请问JAVA中创建一个TCP服务器端程序的骤是什么呢?
1.建立一个服务器socket并开始监听. 2.使用accept()方法取得新的连接.3.建立输入和输出流.4.在已有的协议上产生会话.5.关闭客户端流和socket.6.回到第二步或者到第七步. 7.关闭服务器socket.

如何创建TCP服务器
不明白是什么意思

局域网TCP服务器,需要外网能访问,怎么做?
首先你要明白路由是不是共享式NAT上网的,也就是说router port nat出去的数据是一直堆叠或者持续变动的,而不做端口映射基本没有实现的可能! 当然如果是静态NAT,那么直接做静态NAT就可以了!如楼上灰鸽子,是直接通过本地服务端(中灰鸽子端)连接广域网客户端(控制端),然后服务端和建立的联系。如通过80端口出数据,穿透防火墙等等。你可以尝试修改数据包出去的port,同时在两个端进行修改!-------------抓取到数据包的时候注意地址段,关键在于让路由到router nat到数据包的时候,能找到你的主机A或者W。 你可以参照一些三层更新之类的软件。
另加个辅助连接的服务器,远程控制软件TeamViewer就是这样做的;路由器上的UPnP功能也可以啊,迅雷上就可以开启UPnP自动映射端口功能
【我是楼主,修改不了了,新开个号来说明下】 我有认真看了那篇文章。说下我的具体实现思路吧:W为WEB服务器,提供HTTPS为位于NAT下的TCP服务器A为需要连接S的TCP客户端首先,S用TCP方式登录W,W记录下S的外口IP及端口A想要向S发起TCP连接,那么A先用TCP方式向W发起HTTP请求,W把S的外口IP及端口反馈给A,并记录下A的IP及端口W通知S“A要对你进行连接”,并把A的外口IP及端口发送给SS接收到通知后,向A发起一次TCP连接,并转为监听状态,同时告诉W“我准备好接受连接了”W再通知A“可以进行连接”最后,A向S发起TCP连接请求 整个就是UDP打洞的原理。只是之前一直没想到TCP也可以这么干。大家说说看这样能不能实现?
这是一条动态的 端口影射 在 PAT 路由上 192.168.0.2 11111 10.0.0.2 22222HTTP 保留 10.0.0.2 22222载把这个消息 告诉 A A拿这个 连接能连接么?一个TCP 连接的 三握手 怎么 搭建 ?UDP 的我感觉可以。 不过 这样的技术确实存在 。迅雷 就是很典型的 是么? 共同学习吧 。
1 把你的计算机做成服务器 2 装黑客软件 友情提示:单开FTP文件传输协议很危险

TCP那些事儿
目录:以前我也认为TCP是相当底层的东西,我永远不需要去了解它。虽然差不多是这样,但是实际生活中,你依然可能遇见和TCP算法相关的bug,这时候懂一些TCP的知识就至关重要了。(本文也可以引申为,系统调用,操作系统这些都很重要,这个道理适用于很多东西)这里推荐一篇小短文, 人人都应该懂点TCP使用TCP协议通信的双方必须先建立TCP连接,并在内核中为该连接维持一些必要的数据结构,比如连接的状态、读写缓冲区、定时器等。当通信结束时,双方必须关闭连接以释放这些内核数据。TCP服务基于流,源源不断从一端流向另一端,发送端可以逐字节写入,接收端可以逐字节读出,无需分段。需要注意的几点:TCP状态(11种):eg.以上为TCP三次握手的状态变迁以下为TCP四次挥手的状态变迁服务器通过 listen 系统调用进入LISTEN状态,被动等待客户端连接,也就是所谓的被动打开。一旦监听到SYN(同步报文段)请求,就将该连接放入内核的等待队列,并向客户端发送带SYN的ACK(确认报文段),此时该连接处于SYN_RECVD状态。如果服务器收到客户端返回的ACK,则转到ESTABLISHED状态。这个状态就是连接双方能进行全双工数据传输的状态。而当客户端主动关闭连接时,服务器收到FIN报文,通过返回ACK使连接进入CLOSE_WAIT状态。此状态表示——等待服务器应用程序关闭连接。通常,服务器检测到客户端关闭连接之后,也会立即给客户端发送一个FIN来关闭连接,使连接转移到LAST_ACK状态,等待客户端对最后一个FIN结束报文段的最后一次确认,一旦确认完成,连接就彻底关闭了。客户端通过 connect 系统调用主动与服务器建立连接。此系统调用会首先给服务器发一个SYN,使连接进入SYN_SENT状态。connect 调用可能因为两种原因失败:1. 目标端口不存在(未被任何进程监听)护着该端口被TIME_WAIT状态的连接占用( 详见后文 )。2. 连接超时,在超时时间内未收到服务器的ACK。如果 connect 调用失败,则连接返回初始的CLOSED状态,如果调用成功,则转到ESTABLISHED状态。客户端执行主动关闭时,它会向服务器发送一个FIN,连接进入TIME_WAIT_1状态,如果收到服务器的ACK,进入TIME_WAIT_2状态。此时服务器处于CLOSE_WAIT状态,这一对状态是可能发生办关闭的状态(详见后文)。此时如果服务器发送FIN关闭连接,则客户端会发送ACK进行确认并进入TIME_WAIT状态。流量控制是为了控制发送方发送速率,保证接收方来得及接收。接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。如果网络出现拥塞,分组将会丢失,此时发送方会继续重传,从而导致网络拥塞程度更高。因此当出现拥塞时,应当控制发送方的速率。这一点和流量控制很像,但是出发点不同。流量控制是为了让接收方能来得及接收,而拥塞控制是为了降低整个网络的拥塞程度。TCP 主要通过四种算法来进行拥塞控制:慢开始、拥塞避免、快重传、快恢复。在Linux下有多种实现,比如reno算法,vegas算法和cubic算法等。发送方需要维护一个叫做拥塞窗口(cwnd)的状态变量,注意拥塞窗口与发送方窗口的区别:拥塞窗口只是一个状态变量,实际决定发送方能发送多少数据的是发送方窗口。为了便于讨论,做如下假设:发送的最初执行慢开始,令 cwnd=1,发送方只能发送 1 个报文段;当收到确认后,将 cwnd 加倍,因此之后发送方能够发送的报文段数量为:2、4、8 ...注意到慢开始每个轮次都将 cwnd 加倍,这样会让 cwnd 增长速度非常快,从而使得发送方发送的速度增长速度过快,网络拥塞的可能也就更高。设置一个慢开始门限 ssthresh,当 cwnd >= ssthresh 时,进入拥塞避免,每个轮次只将 cwnd 加 1。如果出现了超时,则令 ssthresh = cwnd/2,然后重新执行慢开始。在接收方,要求每次接收到报文段都应该对最后一个已收到的有序报文段进行确认。例如已经接收到 M1 和 M2,此时收到 M4,应当发送对 M2 的确认。在发送方,如果收到三个重复确认,那么可以知道下一个报文段丢失,此时执行快重传,立即重传下一个报文段。例如收到三个 M2,则 M3 丢失,立即重传 M3。在这种情况下,只是丢失个别报文段,而不是网络拥塞。因此执行快恢复,令 ssthresh = cwnd/2 ,cwnd = ssthresh,注意到此时直接进入拥塞避免。慢开始和快恢复的快慢指的是 cwnd 的设定值,而不是 cwnd 的增长速率。慢开始 cwnd 设定为 1,而快恢复 cwnd 设定为 ssthresh。发送端的每个TCP报文都必须得到接收方的应答,才算传输成功。TCP为每个TCP报文段都维护一个重传定时器。发送端在发出一个TCP报文段之后就启动定时器,如果在定时时间类未收到应答,它就将重发该报文段并重置定时器。因为TCP报文段最终在网络层是以IP数据报的形式发送,而IP数据报到达接收端可能是乱序或者重复的。TCP协议会对收到的TCP报文进行重排、整理,确保顺序正确。TCP报文段所携带的应用程序数据按照长度分为两种:交互数据和成块数据对于什么是粘包、拆包问题,我想先举两个简单的应用场景:对于第一种情况,服务端的处理流程可以是这样的:当客户端与服务端的连接建立成功之后,服务端不断读取客户端发送过来的数据,当客户端与服务端连接断开之后,服务端知道已经读完了一条消息,然后进行解码和后续处理...。对于第二种情况,如果按照上面相同的处理逻辑来处理,那就有问题了,我们来看看第二种情况下客户端发送的两条消息递交到服务端有可能出现的情况:第一种情况:服务端一共读到两个数据包,第一个包包含客户端发出的第一条消息的完整信息,第二个包包含客户端发出的第二条消息,那这种情况比较好处理,服务器只需要简单的从网络缓冲区去读就好了,第一次读到第一条消息的完整信息,消费完再从网络缓冲区将第二条完整消息读出来消费。第二种情况:服务端一共就读到一个数据包,这个数据包包含客户端发出的两条消息的完整信息,这个时候基于之前逻辑实现的服务端就蒙了,因为服务端不知道第一条消息从哪儿结束和第二条消息从哪儿开始,这种情况其实是发生了TCP粘包。第三种情况:服务端一共收到了两个数据包,第一个数据包只包含了第一条消息的一部分,第一条消息的后半部分和第二条消息都在第二个数据包中,或者是第一个数据包包含了第一条消息的完整信息和第二条消息的一部分信息,第二个数据包包含了第二条消息的剩下部分,这种情况其实是发送了TCP拆,因为发生了一条消息被拆分在两个包里面发送了,同样上面的服务器逻辑对于这种情况是不好处理的。我们知道tcp是以流动的方式传输数据,传输的最小单位为一个报文段(segment)。tcp Header中有个Options标识位,常见的标识为mss(Maximum Segment Size)指的是,连接层每次传输的数据有个最大限制MTU(Maximum Transmission Unit),一般是1500比特,超过这个量要分成多个报文段,mss则是这个最大限制减去TCP的header,光是要传输的数据的大小,一般为1460比特。换算成字节,也就是180多字节。tcp为提高性能,发送端会将需要发送的数据发送到缓冲区,等待缓冲区满了之后,再将缓冲中的数据发送到接收方。同理,接收方也有缓冲区这样的机制,来接收数据。发生TCP粘包、拆包主要是由于下面一些原因:既然知道了tcp是无界的数据流,且协议本身无法避免粘包,拆包的发生,那我们只能在应用层数据协议上,加以控制。通常在制定传输数据时,可以使用如下方法:写了一个简单的 golang 版的tcp服务器实例,仅供参考:例子参考和推荐阅读书目:注释:eg.

JAVA的TCP服务器搭建?
请自行参考TCP/udp连接基础解释,然后根据自身问题进行排查。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/45326.html。