段都包含一部分字节流。接收方根据每段携带的的序号信息进行数据拼接,最终拼接出来初始的传输数据。但是在整个传输的过程中每一段TCP携带的都是被切割的字节流数据。所以说TCP是面向字节流的。a.TCP和UDP在发送报文时所采用的方式完全不同。TCP并不关心应用程序一次把多长的报文发送到TCP缓存中,而是根据对方给出的窗口值和当前网络拥塞的程度来决定一个报文段应包含多少个字节(UDP发送的报文长度是应用程序给出的)。b.如果应用程序传送到TCP缓存的数据块太大,TCP就可以把它划分短一些再传。TCP也可以等待积累有足够多的字节后再构建成报文段发送出去。各字段含义:源端口:发送端的端口号目的端口:接收端的端口号序号:TCP将发送报文分段传输的时候会给每一段加上序号,接收端也可以根据这个序号来判断数据拼接的顺序,主要用来解决网络报乱序的问题确认号:确认号为接收端收到数据之后进行排序确认以及发送下一次期待接收到的序号,数值 = 接收到的发送号 + 1数据偏移:占4比特,表示数据开始的地方离TCP段的起始处有多远。实际上就是TCP段首部的长度。由于首部长度不固定,因此数据偏移字段是必要的。数据偏移以32位为长度单位,因此TCP首部的最大长度是60(15*4)个字节。控制位:URG:此标志表示TCP包的紧急指针域有效,用来保证TCP连接不被中断,并且督促 中间层设备要尽快处理这些数据;ACK:此标志表示应答域有效,就是说前面所说的TCP应答号将会包含在TCP数据包中;有两个取值:0和1, 为1的时候表示应答域有效,反之为0;PSH:这个标志位表示Push操作。所谓Push操作就是指在数据包到达接收端以后,立即传送给应用程序, 而不是在缓冲区中排队;RST:这个标志表示连接复位请求。用来复位那些产生错误的连接,也被用来拒绝错误和非法的数据包;SYN:表示同步序号,用来建立连接。SYN标志位和ACK标志位搭配使用,当连接请求的时候,SYN=1, ACK=0;连接被响应的时候,SYN=1,ACK=1;这个标志的数据包经常被用来进行端口扫描。扫描者发送 一个只有SYN的数据包,如果对方主机响应了一个数据包回来 ,就表明这台主机存在这个端口;但是由于这 种扫描方式只是进行TCP三次握手的第一次握手,因此这种扫描的成功表示被扫描的机器不很安全,一台安全 的主机将会强制要求一个连接严格的进行TCP的三次握手;FIN: 表示发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送FIN标志 位的TCP数据包后,连接将被断开。这个标志的数据包也经常被用于进行端口扫描。窗口:TCP里很重要的一个机制,占2字节,表示报文段发送方期望接收的字节数,可接收的序号范围是从接收方的确认号开始到确认号加上窗口大小之间的数据。后面会有实例讲解。校验和:校验和包含了伪首部、TCP首部和数据,校验和是TCP强制要求的,由发送方计算,接收方验证紧急指针:URG标志为1时,紧急指针有效,表示数据需要优先处理。紧急指针指出在TCP段中的紧急数据的最后一个字节的序号,使接收方可以知道紧急数据共有多长。选项:最常用的选项是最大段大小(Maximum Segment Size,MSS),向对方通知本机可以接收的最大TCP段长度。MSS选项只在建立连接的请求中发送。放在以太网帧里看TCP的位置TCP 数据包在 IP 数据包的负载里面。它的头信息最少也需要20字节,因此 TCP 数据包的最大负载是 1480 - 20 = 1460 字节。由于 IP 和 TCP 协议往往有额外的头信息,所以 TCP 负载实际为1400字节左右。因此,一条1500字节的信息需要两个 TCP 数据包。HTTP/2 协议的一大改进, 就是压缩 HTTP 协议的头信息,使得一个 HTTP 请求可以放在一个 TCP 数据包里面,而不是分成多个,这样就提高了速度。以太网数据包的负载是1500字节,TCP 数据包的负载在1400字节左右一个包1400字节,那么一次性发送大量数据,就必须分成多个包。比如,一个 10MB 的文件,需要发送7100多个包。发送的时候,TCP 协议为每个包编号(sequence number,简称 SEQ),以便接收的一方按照顺序还原。万一发生丢包,也可以知道丢失的是哪一个包。第一个包的编号是一个随机数。为了便于理解,这里就把它称为1号包。假定这个包的负载长度是100字节,那么可以推算出下一个包的编号应该是101。这就是说,每个数据包都可以得到两个编号:自身的编号,以及下一个包的编号。接收方由此知道,应该按照什么顺序将它们还原成原始文件。收到 TCP 数据包以后,组装还原是操作系统完成的。应用程序不会直接处理 TCP 数据包。对于应用程序来说,不用关心数据通信的细节。除非线路异常,否则收到的总是完整的数据。应用程序需要的数据放在 TCP 数据包里面,有自己的格式(比如 HTTP 协议)。TCP 并没有提供任何机制,表示原始文件的大小,这由应用层的协议来规定。比如,HTTP 协议就有一个头信息Content-Length,表示信息体的大小。对于操作系统来说,就是持续地接收 TCP 数据包,将它们按照顺序组装好,一个包都不少。操作系统不会去处理 TCP 数据包里面的数据。一旦组装好 TCP 数据包,就把它们转交给应用程序。TCP 数据包里面有一个端口(port)参数,就是用来指定转交给监听该端口的应用程序。应用程序收到组装好的原始数据,以浏览器为例,就会根据 HTTP 协议的Content-Length字段正确读出一段段的数据。这也意味着,一次 TCP 通信可以包括多个 HTTP 通信。服务器发送数据包,当然越快越好,最好一次性全发出去。但是,发得太快,就有可能丢包。带宽小、路由器过热、缓存溢出等许多因素都会导致丢包。线路不好的话,发得越快,丢得越多。最理想的状态是,在线路允许的情况下,达到最高速率。但是我们怎么知道,对方线路的理想速率是多少呢?答案就是慢慢试。TCP 协议为了做到效率与可靠性的统一,设计了一个慢启动(slow start)机制。开始的时候,发送得较慢,然后根据丢包的情况,调整速率:如果不丢包,就加快发送速度;如果丢包,就降低发送速度。Linux 内核里面 设定 了(常量TCP_INIT_CWND),刚开始通信的时候,发送方一次性发送10个数据包,即"发送窗口"的大小为10。然后停下来,等待接收方的确认,再继续发送。默认情况下,接收方每收到 两个TCP 数据包,就要 发送 一个确认消息。"确认"的英语是 acknowledgement,所以这个确认消息就简称 ACK。ACK 携带两个信息。发送方有了这两个信息,再加上自己已经发出的数据包的最新编号,就会推测出接收方大概的接收速度,从而降低或增加发送速率。这被称为"发送窗口",这个窗口的大小是可变的。注意,由于 TCP 通信是双向的,所以双方都需要发送 ACK。两方的窗口大小,很可能是不一样的。而且 ACK 只是很简单的几个字段,通常与数据合并在一个数据包里面发送。即使对于带宽很大、线路很好的连接,TCP 也总是从10个数据包开始慢慢试,过了一段时间以后,才达到最高的传输速率。这就是 TCP 的慢启动。TCP 协议可以保证数据通信的完整性,这是怎么做到的?前面说过,每一个数据包都带有下一个数据包的编号。如果下一个数据包没有收到,那么 ACK 的编号就不会发生变化。举例来说,现在收到了4号包,但是没有收到5号包。ACK 就会记录,期待收到5号包。过了一段时间,5号包收到了,那么下一轮 ACK 会更新编号。如果5号包还是没收到,但是收到了6号包或7号包,那么 ACK 里面的编号不会变化,总是显示5号包。这会导致大量重复内容的 ACK。如果发送方发现收到 三个 连续的重复 ACK,或者超时了还没有收到任何 ACK,就会确认丢包,即5号包遗失了,从而再次发送这个包。通过这种机制,TCP 保证了不会有数据包丢失。TCP是一个滑动窗口协议,即一个TCP连接的发送端在某个时刻能发多少数据是由滑动窗口控制的,而滑动窗口的大小实际上是由两个窗口共同决定的,一个是接收端的通告窗口,这个窗口值在TCP协议头部信息中有,会随着数据的ACK包发送给发送端,这个值表示的是在接收端的TCP协议缓存中还有多少剩余空间,发送端必须保证发送的数据不超过这个剩余空间以免造成缓冲区溢出,这个窗口是接收端用来进行流量限制的,在传输过程中,通告窗口大小与接收端的进程取出数据的快慢有关。另一个窗口是发送端的拥塞窗口(Congestion window),由发送端维护这个值,在协议头部信息中没有,滑动窗口的大小就是通告窗口和拥塞窗口的较小值,所以拥塞窗口也看做是发送端用来进行流量控制的窗口。滑动窗口的左边沿向右移动称为窗口合拢,发生在发送的数据被确认时(此时,表明数据已被接收端收到,不会再被需要重传,可以从发送端的发送缓存中清除了),滑动窗口的右边沿向右移动称为窗口张开,发生在接收进程从接收端协议缓存中取出数据时。随着发送端不断收到的被发送数据的ACK包,根据ACK包中的确认序号和通告窗口大小使滑动窗口得以不断的合拢和张开,形成滑动窗口的向前滑动。如果接收进程一直不取数据,则会出现0窗口现象,即滑动窗口左边沿与右边沿重合,此时窗口大小为0,就无法再发送数据。在TCP里,接收端(B)会给发送端(A)报一个窗口的大小,叫Advertised window。1.在没有收到B的确认情况下,A可以连续把窗口内的数据都发送出去。凡是已经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。2.发送窗口里面的序号表示允许发送的序号。显然,窗口越大,发送方就可以在收到对方确认之前连续发送更多数据,因而可能获得更高的传输效率。但接收方必须来得及处理这些收到的数据。3.发送窗口后沿的后面部分表示已发送且已收到确认。这些数据显然不需要再保留了。4.发送窗口前沿的前面部分表示不允许发送的,应为接收方都没有为这部分数据保留临时存放的缓存空间。5.发送窗口后沿的变化情况有两种:不动(没有收到新的确认)和前移(收到了新的确认)6.发送窗口前沿的变化情况有两种:不断向前移或可能不动(没收到新的确认)TCP的发送方在规定时间内没有收到确认就要重传已发送的报文段。这种重传的概念很简单,但重传时间的选择确是TCP最复杂的问题之一。TCP采用了一种自适应算法,它记录一个报文段发出的时间,以及收到响应的确认的时间这两个时间之差就是报文段的往返时间RTT。TCP保留了RTT的一个加权平均往返时间。超时重传时间RTO略大于加权平均往返时间RTT:即Round Trip Time,表示从发送端到接收端的一去一回需要的时间,tcp在数据传输过程中会对RTT进行采样(即对发送的数据包及其ACK的时间差进行测量,并根据测量值更新RTT值,具体的算法TCPIP详解里面有),TCP根据得到的RTT值更新RTO值,即Retransmission TimeOut,就是重传间隔,发送端对每个发出的数据包进行计时,如果在RTO时间内没有收到所发出的数据包的对应ACK,则任务数据包丢失,将重传数据。一般RTO值都比采样得到的RTT值要大。如果收到的报文段无差错,只是未按序号,中间还缺少一些序号的数据,那么能否设法只传送缺少的数据而不重传已经正确到达接收方的数据?答案是可以的,选择确认就是一种可行的处理方法。如果要使用选项确认SACK,那么在建立TCP连接时,就要在TCP首部的选项中加上“允许SACK”的选项,而双方必须都事先商定好。如果使用选择确认,那么原来首部中的“确认号字段”的用法仍然不变。SACK文档并没有明确发送方应当怎么响应SACK.因此大多数的实现还是重传所有未被确认的数据块。一般说来,我们总是希望数据传输的更快一些,但如果发送方把数据发送的过快,接收方就可能来不及接收,这会造成数据的丢失。所谓流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。在计算机网络中的链路容量,交换节点中的缓存和处理机等,都是网络的资源。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫做拥塞。拥塞控制方法:1.慢开始和拥塞避免2.快重传和快恢复3.随机早期检测1.一开始,客户端和服务端都处于CLOSED状态2.先是服务端主动监听某个端口,处于LISTEN状态(比如服务端启动,开始监听)。3.客户端主动发起连接SYN,之后处于SYN-SENT状态(第一次握手,发送 SYN = 1 ACK = 0 seq = x ack = 0)。4.服务端收到发起的连接,返回SYN,并且ACK客户端的SYN,之后处于SYN-RCVD状态(第二次握手,发送 SYN = 1 ACK = 1 seq = y ack = x + 1)。5.客户端收到服务端发送的SYN和ACK之后,发送ACK的ACK,之后处于ESTABLISHED状态(第三次握手,发送 SYN = 0 ACK = 1 seq = x + 1 ack = y + 1)。6.服务端收到客户端的ACK之后,处于ESTABLISHED状态。(需要注意的是,有可能X和Y是相等的,可能都是0,因为他们代表了各自发送报文段的序号。)TCP连接释放四次挥手1.当前A和B都处于ESTAB-LISHED状态。2.A的应用进程先向其TCP发出连接释放报文段,并停止再发送数据,主动关闭TCP连接。3.B收到连接释放报文段后即发出确认,然后B进入CLOSE-WAIT(关闭等待)状态。TCP服务器进程这时应通知高层应用进程,因而从A到B这个方向的连接就释放了,这时TCP连接处于半关闭状态,即A已经没有数据发送了。从B到A这个方向的连接并未关闭,这个状态可能会持续一些时间。4.A收到来自B的确认后,就进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文端。5.若B已经没有向A发送的数据,B发出连接释放信号,这时B进入LAST-ACK(最后确认)状态等待A的确认。6.A再收到B的连接释放消息后,必须对此发出确认,然后进入TIME-WAIT(时间等待)状态。请注意,现在TCP连接还没有释放掉,必须经过时间等待计时器(TIME-WAIT timer)设置的时间2MSL后,A才进入CLOSED状态。7。B收到A发出的确认消息后,进入CLOSED状态。以请求百度为例,看一下三次握手真实数据的TCP连接建立过程我们再来看四次挥手。TCP断开连接时,会有四次挥手过程,标志位是FIN,我们在封包列表中找到对应位置,理论上应该找到4个数据包,但我试了好几次,实际只抓到3个数据包。查了相关资料,说是因为服务器端在给客户端传回的过程中,将两个连续发送的包进行了合并。因此下面会按照合并后的三次挥手解释,若有错误之处请指出。第一步,当主机A的应用程序通知TCP数据已经发送完毕时,TCP向主机B发送一个带有FIN附加标记的报文段(FIN表示英文finish)。第二步,主机B收到这个FIN报文段之后,并不立即用FIN报文段回复主机A,而是先向主机A发送一个确认序号ACK,同时通知自己相应的应用程序:对方要求关闭连接(先发送ACK的目的是为了防止在这段时间内,对方重传FIN报文段)。第三步,主机B的应用程序告诉TCP:我要彻底的关闭连接,TCP向主机A送一个FIN报文段。第四步,主机A收到这个FIN报文段后,向主机B发送一个ACK表示连接彻底释放。这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。原因有二:一、保证TCP协议的全双工连接能够可靠关闭二、保证这次连接的重复数据段从网络中消失先说第一点,如果Client直接CLOSED了,那么由于IP协议的不可靠性或者是其它网络原因,导致Server没有收到Client最后回复的ACK。那么Server就会在超时之后继续发送FIN,此时由于Client已经CLOSED了,就找不到与重发的FIN对应的连接,最后Server就会收到RST而不是ACK,Server就会以为是连接错误把问题报告给高层。这样的情况虽然不会造成数据丢失,但是却导致TCP协议不符合可靠连接的要求。所以,Client不是直接进入CLOSED,而是要保持TIME_WAIT,当再次收到FIN的时候,能够保证对方收到ACK,最后正确的关闭连接。再说第二点,如果Client直接CLOSED,然后又再向Server发起一个新连接,我们不能保证这个新连接与刚关闭的连接的端口号是不同的。也就是说有可能新连接和老连接的端口号是相同的。一般来说不会发生什么问题,但是还是有特殊情况出现:假设新连接和已经关闭的老连接端口号是一样的,如果前一次连接的某些数据仍然滞留在网络中,这些延迟数据在建立新连接之后才到达Server,由于新连接和老连接的端口号是一样的,又因为TCP协议判断不同连接的依据是socket pair,于是,TCP协议就认为那个延迟的数据是属于新连接的,这样就和真正的新连接的数据包发生混淆了。所以TCP连接还要在TIME_WAIT状态等待2倍MSL,这样可以保证本次连接的所有数据都从网络中消失。硬件速度网络和服务器的负载请求和响应报文的尺寸客户端和服务器之间的距离TCP 协议的技术复杂性TCP 连接建立握手;TCP 慢启动拥塞控制;数据聚集的 Nagle 算法;用于捎带确认的 TCP 延迟确认算法;TIME_WAIT 时延和端口耗尽。介绍完毕,就这?是的,就这。补充:大部分内容为网络整理,方便自己学习回顾,参考文章:TCP 协议简介TCP协议图文详解什么是TCP协议?wireshark抓包分析——TCP/IP协议TCP协议的三次握手和四次挥手TCP协议详解TCP带宽和时延的研究(1)

运输层为什么要提供TCP和UDP两个协议?
网络协议是必须要掌握的知识,TCP/IP 中有两个具有代表性的传输层协议,分别是 TCP 和 UDP,本文将介绍下这两者以及它们之间的区别。一、TCP/IP网络模型计算机与网络设备要相互通信,双方就必须基于相同的方法。比如,如何探测到通信目标、由哪一边先发起通信、使用哪种语言进行通信、怎样结束通信等规则都需要事先确定。不同的硬件、操作系统之间的通信,所有的这一切都需要一种规则。而我们就把这种规则称为协议(protocol)。TCP/IP 是互联网相关的各类协议族的总称,比如:TCP,UDP,IP,FTP,HTTP,ICMP,SMTP 等都属于 TCP/IP 族内的协议。TCP/IP模型是互联网的基础,它是一系列网络协议的总称。这些协议可以划分为四层,分别为链路层、网络层、传输层和应用层。链路层:负责封装和解封装IP报文,发送和接受ARP/RARP报文等。网络层:负责路由以及把分组报文发送给目标网络或主机。传输层:负责对报文进行分组和重组,并以TCP或UDP协议格式封装报文。应用层:负责向用户提供应用程序,比如HTTP、FTP、Telnet、DNS、SMTP等。请点击输入图片描述在网络体系结构中网络通信的建立必须是在通信双方的对等层进行,不能交错。 在整个数据传输过程中,数据在发送端时经过各层时都要附加上相应层的协议头和协议尾(仅数据链路层需要封装协议尾)部分,也就是要对数据进行协议封装,以标识对应层所用的通信协议。接下去介绍TCP/IP 中有两个具有代表性的传输层协议----TCP 和 UDP。二、UDPUDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在第四层——传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。它有以下几个特点:1. 面向无连接首先 UDP 是不需要和 TCP一样在发送数据前进行三次握手建立连接的,想发数据就可以开始发送了。并且也只是数据报文的搬运工,不会对数据报文进行任何拆分和拼接操作。具体来说就是:在发送端,应用层将数据传递给传输层的 UDP 协议,UDP 只会给数据增加一个 UDP 头标识下是 UDP 协议,然后就传递给网络层了在接收端,网络层将数据传递给传输层,UDP 只去除 IP 报文头就传递给应用层,不会任何拼接操作2. 有单播,多播,广播的功能UDP 不止支持一对一的传输方式,同样支持一对多,多对多,多对一的方式,也就是说 UDP 提供了单播,多播,广播的功能。3. UDP是面向报文的发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层。UDP对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。因此,应用程序必须选择合适大小的报文4. 不可靠性首先不可靠性体现在无连接上,通信都不需要建立连接,想发就发,这样的情况肯定不可靠。并且收到什么数据就传递什么数据,并且也不会备份数据,发送数据也不会关心对方是否已经正确接收到数据了。再者网络环境时好时坏,但是 UDP 因为没有拥塞控制,一直会以恒定的速度发送数据。即使网络条件不好,也不会对发送速率进行调整。这样实现的弊端就是在网络条件不好的情况下可能会导致丢包,但是优点也很明显,在某些实时性要求高的场景(比如电话会议)就需要使用 UDP 而不是 TCP。从上面的动态图可以得知,UDP只会把想发的数据报文一股脑的丢给对方,并不在意数据有无安全完整到达。5. 头部开销小,传输数据报文时是很高效的。请点击输入图片描述UDP 头部包含了以下几个数据:两个十六位的端口号,分别为源端口(可选字段)和目标端口整个数据报文的长度整个数据报文的检验和(IPv4 可选 字段),该字段用于发现头部信息和数据中的错误因此 UDP 的头部开销小,只有八字节,相比 TCP 的至少二十字节要少得多,在传输数据报文时是很高效的三、TCP当一台计算机想要与另一台计算机通讯时,两台计算机之间的通信需要畅通且可靠,这样才能保证正确收发数据。例如,当你想查看网页或查看电子邮件时,希望完整且按顺序查看网页,而不丢失任何内容。当你下载文件时,希望获得的是完整的文件,而不仅仅是文件的一部分,因为如果数据丢失或乱序,都不是你希望得到的结果,于是就用到了TCP。TCP协议全称是传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议,由 IETF 的RFC 793定义。TCP 是面向连接的、可靠的流协议。流就是指不间断的数据结构,你可以把它想象成排水管中的水流。1. TCP连接过程如下图所示,可以看到建立一个TCP连接的过程为(三次握手的过程):请点击输入图片描述第一次握手客户端向服务端发送连接请求报文段。该报文段中包含自身的数据通讯初始序号。请求发送后,客户端便进入 SYN-SENT 状态。第二次握手服务端收到连接请求报文段后,如果同意连接,则会发送一个应答,该应答中也会包含自身的数据通讯初始序号,发送完成后便进入 SYN-RECEIVED 状态。第三次握手当客户端收到连接同意的应答后,还要向服务端发送一个确认报文。客户端发完这个报文段后便进入 ESTABLISHED 状态,服务端收到这个应答后也进入 ESTABLISHED 状态,此时连接建立成功。这里可能大家会有个疑惑:为什么 TCP 建立连接需要三次握手,而不是两次?这是因为这是为了防止出现失效的连接请求报文段被服务端接收的情况,从而产生错误。2. TCP断开链接请点击输入图片描述TCP 是全双工的,在断开连接时两端都需要发送 FIN 和 ACK。第一次握手若客户端 A 认为数据发送完成,则它需要向服务端 B 发送连接释放请求。第二次握手B 收到连接释放请求后,会告诉应用层要释放 TCP 链接。然后会发送 ACK 包,并进入 CLOSE_WAIT 状态,此时表明 A 到 B 的连接已经释放,不再接收 A 发的数据了。但是因为 TCP 连接是双向的,所以 B 仍旧可以发送数据给 A。第三次握手B 如果此时还有没发完的数据会继续发送,完毕后会向 A 发送连接释放请求,然后 B 便进入 LAST-ACK 状态。第四次握手A 收到释放请求后,向 B 发送确认应答,此时 A 进入 TIME-WAIT 状态。该状态会持续 2MSL(最大段生存期,指报文段在网络中生存的时间,超时会被抛弃) 时间,若该时间段内没有 B 的重发请求的话,就进入 CLOSED 状态。当 B 收到确认应答后,也便进入 CLOSED 状态。3. TCP协议的特点面向连接面向连接,是指发送数据之前必须在两端建立连接。建立连接的方法是“三次握手”,这样能建立可靠的连接。建立连接,是为数据的可靠传输打下了基础。仅支持单播传输每条TCP传输连接只能有两个端点,只能进行点对点的数据传输,不支持多播和广播传输方式。面向字节流TCP不像UDP一样那样一个个报文独立地传输,而是在不保留报文边界的情况下以字节流方式进行传输。可靠传输对于可靠传输,判断丢包,误码靠的是TCP的段编号以及确认号。TCP为了保证报文传输的可靠,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。提供拥塞控制当网络出现拥塞的时候,TCP能够减小向网络注入数据的速率和数量,缓解拥塞TCP提供全双工通信TCP允许通信双方的应用程序在任何时候都能发送数据,因为TCP连接的两端都设有缓存,用来临时存放双向通信的数据。当然,TCP可以立即发送一个数据段,也可以缓存一段时间以便一次发送更多的数据段(最大的数据段大小取决于MSS)四、TCP和UDP的比较1. 对比UDPTCP是否连接 无连接 面向连接是否可靠 不可靠传输,不使用流量控制和拥塞控制 可靠传输,使用流量控制和拥塞控制连接对象个数 支持一对一,一对多,多对一和多对多交互通信 只能是一对一通信传输方式 面向报文 面向字节流首部开销 首部开销小,仅8字节 首部最小20字节,最大60字节适用场景 适用于实时应用(IP电话、视频会议、直播等) 适用于要求可靠传输的应用,例如文件传输2. 总结TCP向上层提供面向连接的可靠服务 ,UDP向上层提供无连接不可靠服务。虽然 UDP 并没有 TCP 传输来的准确,但是也能在很多实时性要求高的地方有所作为对数据准确性要求高,速度可以相对较慢的,可以选用TCP
CP是面向连接的传输控制协议,而UDP提供了无连接的数据报服务; TCP具有高可靠性,确保传输数据的正确性,不出现丢失或乱序;UDP在传输数据前不建立连接,不对数据报进行检查与修改,无须等待
用户数据报协议UDP(User Datagram Protocol) (1)UDP在传送数据之前不需要建立连接,... TCP提供可靠的,提供面向连接的服务

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/44891.html。