tcp怎么保证可靠传输(Tcp怎么实现可靠传输)

      最后更新:2022-11-13 20:23:29 手机定位技术交流文章

      tcp协议实现可靠传输的原理是什么

      TCP/IP协议 TCP/IP(Transmission Control Protocol/Internet Protocol的简写,中文译名为传输控制协议/互联网络协议)协议是Internet最基本的协议,简单地说,就是由网络层的IP协议和传输层的TCP协议组成的。 通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因特网的每一台电脑规定一个地址。1974年12月,卡恩、瑟夫的第一份TCP协议详细说明正式发表。当时美国国防部与三个科学家小组签定了完成TCP/IP的协议,结果由瑟夫领衔的小组捷足先登,首先制定出了通过详细定义的TCP/IP协议标准。当时作了一个试验,将信息包通过点对点的卫星网络,再通过陆地电缆,再通过卫星网络,再由地面传输,贯串欧洲和美国,经过各种电脑系统,全程9.4万公里竟然没有丢失一个数据位,远距离的可靠数据传输证明了TCP/IP协议的成功。
      tcp协议实现可靠传输的原理是什么

      细说TCP的可靠传输、流量控制、拥塞控制

      TCP的可靠传输是基于连续ARQ协议的,ARQ协议中有两个重要的概念:滑动窗口和累计确认。但是我认为TCP能实现可靠传输不仅仅是靠连续ARQ协议,还依靠了:1.通过三次握手、四次挥手来保证信道的可连接性 ;2.采用停止等待协议、连续ARQ协议(自动重传)来保证数据的正确性;3.序列号和确认应答号保证了数据的有序性,4.校验和:如果收到字节的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。TCP通过三次握手来确定这是一个可靠的连接,三次握手的目的是为了确定客户端和服务端都有正常的【收发】能力,即客户端可以发送和接收消息,服务器也可以发送和接收消息。那么如果只有两次握手,则【客户端】的【接收】能力并没有得到确认,不能确定这是一个可靠的连接。同时,为了实现可靠数据传输, TCP 协议的通信双方, 都必须维护一个序列号, 以标识发送出去的数据包中, 哪些是已经被对方收到的。 三次握手的过程即是通信双方相互告知序列号起始值, 并确认对方已经收到了序列号起始值的必经步骤,如果只是两次握手, 至多只有连接发起方的起始序列号能被确认, 另一方选择的序列号则得不到确认。这三个协议的目的,都是为了保证了客户端和服务器的数据,能确保传送到对面。如果数据在中途丢失或者延迟,则需要重新发送,一直到对面接收到为止。A每发送完一个报文M,就等候B对其确认;如果没收到确认,则不能继续发送,收到确认后再继续发送。缺点是一个个字节发送效率太低。数组分组在传输过程中发生错误时有两种情况:在这两种情况下,接收方都不会发送任何信息。发送方在一定时间内没有收到确认,就认为分组丢失,然后重传该数据分组,这就叫超时重传。停止等待ARQ协议就是通过这种确认和重传的机制,在不可靠的网络上实现可靠通信。显然,每次只发送一个报文然后等待确认效率太低。连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累计确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。如果中间发生丢失包的情况,A需要回退到确认的报文重新发送。A的发送窗口大小是根据B接受窗口设置的。也就是说A发送的报文速度不能超过B处理报文的速度。TCP中对于超时重传时间的选择是根据平均往返时间RTT来计算的。也就是说,如果A超过一个报文平均往返时间没有收到确认,就会重新发送报文。选择重传ARQ协议是指在接收方收到未按序排列的数据流时,通知发送方重传缺失的数据,而不是重传全部数据。TCP数据段首部中添加选择确认选项SACK可以实现该目的。如图所示,假设上述分组都在发送窗口中,收到三个不连续的分组。三个分组的边界分别为:[4000,5001]、[6000,7001]、[8000,9001]。在建立TCP连接时,连接双方先商定好,在首部选项中加入“允许SACK”的选项。在之后的TCP报文段中增加SACk选项,以便接收方向发送方报告不连续的字节块的边界。因为序号是32位,因此指明一个边界需要4个字节,说明一个字节块的边界需要8个字节。另外需要一个字节指明是SACK选项,一个字节指明这个选项的大小。TCP报文段首部选项最大为40个字节,因此最多指明4个字节块的边界信息。TCP标准并未指明发送方应该如何响应SACK,因此大多数实现还是重传所有未被确认的数据分组。利用滑动窗口机制可以实现对发送方的流量控制。在TCP连接建立时,接收方会在确认报文段中给出自己接收窗口的大小。在每次发送确认报文时能够根据情况动态调整接收窗口的大小,并将告知发送方。如下图所示:发送方发送序号从1开始的100字节的数据,接收方在确认报文中声明自身的接收窗口大小为300字节。之后发送方发送300字节数据,接收方在确认报文中声明自身接收窗口大小调整为50字节。发送方再发送50字节数据之后,收到接收方传来的确认报文,在该报文中声明接收窗口为0。在接收方接收窗口为0时,发送方不再发送数据,直到接收方发送确认报文表明窗口大小发生改变。可是这个确认报文不一定能够被发送方接收到,如果一旦该确认报文丢失,双方都将处于等待中,形成死锁。为防止这种情况出现,TCP规定在收到对方接受窗口为0时,启动一个坚持定时器周期性的发送探测报文,以确定对方接收窗口为0的状态是否改变。另外,TCP标准规定:接收方接收窗口为0时,不再接收正常数据,但是可以接收零窗口探测报文段、确认报文段、携带紧急数据的报文段。当主机开始发送数据时,如果立即将较大的发送窗口的全部数据注入网路中,那么由于不清楚网络的情况,有可能引起拥塞。比较好的方式是试探一下,即从小到大逐渐增大发送端的拥塞控制窗口数值。cwnd以指数增长的形式增长。接收方收到M1之后发送对M1的确认报文,M2报文丢失,之后接收方收到M3、M4、M5时每次都发送对M1报文的重复确认。快重传算法规定当收到三次重复确认后,发送方就认为M2报文段丢失,立即重传M2报文段。
      细说TCP的可靠传输、流量控制、拥塞控制

      tcp/ip协议如何实现可靠传输

      1、建立连接:简单来说每个tcp/ip连接都是在三次握手基础上建立连接,并且实时检查连接状态。数据的传输具规范性。 2、超时重传:是TCP协议保证数据可靠性的另一个重要机制,其原理是在发送某一个数据以后就开启一个计时器,在一定时间内如果没有得到发送的数据报的ACK报文,那么就重新发送数据,直到发送成功为止。
      1.通过三次握手 2.设置了窗口 使它的传输有流量控制和差错控制实现的可靠传输 3.它是面向连接的协议不像udp
      tcp/ip协议如何实现可靠传输

      网络协议 | TCP和UDP可靠性传输

      前文: 网络协议一、协议1、HTTP协议:基于TCP连接的,主要解决如何包装数据,对应于应用层;2、TCP/UDP协议:主要解决数据如何在网络中传输,对应于传输层;3、IP协议:对应于网络层;· 在传输数据时,可以只使用传输层(TCP/IP),但是那样的话,由于没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用应用层协议,应用层协议很多,有HTTP、FTP、TELNET等等,也可以自己定义应用层协议。· web使用HTTP作传输层协议,以封装HTTP文本信息,然后使用TCP/IP做传输层协议将它发送到网络上。· TCP/IP:传输层协议,主要解决数据如何在网络中传输。TCP(TransmissionControl Protocol 传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。UDP是User Datagram Protocol,一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。可靠性由上层应用实现,所以要实现udp可靠性传输,必须通过应用层来实现和控制。确认机制、重传机制、滑动窗口。1.应用数据被分割成TCP认为最适合发送的数据块。这和UDP完全不同,应用程序产生的数据长度将保持不变。由TCP传递给IP的信息单位称为报文段或段(segment)。2.当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。当TCP收到发自TCP连接另一端的数据,它将发送一个确认。TCP有延迟确认的功能,在此功能没有打开,则是立即确认。功能打开,则由定时器触发确认时间点。3.TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP将丢弃这个报文段和不确认收到此报文段(希望发端超时并重发)。4.既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段的到达也可能会失序。如果必要,TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。5.既然IP数据报会发生重复,TCP的接收端必须丢弃重复的数据。[2]6.TCP还能提供流量控制。TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。TCP协议用于控制数据段是否需要重传的依据是设立重发定时器。在发送一个数据段的同时启动一个重传,如果在重传超时前收到确认(Acknowlegement)就关闭该重传,如果重传超时前没有收到确认,则重传该数据段。在选择重发时间的过程中,TCP必须具有自适应性。它需要根据互联网当时的通信情况,给出合适的重发时间。这种重传策略的关键是对定时器初值的设定。采用较多的 算法 是Jacobson于1988年提出的一种不断调整超时时间间隔的动态算法。其工作原理是:对每条连接TCP都保持一个变量RTT(Round Trip Time),用于存放当前到目的端往返所需要时间最接近的估计值。当发送一个数据段时,同时启动连接的定时器,如果在定时器超时前确认到达,则记录所需要的时间(M),并修正[2]RTT的值,如果定时器超时前没有收到确认,则将RTT的值增加1倍。通过测量一系列的RTT(往返时间)值,TCP协议可以估算数据包重发前需要等待的时间。在估计该连接所需的当前延迟时通常利用一些统计学的原理和算法(如Karn算法),从而得到TCP重发之前需要等待的时间值。TCP的一项功能就是确保每个数据段都能到达目的地。位于目的主机的TCP服务对接受到的数据进行确认,并向源应用程序发送确认信息。使用数据报头序列号以及确认号来确认已收到包含在数据段的相关的数据字节。TCP在发回源设备的数据段中使用确认号,指示接收设备期待接收的下一字节。这个过程称为期待确认。源主机在收到确认消息之前可以传输的数据的大小称为窗口大小。用于管理丢失数据和流量控制。UDP它不属于连接型协议,因而具有资源消耗小,处理速度快的优点,所以通常音频、视频和普通数据在传送时使用UDP较多,因为它们即使偶尔丢失一两个数据包,也不会对接收结果产生太大影响。传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式,只是实现不在传输层,实现转移到了应用层。实现确认机制、重传机制、窗口确认机制。如果你不利用 Linux 协议栈以及上层socket机制,自己通过抓包和发包的方式去实现可靠性传输,那么必须实现如下功能:发送:包的分片、包确认、包的重发接收:包的调序、包的序号确认目前有如下开源程序利用udp实现了可靠的数据传输。分别为RUDP、RTP、UDT。RUDP 提供一组数据服务质量增强机制,如拥塞控制的改进、重发机制及淡化服务器算法等,从而在包丢失和网络拥塞的情况下, RTP 客户机(实时位置)面前呈现的就是一个高质量的 RTP 流。在不干扰协议的实时特性的同时,可靠 UDP 的拥塞控制机制允许 TCP 方式下的流控制行为。实时传输协议(RTP)为数据提供了具有实时特征的端对端传送服务,如在组播或单播网络服务下的交互式视频音频或模拟数据。应用程序通常在 UDP 上运行 RTP 以便使用其多路结点和校验服务;这两种协议都提供了传输层协议的功能。但是 RTP 可以与其它适合的底层网络或传输协议一起使用。如果底层网络提供组播方式,那么 RTP 可以使用该组播表传输数据到多个目的地。RTP 本身并没有提供按时发送机制或其它服务质量(QoS)保证,它依赖于底层服务去实现这一过程。 RTP 并不保证传送或防止无序传送,也不确定底层网络的可靠性。 RTP 实行有序传送, RTP 中的序列号允许接收方重组发送方的包序列,同时序列号也能用于决定适当的包位置,例如:在视频解码中,就不需要顺序解码。基于UDP的数据传输协议(UDP-basedData Transfer Protocol,简称UDT)是一种互联网数据传输协议。UDT的主要目的是支持高速广域网上的海量数据传输,而互联网上的标准数据传输协议TCP在高带宽长距离网络上性能很差。顾名思义,UDT建于UDP之上,并引入新的拥塞控制和数据可靠性控制机制。UDT是面向连接的双向的应用层协议。它同时支持可靠的数据流传输和部分可靠的数据报传输。由于UDT完全在UDP上实现,它也可以应用在除了高速数据传输之外的其它应用领域,例如点到点技术(P2P),防火墙穿透,多媒体数据传输等等。本文来自地址:https://blog.csdn.net/gettogetto/article/details/76736365
      网络协议 | TCP和UDP可靠性传输

      TCP是如何实现可靠传输的?

      在计算机网络的经典五层协议中,TCP属于运输层,实现了进程间的通信,保证了数据的可靠传输,属于计算机网络协议族中最重要的协议之一,那么TCP是如何实现可靠数据传输的呢?运输层的进程间通信是通过socket实现的,socket是一个抽象的概念,在Linux系统中以文件的形式存在。网络层通过IP来区分主机,运输层则增加了端口的概念来区分进程。TCP协议中使用目标IP、目标端口、源IP、源端口来定义一个socket,只需要在运输层的报文头部附加上这些信息,目标主机就会知道数据要发送那个socket,对应监听该socket的进程就可以收到数据进行处理。TCP报文包括首部和数据部分,首部附加了TCP报文的信息,首部长度固定部分为20字节,还有40字节的可选部分,具体如下图所示:其中几个关键字段的作用如下:网络层只管尽可能将数据从一个主机发送到另一个主机,并不保证数据可靠到达,由于网络环境总是不稳定的,可能存在丢包、差错等请求,TCP则通过一系列的机制在运输层保证了数据的可靠传输。网络传输可能发生的异常情况和解决方法:要实现可靠传输,最简单的方法就是发送方发送一个报文,接收方收到报文后发送确认报文表示我收到了,你可以发下一个了,传输模型如下:这种方式保证可靠传输称为停止等待协议,这种方式缺点也很明显,效率非常低。为了提高传输效率,充分利用带宽,发送方会连续的发送数据包,如下图所示:客户端不等收到前一个包的确认报文就开始不断的发下一个包,这样可以充分利用网络带宽,提高传输效率,但是于此同时也带来了另外的问题,那么TCP是如何解决这些问题的?累计确认:网络中充斥着大量的发送包和确认回复报文,这些数据只是为了确认报文到达,并不是实际需要传输的数据。是不是一定要每一个报文都要发一个回复确认的报文呢,TCP采用了累计确认的方法:接收方在累计收到了一定量的数据包后发送一个确认报文告诉发送方在此之前的数据包都已经收到了,这样便可以减少确认报文的数量,提高带宽利用率。GBN(回退n步):如果发生丢包的情况,在连续ARQ中,如果接受方收到了123 567个字节,编号为4字节的包丢失了,按照累计确认只能发送3的确认回复,567都要丢掉,因为发送发会进行重传。选择确认ACK:在TCP报文头部的选项字段部分设置已收到的报文,每一段用两个边界来确定,比如上述情况可以用[1,3]和[5,7]来表示,客户端就会根据选项只重传丢失的数据段。因为接收方读数据的能力有限,发送发不能一直发送报文直到把缓冲区所有数据发送完,这样会导致接收方无法接收丢弃掉数据包,发送方收不到确认认为超时又会继续重传,产生了大量无用数据的重传。对此情况TCP使用滑动窗口来解决,基本模型如下:滑动窗口机制实现了TCP的流量控制,不至于发送太快导致太多的数据丢弃和重传。为了避免网络过分拥挤导致丢包严重,传输效率低,TCP实现了拥塞控制机制,拥塞控制的解决办法本质上是流量控制,控制发送方发送的速度,而上文提到流量控制是通过滑动窗口来实现的,所以最终也是通过调整发送方的滑动窗口大小来实现的。拥塞控制的几个重要的概念:慢启动、拥塞避免、快恢复、快重传Reno算法是比较常见的TCP实现的拥塞控制算法,其他拥塞算法还有Tahoe(已废弃不用)、New Reno等,通过拥塞控制算法可以很大程度避免网络拥挤。【书籍】计算机网络:自顶向下方法【码农有道】 这一篇TCP总结请收下
      TCP是如何实现可靠传输的?

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/45223.html

          热门文章

          文章分类