tcp在橡胶中的作用是什么?
近些年来, 随着生物陶瓷材料的迅速发展, 已成为高新技术产业的新生长点, 所以有关β-TCP复合生物陶瓷的研究就显得非常活跃。β-TCP是生物降解和生物吸收型活性材料, 其降解产物Ca2+、PO45-等离子可进入活体体液形成新骨, 成为理想的硬组织修复材料。其中这部分材料所需的一个性能就是可降解,可降解吸收陶瓷是生物陶瓷中的一类,属于一种暂时性的替代材料,可在生理环境中被逐步降解和吸收,并为新生组织替代,从而达到修复或替换被损坏组织的目的。最早被应用的生物降解陶瓷为石膏,它具有良好的生物相容性,但是被吸收速率快,与新生骨生长速率不能匹配。β-TCP具有良好的生物降解性、生物相容性和生物无毒性,当其植入人体后,降解下来的Ca、P离子能进入活体循环系统形成新生骨,因此它作为理想的骨替代材料已成为世界各国学者研究的重点之一。β-TCP复合材料的性能及相关实验1、β-TCP复合材料性能1) 力学性能β-TCP的生物力学性能取决于孔隙, 气孔分为微气孔(由于烧成过程中颗粒未充分靠拢造成的与粉末大小相仿的气孔) 和大气孔(几百微米的气孔),微气孔决定材料的降解速度,大气孔则可以使骨组织长入,多孔材料的总抗压强度是由总气孔率决定的。2) 骨结合特性不少研究者认为,供新骨组织长入的TCP孔径不可小于100um,但Eggli等在比较了两种不同孔径和孔间连通侧孔的TCP材料后, 得出了不同的结论。他发现小孔(50-100 Um)孔间连通丰富的TCP材料,在新骨生长深度上,优于(200-400 Um)而侧孔少的同种材料,因而他认为孔间丰富的连通通道可以促进血管和组织的长入,对新骨生长的深度更具有决定意义。3) 生物降解性β-TCP 材料植入体内后可逐渐发生生物降解,其生物降解有助于植入部位的骨修复。在人体的生理环境下,多孔的β-TCP会发生物理化学溶解,这取决于材料的溶解产物及周围环境的pH值, 新的表面相可能形成非晶态磷酸钙等替换物,或在晶界等活性较高的区域发生变化而分解成较小的颗粒,此外一些生理因素的影响,如吞噬作用可以降低周围的pH值,也会使多孔的β-TCP发生降解。Manjubala等认为破骨细胞在β-TCP 双相陶瓷的吸收中起重要作用。4) 生物相容性β-TCP材料的体外实验显示该材料具有良好的细胞相容性, 动物或人体细胞可以在β-TCP材料上正常生长、分化及繁殖,众多的动物体内实验和临床应用也表明:该材料无毒性,无局部刺激性,不致溶血或凝血,不致突变或癌变。Klein等将4种不同孔隙率和孔径的β-TCP。
防焦剂CTP(PVI) 学名: N-环己基硫代邻苯二甲酰亚胺CAS号:17796-82-6结构式:物化性质:白色或淡黄色结晶,易溶于苯、乙醚,丙酮和醋酸乙酯,溶于温热的正庚烷和四氯化碳中。微溶于汽油,不溶于煤油和水。指标:指标名称 指标外观 白色或黄色结晶有效成份含量% ≥97甲苯不溶物% ≤0.50灰份%≤0.40加热减量% ≤0.30红外光谱 与标准图一致本品可用于天然橡胶和合成橡胶,能有效地防止胶料在加工过程中发生焦烧,提高生产效率。同时对于已经经受高热或有轻微焦烧的胶料具有复原作用。贮藏:置于通风干燥处,避免受热、受潮。 包装:20KG/25KG三合一纸塑复合袋。
防焦烧助剂CTP

网络编程(五)TCP详解
考虑最简单的情况:两台主机之间的通信。这个时候只需要一条网线把两者连起来,规定好彼此的硬件接口,如都用 USB、电压 10v、频率 2.4GHz 等,这一层就是物理层,这些规定就是物理层协议。我们当然不满足于只有两台电脑连接,因此我们可以使用交换机把多个电脑连接起来,如下图:这样连接起来的网络,称为局域网,也可以称为以太网(以太网是局域网的一种)。在这个网络中,我们需要标识每个机器,这样才可以指定要和哪个机器通信。这个标识就是硬件地址 MAC。硬件地址随机器的生产就被确定,永久性唯一。在局域网中,我们需要和另外的机器通信时,只需要知道他的硬件地址,交换机就会把我们的消息发送到对应的机器。这里我们可以不管底层的网线接口如何发送,把物理层抽离,在他之上创建一个新的层次,这就是数据链路层。我们依然不满足于局域网的规模,需要把所有的局域网联系起来,这个时候就需要用到路由器来连接两个局域网:但是如果我们还是使用硬件地址来作为通信对象的唯一标识,那么当网络规模越来越大,需要记住所有机器的硬件地址是不现实的;同时,一个网络对象可能会频繁更换设备,这个时候硬件地址表维护起来更加复杂。这里使用了一个新的地址来标记一个网络对象:IP 地址。通过一个简单的寄信例子来理解 IP 地址。我住在北京市,我朋友 A 住在上海市,我要给朋友 A 写信:因此,这里 IP 地址就是一个网络接入地址(朋友 A 的住址),我只需要知道目标 IP 地址,路由器就可以把消息给我带到。在局域网中,就可以动态维护一个 MAC 地址与 IP 地址的映射关系,根据目的 IP 地址就可以寻找到机器的 MAC 地址进行发送。这样我们不需管理底层如何去选择机器,我们只需要知道 IP 地址,就可以和我们的目标进行通信。这一层就是网络层。网络层的核心作用就是提供主机之间的逻辑通信。这样,在网络中的所有主机,在逻辑上都连接起来了,上层只需要提供目标 IP 地址和数据,网络层就可以把消息发送到对应的主机。一个主机有多个进程,进程之间进行不同的网络通信,如边和朋友开黑边和女朋友聊微信。我的手机同时和两个不同机器进行通信。那么当我的手机收到数据时,如何区分是微信的数据,还是王者的数据?那么就必须在网络层之上再添加一层:运输层:运输层通过 socket(套接字),将网络信息进行进一步的拆分,不同的应用进程可以独立进行网络请求,互不干扰。这就是运输层的最本质特点:提供进程之间的逻辑通信。这里的进程可以是主机之间,也可以是同个主机,所以在 android 中,socket 通信也是进程通信的一种方式。现在不同的机器上的应用进程之间可以独立通信了,那么我们就可以在计算机网络上开发出形形式式的应用:如 web 网页的 http,文件传输 ftp 等等。这一层称为应用层。应用层还可以进一步拆分出表示层、会话层,但他们的本质特点都没有改变:完成具体的业务需求。和下面的四层相比,他们并不是必须的,可以归属到应用层中。最后对计网分层进行小结:这里需要注意的是,分层并不是在物理上的分层,而是逻辑上的分层。通过对底层逻辑的封装,使得上层的开发可以直接依赖底层的功能而无需理会具体的实现,简便了开发。这种分层的思路,也就是责任链设计模式,通过层层封装,把不同的职责独立起来,更加方便开发、维护等等。TCP 并不是把应用层传输过来的数据直接加上首部然后发送给目标,而是把数据看成一个字节 流,给他们标上序号之后分部分发送。这就是 TCP 的面向字节流特性:面向字节流的好处是无需一次存储过大的数据占用太多内存,坏处是无法知道这些字节代表的意义,例如应用层发送一个音频文件和一个文本文件,对于 TCP 来说就是一串字节流,没有意义可言,这会导致粘包以及拆包问题,后面讲。前面讲到,TCP 是可靠传输协议,也就是,一个数据交给他,他肯定可以完整无误地发送到目标地址,除非网络炸了。他实现的网络模型如下:对于应用层来说,他就是一个可靠传输的底层支持服务;而运输层底层采用了网络层的不可靠传输。虽然在网络层甚至数据链路层就可以使用协议来保证数据传输的可靠性,但这样网络的设计会更加复杂、效率会随之降低。把数据传输的可靠性保证放在运输层,会更加合适。可靠传输原理的重点总结一下有:滑动窗口、超时重传、累积确认、选择确认、连续 ARQ。停止等待协议要实现可靠传输,最简便的方法就是:我发送一个数据包给你,然后你跟我回复收到,我继续发送下一个数据包。传输模型如下:这种“一来一去”的方法来保证传输可靠就是停止等待协议(stop-and-wait)。不知道还记不记得前面 TCP 首部有一个 ack 字段,当他设置为 1 的时候,表示这个报文是一个确认收到报文。然后再来考虑另一种情况:丢包。网络环境不可靠,导致每一次发送的数据包可能会丢失,如果机器 A 发送了数据包丢失了,那么机器 B 永远接收不到数据,机器 A 永远在等待。解决这个问题的方法是:超时重传。当机器 A 发出一个数据包时便开始计时,时间到还没收到确认回复,就可以认为是发生了丢包,便再次发送,也就是重传。但重传会导致另一种问题:如果原先的数据包并没有丢失,只是在网络中待的时间比较久,这个时候机器 B 会受到两个数据包,那么机器 B 是如何辨别这两个数据包是属于同一份数据还是不同的数据?这就需要前面讲过的方法:给数据字节进行编号。这样接收方就可以根据数据的字节编号,得出这些数据是接下来的数据,还是重传的数据。在 TCP 首部有两个字段:序号和确认号,他们表示发送方数据第一个字节的编号,和接收方期待的下一份数据的第一个字节的编号。停止等待协议的优点是简单,但缺点是信道利用率太低。假定AB之间有一条直通的信道来传送分组这里的TD是A发送分组所需要的时间(显然TD = 分组长度 / 数据速率)再假定TA是B发送确认分组所需要的时间(A和B处理分组的时间都忽略不计)那么A在经过TD+RTT+TA时间后才能发送下一个分组,这里的RTT是往返时间,因为只有TD是采用来传输有用的数据(这个数据包括了分组首部,如果可以知道传输更精确的数据的时间,可以计算的更精确),所有信道利用率为为了提高传输效率,发送方可以不使用低效率的停止等待协议,而是采用流水线传输:就是发送方可以连续的发送多个分组,不必每发完一个分组就停下来等待对方的确认。这样可使信道上一直有数据不间断地在传送。显然这种传输方式可以获得很高的信道利用率停止等待协议已经可以满足可靠传输了,但有一个致命缺点:效率太低。发送方发送一个数据包之后便进入等待,这个期间并没有干任何事,浪费了资源。解决的方法是:连续发送数据包。也就是下面介绍的连续ARQ协议和滑动窗口协议连续 ARQ 协议模型如下:和停止等待最大的不同就是,他会源源不断地发送,接收方源源不断收到数据之后,逐一进行确认回复。这样便极大地提高了效率。但同样,带来了一些额外的问题:发送是否可以无限发送直到把缓冲区所有数据发送完?不可以。因为需要考虑接收方缓冲区以及读取数据的能力。如果发送太快导致接收方无法接受,那么只是会频繁进行重传,浪费了网络资源。所以发送方发送数据的范围,需要考虑到接收方缓冲区的情况。这就是 TCP 的流量控制。解决方法是:滑动窗口。基本模型如下:在 TCP 的首部有一个窗口大小字段,他表示接收方的剩余缓冲区大小,让发送方可以调整自己的发送窗口大小。通过滑动窗口,就可以实现 TCP 的流量控制,不至于发送太快,导致太多的数据丢失。连续 ARQ 带来的第二个问题是:网络中充斥着和发送数据包一样数据量的确认回复报文,因为每一个发送数据包,必须得有一个确认回复。提高网络效率的方法是:累积确认。接收方不需要逐个进行回复,而是累积到一定量的数据包之后,告诉发送方,在此数据包之前的数据全都收到。例如,收到 1234,接收方只需要告诉发送方我收到 4 了,那么发送方就知道 1234 都收到了。第三个问题是:如何处理丢包情况。在停止等待协议中很简单,直接一个超时重传就解决了。但,连续 ARQ 中不太一样。例如:接收方收到了 123 567,六个字节,编号为 4 的字节丢失了。按照累积确认的思路,只能发送 3 的确认回复,567 都必须丢掉,因为发送方会进行重传。这就是GBN(go-back-n)思路。但是我们会发现,只需要重传 4 即可,这样不是很浪费资源,所以就有了:选择确认 SACK。在 TCP 报文的选项字段,可以设置已经收到的报文段,每一个报文段需要两个边界来进行确定。这样发送方,就可以根据这个选项字段只重传丢失的数据了。第四个问题是:拥塞控制的问题也是通过窗口的大小来控制的,但是检测网络满不满是个挺难的事情,所以 TCP 发送包经常被比喻成往谁管理灌水,所以拥塞控制就是在不堵塞,不丢包的情况下尽可能的发挥带宽。水管有粗细,网络有带宽,即每秒钟能发送多少数据;水管有长度,端到端有时延。理想状态下,水管里面的水 = 水管粗细 * 水管长度。对于网络上,通道的容量 = 带宽 * 往返时延。如果我们设置发送窗口,使得发送但未确认的包为通道的容量,就能撑满整个管道。如图所示,假设往返时间为 8 秒,去 4 秒,回 4 秒,每秒发送一个包,已经过去了 8 秒,则 8 个包都发出去了,其中前四个已经到达接收端,但是 ACK 还没返回,不能算发送成功,5-8 后四个包还在路上,还没被接收,这个时候,管道正好撑满,在发送端,已发送未确认的 8 个包,正好等于带宽,也即每秒发送一个包,也即每秒发送一个包,乘以来回时间 8 秒。如果在这个基础上调大窗口,使得单位时间可以发送更多的包,那么会出现接收端处理不过来,多出来的包会被丢弃,这个时候,我们可以增加一个缓存,但是缓存里面的包 4 秒内肯定达不到接收端课,它的缺点会增加时延,如果时延达到一定程度就会超时重传TCP 拥塞控制主要来避免两种现象,包丢失和超时重传,一旦出现了这些现象说明发送的太快了,要慢一点。具体的方法就是发送端慢启动,比如倒水,刚开始倒的很慢,渐渐变快。然后设置一个阈值,当超过这个值的时候就要慢下来慢下来还是在增长,这时候就可能水满则溢,出现拥塞,需要降低倒水的速度,等水慢慢渗下去。拥塞的一种表现是丢包,需要超时重传,这个时候,采用快速重传算法,将当前速度变为一半。所以速度还是在比较高的值,也没有一夜回到解放前。到这里关于 TCP 的可靠传输原理就已经介绍得差不多。最后进行一个小结:当然,这只是可靠传输的冰山一角,感兴趣可以再深入去研究

Internet网的协议中的TCP的功能是什么?IP的作用又是什么?
网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。 IP的功能:IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好像是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。TCP作用如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。 谢谢!

TCP/IP 以太网 internet IP业务这都是什么关系啊,好迷糊。
internet指的是现在的网络世界。 你要知道网络世界的基本组成就是无数个路由器和交换机+N条网线,路由器和交换机其实就是一种电脑,只是不像普通家用的PC那么娱乐化,属于工业计算机把。既然是计算机就需要操作系统,软件和硬件来组成。但是为了各个国家地区各个厂商直接的设备可以互相通信,必须确立一套广泛认可的标准来生产和开发。TCP/IP是网络世界里的一套软件行业标准,早期还有appletalk,ipx。。不过都没能成为世界性的标准。以太网是网络世界里的一套硬件行业标准(至于什么叫行业标准,比如USB2.0接口就是,全世界的USB接口都能插进你的电脑,这就是行业标准的功劳。现在的手机厂商做出各种充电器其实是很不环保的。)IP和TCP其实都是属于TCP/IP协议簇里的具体的协议,只是IP TCP太过代表性所有就使用TCP/IP来命名这一整套运行在网络世界的软件标准。至于IP业务其实并不是一个严谨的说法,只是惯用吧。知识的保质期一般也就20年,IT世界更是日新月异,也许过不了多久这些东西都会成为历史。不知道也无所谓。。。呵呵 智慧才是永恒流传的,知识是有保质期的。

tcp协议的主要功能是______。
tcp协议的主要功能 1、慢启动每当建立一个TCP连接时或一个TCP连接发生超时重传后,该连接便进人慢启动阶段。进人慢启动后,TCP实体将拥塞窗口的大小初始化为一个报文段,即:cwnd=1。此后,每收到一个报文段的确认(ACK),cwnd值加1,即拥塞窗口按指数增加。当cwnd值超过慢启动闽值(sshterhs)或发生报文段丢失重传时,慢启动阶段结束。前者进人拥塞避免阶段,后者重新进人慢启动阶段。2、拥塞避免在慢启阶段,当cwnd值超过慢启动阐值(ssthresh)后,慢启动过程结束,TCP连接进入拥塞避免阶段。在拥塞避免阶段,每一次发送的cwnd个报文段被完全确认后,才将cwnd值加1。在此阶段,cwnd值线性增加。3、快速速重传快速重传是对超时重传的改进。当源端收到对同一个报文的三个重复确认时,就确定一个报文段已经丢失,因此立刻重传丢失的报文段,而不必等到重传定时器(RTO)超时。以此减少不必要的等待时间。4、快速恢复快速恢复是对丢失恢复机制的改进。在快速重传之后,不经过慢启动过程而直接进人拥塞避免阶段。每当快速重传后,置sshtesrh=cwnd/2、ewnd=ssthresh+3。此后,每收到一个重复确认,将cwnd值加1,直至收到对丢失报文段和其后若干报文段的累积确认后,置cwnd=ssthesrh,进人拥塞避免阶段。tcp协议的特点TCP是一种面向广域网的通信协议,目的是在跨越多个网络通信时,为两个通信端点之间提供一条具有下列特点的通信方式:(1)基于流的方式;(2)面向连接;(3)可靠通信方式;(4)在网络状况不佳的时候尽量降低系统由于重传带来的带宽开销;(5)通信连接维护是面向通信的两个端点的,而不考虑中间网段和节点。为满足TCP协议的这些特点,TCP协议做了如下的规定:①数据分片:在发送端对用户数据进行分片,在接收端进行重组,由TCP确定分片的大小并控制分片和重组;②到达确认:接收端接收到分片数据时,根据分片数据序号向发送端发送一个确认;③超时重发:发送方在发送分片时启动超时定时器,如果在定时器超时之后没有收到相应的确认,重发分片;④滑动窗口:TCP连接每一方的接收缓冲空间大小都固定,接收端只允许另一端发送接收端缓冲区所能接纳的数据,TCP在滑动窗口的基础上提供流量控制,防止较快主机致使较慢主机的缓冲区溢出;⑤失序处理:作为IP数据报来传输的TCP分片到达时可能会失序,TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层;⑥重复处理:作为IP数据报来传输的TCP分片会发生重复,TCP的接收端必须丢弃重复的数据; ⑦数据校验:TCP将保持它首部和数据的检验和,这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到分片的检验和有差错,TCP将丢弃这个分片,并不确认收到此报文段导致对端超时并重发。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/45366.html。