tcp协议结构(TCp/ip协议)

      最后更新:2022-11-13 07:03:23 手机定位技术交流文章

      TCP报文结构和功能简析

      TCP:传输、控制、协议。TCP与UDP最大却别就在那个C上面,它充分实现了数据传输时各种控制功能。可以进行丢包重发控制,还可以对次序乱掉的数据包进行顺序控制,还能控制传输流量,这些是UDP中没有的。即T C P 提供一种面向连接的、可靠的字节流服务。TCP是一中面向有链接的协议,只有在确认对端存在的时候,才会发送分数据,从而也可以控制通信流量的浪费。什么是可靠的传输:不丢包、不损坏、不乱序、不重复。TCP通过校验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制来实现可靠传输。接收端查询就收数据TCP首部中的序号和数据长度。将自己下一步应该接受的序列号作为确认应答返送回去。就这样,通过序列号和确认应答,TCP实现可靠传输。一般使用TCP首部用于控制的字段来管理连接。一个连接的建立和断开,正常过程中,至少需要来回共7个包才能完成。TCP首部的数据结构如图所示:TCP包首部为了便于理解,忽略选项部分,固定首部通常为20个字节,将按作用分类分析。前4个字节来标识了发送方的端口号和接收方的端口号,即该数据包由谁发送,由谁接收。前2个字节标识源端口号,紧接着2个字节标识目的端口号。即发送方:(11111111,1111111)2= (65535)10,除去0~1023.即接收方:(11111111,1111111)2= (65535)10,除去0~1023.TCP是面向字节流的。在一个TCP连接中传送的字节流中的每一个字节都按顺序编号。整个要传送的字节流的起始序号必须在连接建立时设置。首部中的序号字段值则是指的是本报文段所发送的数据的第一个字节的序号。长度为4字节,序号是32bit的无符号数,序号到达232- 1后又从0开始。ack:确认序号,即确认字节的序号,更确切地说,是发送确认的一端所期望收到的下一个序号。所谓的发送确认的一端就是将确认信息发出的一端。比如第二次握手的S端就是发送确认的一端。确认序号为上次接收的最后一个字节序号加1.只有确认标志位(ACK)为1的时候,确认序号才有效。也叫首部长度,占4个bit,它指出TCP报文段的数据起始处距离TCP报文段的起始处有多远。TCP报文结构由于首部中还有长度不确定的选项字段,因此数据偏移字段是必要的。“首部长度”是4位二进制数,单位是32位字,能表示的最大十进制数字是15。(1111)2=(15)10,即是15个32位,一个32位是4个字节,因此数据偏移的最大值是154=60个字节,这也是TCP首部的最大字节。因为固定首部的存在,数据偏移的值最小为20个字节,因此选项长度不能超过40字节*(减去20个字节的固定首部)。占6位,保留为今后使用,但目前应置为0。当URG=1时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快发送(相当于高优先级的数据),而不要按原来的排队顺序来传送。例如,已经发送了很长的一个程序要在远地的主机上运行。但后来发现了一些问题,需要取消该程序的运行,因此用户从键盘发出中断命令。如果不使用紧急数据,那么这两个字符将存储在接收TCP的缓存末尾。只有在所有的数据被处理完毕后这两个字符才被交付接收方的应用进程。这样做就浪费了很多时间。当URG置为1时,应用进程就告诉TCP有紧急数据要传送。于是TCP就把紧急数据插入到本报文段数据的最前面,而在紧急数据后面的数据仍然是普通数据。这时要与首部中紧急指针(Urgent Pointer)字段配合使用。仅当ACK = 1时确认号字段才有效,当ACK = 0时确认号无效。TCP规定,在连接建立后所有的传送的报文段都必须把ACK置为1。当两个应用进程进行交互式的通信时,有时在一端的应用进程希望在键入一个命令后立即就能收到对方的响应。在这种情况下,TCP就可以使用推送(push)操作。发送方TCP把PSH置为1,并立即创建一个报文段发送出去。接收方TCP收到PSH=1的报文段,就尽快地(即“推送”向前)交付接收应用进程。而不用再等到整个缓存都填满了后再向上交付。当RST=1时,表明TCP连接中出现了严重错误(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立传输连接。RST置为1还用来拒绝一个非法的报文段或拒绝打开一个连接。在连接建立时用来同步序号。当SYN=1而ACK=0时,表明这是一个连接请求报文段。对方若同意建立连接,则应在响应的报文段中使SYN=1和ACK=1。因此SYN=1就表示这是一个连接请求或连接接受报文。用来释放一个连接。当FIN=1时,表明此报文段的发送发的数据已发送完毕,并要求释放运输连接。占2字节。窗口值是(0,216-1)之间的整数。窗口指的是发送本报文段的一方的接受窗口(而不是自己的发送窗口),窗口大小是给对方用的。窗口值告诉对方:从本报文段首部中的确认号算起,接收方目前允许对方一次发送的数据量(以字节为单位)。之所以要有这个限制,是因为接收方的数据缓存空间是有限的。总之,窗口值作为接收方让发送方设置其发送窗口的依据。例如,A发送了一个报文段,其确认号是3000,窗口字段是1000.这就是告诉对方B:“从3000算起,A接收缓存空间还可接受1000个字节数据,字节序号是3000-3999”,可以想象到河道的阀门。总之:窗口字段明确指出了现在允许对方发送的数据量。窗口值经常在动态变化。占2字节。检验和字段检验的范围包括首部和数据这两部分。和UDP用户数据报一样,在计算检验和时,要在TCP报文段的前面加上12字节的伪首部。伪首部的格式和UDP用户数据报的伪首部一样。但应把伪首部第4个字段中的17改为6(TCP的协议号是6);把第5字段中的UDP中的长度改为TCP长度。接收方收到此报文段后,仍要加上这个伪首部来计算检验和。若使用TPv6,则相应的伪首部也要改变。占2字节。紧急指针仅在URG=1时才有意义,它指出本报文段中的紧急数据的字节数(紧急数据结束后就是普通数据) 。因此,在紧急指针指出了紧急数据的末尾在报文段中的位置。当所有紧急数据都处理完时,TCP就告诉应用程序恢复到正常操作。值得注意的是,即使窗口为0时也可以发送紧急数据。长度可变,最长可达40个字节。当没有使用“选项”时,TCP的首部长度是20字节。最大报文段长度(MSS:Maximum Segment Size)表示TCP传往另一端的最大块数据的长度。当一个连接建立时,连接的双方都要通告各自的MSS。当建立一个连接时,每一方都有用于通告它期望接收的MSS选项(MSS选项只能出现在SYN报文段中),如果一方不接收来自另一方的MSS值,则MSS就定为默认值536字节(这个默认值允许20字节的IP首部和20字节的TCP首部以适合576字节IP数据报) 。为什么要规定一个最大报文长度MSS呢?这并不是考虑接受方的接收缓存可能存放不下TCP报文段中的数据。实际上,MSS与接收窗口值没有关系。我们知道,TCP报文段的数据部分,至少要加上40字节的首部(TCP首部20字节和IP首部20字节,这里还没有考虑首部中的可选部分)才能组装成一个IP数据报。若选择较小的MSS长度,网络的利用率就降低。设想在极端情况下,当TCP报文段只含有1字节的数据时,在IP层传输的数据报的开销至少有40字节(包括TCP报文段的首部和IP数据报的首部)。这样,对网络的利用率就不会超过1/41。到了数据链路层还要加上一些开销。但反过来,若TCP报文段非常长,那么在IP层传输时就有可能要分解成多个短数据报片。在终点要把收到的各个短数据报片组成成原来的TCP报文段,当传输出错时还要进行重传,这些也都会使开销增大。因此,MSS应尽可能大些,只要在IP层传输时不需要分片就行。由于IP数据报所经历的路径是动态变化的,因此在这条路径上确定的不需要的分片的MSS,如果改走另一条路径就可能需要进行分片。因此最佳的MSS是很难确定的。在连接过程中,双方都把自己能够支持的MSS写入这一字段,以后就按照这个数值传输数据,两个传送方向可以有不同的MSS值。若主机未填写这一项,则MSS的默认值是536字节长。因此,所有在互联网上的主机都应该接受的报文段长度是536+20(固定首部长度)=556字节。后来又增加了几个选项如窗口扩大选项、时间戳选项等。窗口扩大选项是为了扩大窗口。我们知道,TCP首部中窗口字段长度是16位,因此最大的窗口大小为64K字节。虽然这对早期的网络是足够用的,但对于包含卫星信道的网络,传播时延和宽带都很大,要获得高吞吐量需要更大的窗口大小。窗口扩大选项占3字节,其中有一个字节表示移位值S。新的窗口值等于TCP首部中的窗口位数从16增大到(16+S)。移位值允许使用的最大值是14,相当于窗口最大值增大到2(16+14)-1=230-1。窗口扩大选项可以在双方初始建立TCP连接时进行协商。如果连接的某一端实现了窗口扩大,当它不再需要扩大其窗口时,可发送S=0选项,使窗口大小回到16。时间戳选项占10字节,其中最主要的字段是时间戳字段(4字节)和时间戳回送回答字段(4字节)。时间戳选项有以下两个概念:第一、 用来计算往返时间RTT。发送方在发送报文段时把当前时钟的时间值放入时间戳字段,接收方在确认该报文段时把时间戳字段复制到时间戳回送回答字段。因此,发送方在收到确认报文后,可以准确地计算出RTT来。第二、 用于处理TCP序号超过232的情况,这又称为防止序号绕回PAWS。我们知道,TCP报文段的序号只有32位,而每增加232个序号就会重复使用原来用过的序号。当使用高速网络时,在一次TCP连接的数据传送中序号很可能被重复使用。例如,当使用1.5Mbit/s的速度发送报文段时,序号重复要6小时以上。但若用2.5Gbit/s的速率发送报文段,则不到14秒钟序号就会重复。为了使接收方能够把新的报文段和迟到很久的报文段区分开,则可以在报文段中加上这种时间戳。从功能和性能的角度去理解三次握手建立连接第一次:C向S发送一个建立连接的请求。此过程中携带一些报文属性信息,这些信息,存在于报文首部,有初始化用的信息,比如,有用于认证的信息。初始化信息:如报文序列号、SYN:TCP在数据通信之前,通过TCP首部发送的一个SYN标志位,作为建立连接的请求等待接收方确认应答。如果S发来确认应答,则认为可以进行数据通信,否则,就不能进行通信。TCP规定:****SYN=1的报文段不能携带数据,但是要消耗掉一个序号:seq=x。这个时候C进入SYN-SENT(同步已发送)状态。第二次:S收到C请求后,如果同意建立连接,则向C返回确认信息:将SYN、ACK都置1,确认号为ack=seq+1(seq来自客户端),并携带自己的初始化,同时用于认证的信息S。同理:SYN=1的报文段不能携带数据,但是要消耗掉一个序号:seq=y。这个时候S进入SYN-RCVD(同步已接收)状态。C收到S返回的确认信息后,进入ESTABLISHED(已建立连接)的状态,第三次:C收到S返回的确认信息后,向S再一次发送确认报文。ACK置为1,确认号ack=seq+1(seq来自S),自己的seq=x+1。TCP规定:ACK报文可以携带数据。但是,如果不携带数据,则不消耗序号,这时,下一数据报文段的序号仍是seq=x+1。服务器收到客户端返回的确认信息后,也进入ESTABLISHED(已建立连接)的状态,从功能角度去考虑前两次握手,从性能的角度去理解为什么需要第三次握手。有第三次,是考虑到一种错误情况:假设C发了一请求建立连接的报文,长时间未收到S的确认报文,则C会重发,这个时候S与之建立连接、完成数据通信、关闭了连接,这个时候C第一发出的请求建立连接的报文到达了S,S则会等待C发送数据,实际上C已经CLOSED了,S就一直在这等待,浪费资源,确切地说,应该是至少四次数据交互才能实现一个连接的彻底关闭。关闭连接,需要四个报文来指示关闭。TCP是全双工通信的,所以在一端发送数据完毕后,还具有接收另一端的数据的能力,这就所谓的半关闭。四次挥手举个例子:如果C的数据已经发送完毕,C是不能立即关闭的,因为建立连接的通信双方是平等的。C首先告诉S:“数据发送完毕“,这个消息在TCP报文的首部由FIN来标识,让S知道C是准备断开连接了。这是第一次挥手。S收到C发来的FIN标识的报文后,要给C端恢复一个确认FIN的消息,告诉C说,知道你的数据发完了。这是第二次挥手。这个时候,如果S端的数据也发送完毕了,就给C发一个FIN=1报文。这是第三次挥手。C收到S发来的FIN标识的报文后,要给S端恢复一个确认FIN的消息,告诉C说,知道你的数据发完了。这是第四次挥手。然后就彻底断开连接了。TCP的状态变迁图
      TCP报文结构和功能简析

      简述TCP/IP的体系结构,并简要说明各层的功能?

      第五层——应用层:应用层是体系结构中最高的。直接为用户的应用进程提供服务。在因特网中的应用层协议很多,如支持万维网应用的HTTP协议,支持电子邮件的SMTP协议,支持文件传送的FTP协议等等。第四层——运输层:运输层负责向两个主机中进程之间的通信提供服务。由于一个主机可同时运行多个进程,因此运输层有复用和分用的功能。复用,就是多个应用层进程可同时使用下面运输层的服务。分用,就是把收到的信息分别交付给上面应用层中相应的进程。运输层主要使用以下两种协议:1、传输控制协议TCP面向连接的,数据传输的单位是报文段,能够提供可靠的交付。2、用户数据包协议UDP无连接的,数据传输的单位是用户数据报,不保证提供可靠的交付,只能提供“尽最大努力交付”。第三层——网络层:网络层主要包括以下两个任务:1、负责为分组交换网上的不同主机提供通信服务。在发送数据时,网络层把运输层残生的报文段或用户数据报封装成分组或包进行传送。在TCP/IP体系中,由于网络层使用IP协议,因此分组也叫做IP数据报,或简称为数据报。2、选中合适的路由,使源主机运输层所传下来的分组,能够通过网络中的路由器找到目的主机。第二层——数据链路层:数据链路层常简称为链路层,我们知道,两个主机之间的数据传输,总是在一段一段的链路上传送的,也就是说,在两个相邻结点之间传送数据是直接传送的(点对点),这时就需要使用专门的链路层的协议。在两个相邻结点之间传送数据时,数据链路层将网络层交下来的IP数据报组装成帧(framing),在两个相邻结点之间的链路上“透明”地传送帧中的数据。每一帧包括数据和必要的控制信息(如同步信息、地址信息、差错控制等)。典型的帧长是几百字节到一千多字节。注:”透明”是一个很重要的术语。它表示,某一个实际存在的事物看起来却好像不存在一样。”在数据链路层透明传送数据”表示无轮什么样的比特组合的数据都能够通过这个数据链路层。因此,对所传送的数据来说,这些数据就“看不见”数据链路层。或者说,数据链路层对这些数据来说是透明的。在接收数据时,控制信息使接收端能知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提取出数据部分,上交给网络层。控制信息还使接收端能检测到所收到的帧中有无差错。如发现有差错,数据链路层就简单地丢弃这个出了差错的帧,以免继续传送下去白白浪费网络资源。如需改正错误,就由运输层的TCP协议来完成。第一层——物理层:物理层在物理层上所传数据的单位是比特。物理层的任务就是透明地传送比特流。
      从协议分层模型方面来讲,tcp/ip 由四个层次组成:网络接口层、网间网层、传输层、应用层。其中:网络接口层这是tcp/ip软件的最低层,负责接收ip数据报并通过网络发送之,或者从网络上接收物理帧,抽出ip数据报,交给ip层。网间网层负责相邻计算机之间的通信。传输层提供应用程序间的通信。应用层向用户提供一组常用的应用程序,比如电子邮件、文件传输 访问、远程登录等。
      分7层 应用层/表示层/会话层/传输层/网络层/数据链路层/网络接口层/物理层
      简述TCP/IP的体系结构,并简要说明各层的功能?

      TCP/IP协议分为哪几层

      在TCP/IP协议有四层。1、应用层:应用层是TCP/IP协议的第一层,是直接为应用进程提供服务的。2、运输层:作为TCP/IP协议的第二层,运输层在整个TCP/IP协议中起到了中流砥柱的作用。且在运输层中,TCP和UDP也同样起到了中流砥柱的作用。3、网络层:网络层在TCP/IP协议中的位于第三层。在TCP/IP协议中网络层可以进行网络连接的建立和终止以及IP地址的寻找等功能。4、网络接口层:在TCP/IP协议中,网络接口层位于第四层。由于网络接口层兼并了物理层和数据链路层所以,网络接口层既是传输数据的物理媒介,也可以为网络层提供一条准确无误的线路。网际互联层网际互联层对应于OSI参考模型的网络层,主要解决主机到主机的通信问题。它所包含的协议设计数据包在整个网络上的逻辑传输。注重重新赋予主机一个IP地址来完成对主机的寻址,它还负责数据包在多种网络中的路由。该层有三个主要协议:网际协议(IP)、互联网组管理协议(IGMP)和互联网控制报文协议(ICMP)。IP协议是网际互联层最重要的协议,它提供的是一个可靠、无连接的数据报传递服务。
      TCP/IP协议分为如下4层: 网络接口层:负责接收和发送物理帧网络层:负责相邻节点之间的通信传输层:负责起点到终点的通信应用层:提供诸如文件传输、电于邮件等应用程序 要把数据以TCP/IP协议方式从一台计算机传送到另-台计算机,数据需经过上述四层通讯软件的处理才能在物理网络中传输。
      TCP/IP协议分为哪几层

      tcp/ip协议包含哪几层?

      最佳经验本文由作者推荐01应用层;传输层;网络层;数据链路层tcp/ip协议包含应用层、传输层、网络层和数据链路层4层。TCP/IP传输协议是在网络的使用中的最基本的通信协议。TCP/IP协议在一定程度上参考了OSI的体系结构。OSI模型共有七层,从下到上分别是物理层、数据链路层、网络层、运输层、会话层、表示层和应用层。但是这显然是有些复杂的,所以在TCP/IP协议中,它们被简化为了四个层次。TCP/IP传输协议,即传输控制/网络协议,也叫作网络通讯协议。它是在网络的使用中的最基本的通信协议。TCP/IP传输协议对互联网中各部分进行通信的标准和方法进行了规定。并且,TCP/IP传输协议是保证网络数据信息及时、完整传输的两个重要的协议。TCP/IP传输协议是严格来说是一个四层的体系结构,应用层、传输层、网络层和数据链路层都包含其中。TCP/IP协议是Internet最基本的协议,其中应用层的主要协议有Telnet、FTP、SMTP等,是用来接收来自传输层的数据或者按不同应用要求与方式将数据传输至传输层;传输层的主要协议有UDP、TCP,是使用者使用平台和计算机信息网内部数据结合的通道,可以实现数据传输与数据共享;网络层的主要协议有ICMP、IP、IGMP,主要负责网络中数据包的传送等;而网络访问层,也叫网路接口层或数据链路层,主要协议有ARP、RARP,主要功能是提供链路管理错误检测、对不同通信媒介有关信息细节问题进行有效处理等。TCP/IP协议在一定程度上参考了OSI的体系结构。OSI模型共有七层,从下到上分别是物理层、数据链路层、网络层、运输层、会话层、表示层和应用层。但是这显然是有些复杂的,所以在TCP/IP协议中,它们被简化为了四个层次。1、应用层、表示层、会话层三个层次提供的服务相差不是很大,所以在TCP/IP协议中,它们被合并为应用层一个层次。2、由于运输层和网络层在网络协议中的地位十分重要,所以在TCP/IP协议中它们被作为独立的两个层次。3、因为数据链路层和物理层的内容相差不多,所以在TCP/IP协议中它们被归并在网络接口层一个层次里。只有四层体系结构的TCP/IP协议,与有七层体系结构的OSI相比要简单了不少,也正是这样,TCP/IP协议在实际的应用中效率更高,成本更低。
      tcp/ip协议包含哪几层?

      试分析TCP/IP协议的体系结构和特点

      1、TCP/IP体系结构TCP/IP协议实际上就是在物理网上的一组完整的网络协议。其中TCP是提供传输层服务,而IP则是提供网络层服务。TCP/IP包括以下协议:IP: 网间协议(Internet Protocol) 负责主机间数据的路由和网络上数据的存储。同时为ICMP,TCP,UDP提供分组发送服务。用户进程通常不需要涉及这一层。ARP: 地址解析协议(Address Resolution Protocol),此协议将网络地址映射到硬件地址。RARP: 反向地址解析协议(Reverse Address Resolution Protocol),此协议将硬件地址映射到网络地址。ICMP: 网间报文控制协议(Internet Control Message Protocol),此协议处理信关和主机的差错和传送控制。TCP: 传送控制协议(Transmission Control Protocol),这是一种提供给用户进程的可靠的全双工字节流面向连接的协议。它要为用户进程提供虚电路服务,并为数据可靠传输建立检查。(注:大多数网络用户程序使用TCP)UDP: 用户数据报协议(User Datagram Protocol),这是提供给用户进程的无连接协议,用于传送数据而不执行正确性检查。FTP: 文件传输协议(File Transfer Protocol),允许用户以文件操作的方式(文件的增、删、改、查、传送等)与另一主机相互通信。SMTP: 简单邮件传送协议(Simple Mail Transfer Protocol),SMTP协议为系统之间传送电子邮件。TELNET:终端协议(Telnet Terminal Procotol),允许用户以虚终端方式访问远程主机。HTTP: 超文本传输协议(Hypertext Transfer Procotol)。TFTP: 简单文件传输协议(Trivial File Transfer Protocol)。2、TCP/IP特点:TCP/IP协议的核心部分是传输层协议(TCP、UDP),网络层协议(IP)和物理接口层,这三层通常是在操作系统内核中实现。因此用户一般不涉及。编程时,编程界面有两种形式:(1)是由内核心直接提供的系统调用;(2)使用以库函数方式提供的各种函数。前者为核内实现,后者为核外实现。用户服务要通过核外的应用程序才能实现,所以要使用套接字(socket)来实现。
      (1)开放的协议标准,可以免费使用,并且独立于特定的计算机硬件与操作系统; (2)独立于特定的网络硬件,可以运行在局域网、广域网,更适用于互联网中; (3)统一的网络地址分配方案,使得整个TCP/IP设备在网中都具有惟一的地址; (4)标准化的高层协议,可以提供多种可靠的用户服务。
      试分析TCP/IP协议的体系结构和特点

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/45026.html

          热门文章

          文章分类