TCP协议的TCP报文头部中固定长度是多少字节
IP报头跟四层报文都需要长度是4的倍数;TCP报文头部中固定长度是20字节

TCP协议原理
一个数据包的生命过程:数据包如何送达主机、主机如何将数据包转交给应用、数据是如何被完整地送达应用程序 互联网,实际上是一套理念和协议组成的体系架构 。其中,协议是一套众所周知的规则和标准,如果各方都同意使用,那么它们之间的通信将变得毫无障碍。数据通信是通过数据包来传输的。如果发送的数据很大,那么该数据就会被拆分为很多小数据包来传输。之后再由接收方按照数据包中的一定规则将小的数据包整合成全部数据。IP 是非常底层的协议,只负责把数据包传送到对方电脑,不负责该数据包将由哪个程序去使用。数据包要在互联网上进行传输,就要符合网际协议(Internet Protocol,简称 IP)标准。计算机的地址就称为 IP 地址,访问任何网站实际上只是你的计算机向另外一台计算机请求信息。简单理解数据传输过程就是:装包和拆包。 如果要想把一个数据包从主机 A 发送给主机 B,那么在传输之前,数据包上会被附加上主机 B 的 IP 地址信息,这样在传输过程中才能正确寻址。额外地,数据包上还会附加上主机 A 本身的 IP 地址,有了这些信息主机 B 才可以回复信息给主机 A。这些附加的信息会被装进一个叫 IP 头的数据结构里。IP 头是 IP 数据包开头的信息,包含 IP 版本、源 IP 地址、目标 IP 地址、生存时间等信息。过程:1、上层将含有“数据”的数据包交给网络层;2、网络层再将 IP 头附加到数据包上,组成新的 IP 数据包,并交给底层;3、底层通过物理网络将数据包传输给主机 B;4、数据包被传输到主机 B 的网络层,在这里主机 B 拆开数据包的 IP 头信息,并将拆开来的数据部分交给上层;5、最终,含有“数据”信息的数据包就到达了主机 B 的上层了。基于 IP 之上开发能和应用打交道的协议,最常见的是“用户数据包协议(User Datagram Protocol)”,简称 UDP。负责将传输的数据包交给某一应用程序。UDP 中一个最重要的信息是端口号,端口号其实就是一个数字,每个想访问网络的程序都需要绑定一个端口号。通过端口号 UDP 就能把指定的数据包发送给指定的程序了, 所以 IP 通过 IP 地址信息把数据包发送给指定的电脑,而 UDP 通过端口号把数据包分发给正确的程序。 和 IP 头一样,端口号会被装进 UDP 头里面,UDP 头再和原始数据包合并组成新的 UDP 数据包。UDP 头中除了目的端口,还有源端口号等信息。为了支持 UDP 协议,我把前面的三层结构扩充为四层结构,在网络层和上层之间增加了传输层过程:1、 上层将数据包交给传输层;传输层会在数据包前面附加上 UDP 头,组成新的 UDP 数据包,再将新的 UDP 数据包交给网络层;2、网络层再将 IP 头附加到数据包上,组成新的 IP 数据包,并交给底层;3、数据包被传输到主机 B 的网络层,在这里主机 B 拆开 IP 头信息,并将拆开来的数据部分交给传输层;4、在传输层,数据包中的 UDP 头会被拆开,并根据 UDP 中所提供的端口号,把数据部分交给上层的应用程序;5、最终,含有信息的数据包就旅行到了主机 B 上层应用程序这里。在使用 UDP 发送数据时,有各种因素会导致数据包出错,虽然 UDP 可以校验数据是否正确,但是对于错误的数据包, UDP 并不提供重发机制,只是丢弃当前的包 ,而且 UDP 在发送之后也无法知道是否能达到目的地。虽说UDP 不能保证数据可靠性,但是传输速度却非常快 ,所以 UDP 会应用在一些关注速度、但不那么严格要求数据完整性的领域,如在线视频、互动游戏等上文说到的使用UDP 来传输会存在两个问题 :1、数据包在传输过程中容易丢失;2、大文件会被拆分成很多小的数据包来传输,这些小的数据包会经过不同的路由,并在不同的时间到达接收端,而 UDP 协议并不知道如何组装这些数据包,从而把这些数据包还原成完整的文件。所以TCP协议很好地解决的这个问题。TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。1、对于数据包丢失的情况,TCP 提供重传机制;2、TCP 引入了数据包排序机制,用来保证把乱序的数据包组合成一个完整的文件。和 UDP 头一样,TCP 头除了包含了目标端口和本机端口号外,还提供了 用于排序的序列号 ,以便接收端通过序号来重排数据包一个完整的 TCP 连接的生命周期包括了“建立连接”“传输数据”和“断开连接”三个阶段。首先,建立连接阶段。这个阶段是通过“三次握手”来建立客户端和服务器之间的连接。TCP 提供面向连接的通信传输。面向连接是指在数据通信开始之前先做好两端之间的准备工作。所谓 三次握手 ,是指在建立一个 TCP 连接时,客户端和服务器总共要发送三个数据包以确认连接的建立。其次,传输数据阶段。在该阶段,接收端需要对每个数据包进行确认操作,也就是接收端在接收到数据包之后,需要发送确认数据包给发送端。所以当发送端发送了一个数据包之后,在规定时间内没有接收到接收端反馈的确认消息,则判断为数据包丢失,并触发发送端的重发机制。同样,一个大的文件在传输过程中会被拆分成很多小的数据包,这些数据包到达接收端后,接收端会按照 TCP 头中的序号为其排序,从而保证组成完整的数据。最后,断开连接阶段。数据传输完毕之后,就要终止连接了,涉及到最后一个阶段“ 四次挥手 ”来保证双方都能断开连接。三次握手和四次挥手限于篇幅可看另一篇文章: TCP协议中 的三次握手和四次挥手1、IP 负责把数据包送达目的主机。2、UDP 负责把数据包送达具体应用(可能会丢包)。3、而 TCP保证了数据完整地传输 ,它的连接可分为三个阶段:建立连接、传输数据和断开连接。 完整的数据流程

tcp包头结构?
TCP协议头最少20个字节,包括以下的区域 TCP源端口(Source Port):16位的源端口其中包含初始化通信的端口。源端口和源IP地址的作用是标示报问的返回地址。TCP目的端口(Destination port):16位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。TCP序列号(序列码,Sequence Number):32位TCP应答号(Acknowledgment Number):32位的序列号由接收端计算机使用,重组分段的报文成最初形式。,如果设置了ACK控制位,这个值表示一个准备接收的包的序列码。数据偏移量(HLEN):4位包括TCP头大小,指示何处数据开始。保留(Reserved):6位值域,这些位必须是0。为了将来定义新的用途所保留。标志(Code Bits):6位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。1. URG:紧急标志紧急(The urgent pointer) 标志有效。紧急标志置位,2. ACK:确认标志确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。TCP报头内的确认编号栏内包含的确认编号(w+1,Figure:1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。3. PSH:推标志该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用处理。在处理 telnet 或 rlogin 等交互模式的连接时,该标志总是置位的。4. RST:复位标志复位标志有效。用于复位相应的TCP连接。5. SYN:同步标志同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立TCP连接时有效。它提示TCP连接的服务端检查序列编号,该序列编号为TCP连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP序列编号看作是一个范围从0到4,294,967,295的32位计数器。通过TCP连接交换的数据中每一个字节都经过序列编号。在TCP报头中的序列编号栏包括了TCP分段中第一个字节的序列编号。6. FIN:结束标志带有该标志置位的数据包用来结束一个TCP回话,但对应端口仍处于开放状态,准备接收后续数据。窗口(Window):16位,用来表示想收到的每个TCP数据段的大小。校验位(Checksum):16位TCP头。源机器基于数据内容计算一个数值,收信息机要与源机器数值 结果完全一样,从而证明数据的有效性。优先指针(紧急,Urgent Pointer):16位,指向后面是优先数据的字节,在URG标志设置了时才有效。如果URG标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。选项(Option):长度不定,但长度必须以字节。如果 没有 选项就表示这个一字节的域等于0。 数据(Date):应用程序的数据。

TCP协议头主要由哪些字段组成?
4位版本+4位首部长度+8位服务类型+16位总长度+16位标识+3位标志+13位片偏移+8位生存周期+8位协议+16位首部校验和+32源地址+32位目的地址

运输层为什么要提供TCP和UDP两个协议?
网络协议是必须要掌握的知识,TCP/IP 中有两个具有代表性的传输层协议,分别是 TCP 和 UDP,本文将介绍下这两者以及它们之间的区别。一、TCP/IP网络模型计算机与网络设备要相互通信,双方就必须基于相同的方法。比如,如何探测到通信目标、由哪一边先发起通信、使用哪种语言进行通信、怎样结束通信等规则都需要事先确定。不同的硬件、操作系统之间的通信,所有的这一切都需要一种规则。而我们就把这种规则称为协议(protocol)。TCP/IP 是互联网相关的各类协议族的总称,比如:TCP,UDP,IP,FTP,HTTP,ICMP,SMTP 等都属于 TCP/IP 族内的协议。TCP/IP模型是互联网的基础,它是一系列网络协议的总称。这些协议可以划分为四层,分别为链路层、网络层、传输层和应用层。链路层:负责封装和解封装IP报文,发送和接受ARP/RARP报文等。网络层:负责路由以及把分组报文发送给目标网络或主机。传输层:负责对报文进行分组和重组,并以TCP或UDP协议格式封装报文。应用层:负责向用户提供应用程序,比如HTTP、FTP、Telnet、DNS、SMTP等。请点击输入图片描述在网络体系结构中网络通信的建立必须是在通信双方的对等层进行,不能交错。 在整个数据传输过程中,数据在发送端时经过各层时都要附加上相应层的协议头和协议尾(仅数据链路层需要封装协议尾)部分,也就是要对数据进行协议封装,以标识对应层所用的通信协议。接下去介绍TCP/IP 中有两个具有代表性的传输层协议----TCP 和 UDP。二、UDPUDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在第四层——传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。它有以下几个特点:1. 面向无连接首先 UDP 是不需要和 TCP一样在发送数据前进行三次握手建立连接的,想发数据就可以开始发送了。并且也只是数据报文的搬运工,不会对数据报文进行任何拆分和拼接操作。具体来说就是:在发送端,应用层将数据传递给传输层的 UDP 协议,UDP 只会给数据增加一个 UDP 头标识下是 UDP 协议,然后就传递给网络层了在接收端,网络层将数据传递给传输层,UDP 只去除 IP 报文头就传递给应用层,不会任何拼接操作2. 有单播,多播,广播的功能UDP 不止支持一对一的传输方式,同样支持一对多,多对多,多对一的方式,也就是说 UDP 提供了单播,多播,广播的功能。3. UDP是面向报文的发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层。UDP对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。因此,应用程序必须选择合适大小的报文4. 不可靠性首先不可靠性体现在无连接上,通信都不需要建立连接,想发就发,这样的情况肯定不可靠。并且收到什么数据就传递什么数据,并且也不会备份数据,发送数据也不会关心对方是否已经正确接收到数据了。再者网络环境时好时坏,但是 UDP 因为没有拥塞控制,一直会以恒定的速度发送数据。即使网络条件不好,也不会对发送速率进行调整。这样实现的弊端就是在网络条件不好的情况下可能会导致丢包,但是优点也很明显,在某些实时性要求高的场景(比如电话会议)就需要使用 UDP 而不是 TCP。从上面的动态图可以得知,UDP只会把想发的数据报文一股脑的丢给对方,并不在意数据有无安全完整到达。5. 头部开销小,传输数据报文时是很高效的。请点击输入图片描述UDP 头部包含了以下几个数据:两个十六位的端口号,分别为源端口(可选字段)和目标端口整个数据报文的长度整个数据报文的检验和(IPv4 可选 字段),该字段用于发现头部信息和数据中的错误因此 UDP 的头部开销小,只有八字节,相比 TCP 的至少二十字节要少得多,在传输数据报文时是很高效的三、TCP当一台计算机想要与另一台计算机通讯时,两台计算机之间的通信需要畅通且可靠,这样才能保证正确收发数据。例如,当你想查看网页或查看电子邮件时,希望完整且按顺序查看网页,而不丢失任何内容。当你下载文件时,希望获得的是完整的文件,而不仅仅是文件的一部分,因为如果数据丢失或乱序,都不是你希望得到的结果,于是就用到了TCP。TCP协议全称是传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议,由 IETF 的RFC 793定义。TCP 是面向连接的、可靠的流协议。流就是指不间断的数据结构,你可以把它想象成排水管中的水流。1. TCP连接过程如下图所示,可以看到建立一个TCP连接的过程为(三次握手的过程):请点击输入图片描述第一次握手客户端向服务端发送连接请求报文段。该报文段中包含自身的数据通讯初始序号。请求发送后,客户端便进入 SYN-SENT 状态。第二次握手服务端收到连接请求报文段后,如果同意连接,则会发送一个应答,该应答中也会包含自身的数据通讯初始序号,发送完成后便进入 SYN-RECEIVED 状态。第三次握手当客户端收到连接同意的应答后,还要向服务端发送一个确认报文。客户端发完这个报文段后便进入 ESTABLISHED 状态,服务端收到这个应答后也进入 ESTABLISHED 状态,此时连接建立成功。这里可能大家会有个疑惑:为什么 TCP 建立连接需要三次握手,而不是两次?这是因为这是为了防止出现失效的连接请求报文段被服务端接收的情况,从而产生错误。2. TCP断开链接请点击输入图片描述TCP 是全双工的,在断开连接时两端都需要发送 FIN 和 ACK。第一次握手若客户端 A 认为数据发送完成,则它需要向服务端 B 发送连接释放请求。第二次握手B 收到连接释放请求后,会告诉应用层要释放 TCP 链接。然后会发送 ACK 包,并进入 CLOSE_WAIT 状态,此时表明 A 到 B 的连接已经释放,不再接收 A 发的数据了。但是因为 TCP 连接是双向的,所以 B 仍旧可以发送数据给 A。第三次握手B 如果此时还有没发完的数据会继续发送,完毕后会向 A 发送连接释放请求,然后 B 便进入 LAST-ACK 状态。第四次握手A 收到释放请求后,向 B 发送确认应答,此时 A 进入 TIME-WAIT 状态。该状态会持续 2MSL(最大段生存期,指报文段在网络中生存的时间,超时会被抛弃) 时间,若该时间段内没有 B 的重发请求的话,就进入 CLOSED 状态。当 B 收到确认应答后,也便进入 CLOSED 状态。3. TCP协议的特点面向连接面向连接,是指发送数据之前必须在两端建立连接。建立连接的方法是“三次握手”,这样能建立可靠的连接。建立连接,是为数据的可靠传输打下了基础。仅支持单播传输每条TCP传输连接只能有两个端点,只能进行点对点的数据传输,不支持多播和广播传输方式。面向字节流TCP不像UDP一样那样一个个报文独立地传输,而是在不保留报文边界的情况下以字节流方式进行传输。可靠传输对于可靠传输,判断丢包,误码靠的是TCP的段编号以及确认号。TCP为了保证报文传输的可靠,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。提供拥塞控制当网络出现拥塞的时候,TCP能够减小向网络注入数据的速率和数量,缓解拥塞TCP提供全双工通信TCP允许通信双方的应用程序在任何时候都能发送数据,因为TCP连接的两端都设有缓存,用来临时存放双向通信的数据。当然,TCP可以立即发送一个数据段,也可以缓存一段时间以便一次发送更多的数据段(最大的数据段大小取决于MSS)四、TCP和UDP的比较1. 对比UDPTCP是否连接 无连接 面向连接是否可靠 不可靠传输,不使用流量控制和拥塞控制 可靠传输,使用流量控制和拥塞控制连接对象个数 支持一对一,一对多,多对一和多对多交互通信 只能是一对一通信传输方式 面向报文 面向字节流首部开销 首部开销小,仅8字节 首部最小20字节,最大60字节适用场景 适用于实时应用(IP电话、视频会议、直播等) 适用于要求可靠传输的应用,例如文件传输2. 总结TCP向上层提供面向连接的可靠服务 ,UDP向上层提供无连接不可靠服务。虽然 UDP 并没有 TCP 传输来的准确,但是也能在很多实时性要求高的地方有所作为对数据准确性要求高,速度可以相对较慢的,可以选用TCP
CP是面向连接的传输控制协议,而UDP提供了无连接的数据报服务; TCP具有高可靠性,确保传输数据的正确性,不出现丢失或乱序;UDP在传输数据前不建立连接,不对数据报进行检查与修改,无须等待
用户数据报协议UDP(User Datagram Protocol) (1)UDP在传送数据之前不需要建立连接,... TCP提供可靠的,提供面向连接的服务

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/44935.html。