tcp连接传输全过程(tcp连接的拆除过程)

      最后更新:2022-11-15 07:33:51 手机定位技术交流文章

      TCP连接相关

      为什么要有三次握手,因为如果只有两次握手,那么第一次:客户端发送一个syn包给服务器,里面有一个随机生成的syn,然后客户端处于syn_send状态第二次:服务端收到客户端发来的syn包之后,确认syn包,也就是生成一个ack=syn+1,然后再自己随机生成一个syn包,即syn+ack包,然后返回给客户端,自己变成syn_recv状态第三次:客户端收到服务端发来的syn+ack包之后,确认ack是正确的之后,返回一个ack=syn+1给服务端,此包发送完毕,客户端进入了ESTABLISHED状态,服务端收到ack包后也进入ESTABLISHED状态。SYN攻击,当第二次握手服务端发送了syn+ack包之后,收到客户端发送的ack之前这段时间的tcp链接成为半连接,此时服务端处于syn_recv状态。当大量客户端随机IP疯狂发送tcp链接请求时,客户端以为是不同用户的请求,所以队列中全是半连接,然后导致服务器宕机,正常请求被丢弃。第一个包发送过程丢失A会周期性超时重传,直到收到B的确认第二个包发送过程丢失B会周期性超时重传,直到收到A的确认第三个包发送过程丢失A发送完数据后单方面进入TCP的ESTABLISHED状态,B还处于半链接:TCP协议为什么需要三次握手?第一次:客户端发送一个fin给服务端表示自己要断开连接了,然后进入fin_wait_1状态第二次:服务端收到fin后,发送一个ack=fin+1给客户端,服务端进入close_wait状态,客户端进入fin_wait_2状态第三次:服务端发送一个fin,用来关闭服务端到客户端的数据传输,服务端进入last_ack状态第四次:客户端收到fin后,进入time_wait状态,然后发送一个ack=fin+1给服务端,服务端确认后进入close状态,完成四次挥手TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。答案解析:浏览器对并发请求的数目限制是针对域名的,即针对同一域名(包括二级域名)在同一时间支持的并发请求数量的限制。如果请求数目超出限制,则会阻塞。因此,网站中对一些静态资源,使用不同的一级域名,可以提升浏览器并行请求的数目,加速界面资源的获取速度。在 HTTP/1.0 中,一个http请求收到服务器响应后,会断开对应的TCP连接。这样每次请求,都需要重新建立TCP连接,这样一直重复建立和断开的过程,比较耗时。所以为了充分利用TCP连接,可以设置头字段 Connection: keep-alive ,这样http请求完成后,就不会断开当前的TCP连接,后续的http请求可以使用当前TCP连接进行通信。第一次访问有初始化连接和SSL开销初始化连接和SSL开销消失了,说明使用的是同一个TCP连接。HTTP/1.1 将 Connection 写入了标准,默认值为 keep-alive 。除非强制设置为 Connection: close ,才会在请求后断开TCP连接。所以这一题的答案就是:默认情况下建立的TCP连接不会断开,只有在请求头中设置 Connection: close 才会在请求后关闭TCP连接。HTTP/1.1 中,单个TCP连接,在同一时间只能处理一个http请求,虽然存在Pipelining技术支持多个请求同时发送,但由于实践中存在很多问题无法解决,所以浏览器默认是关闭,所以可以认为是不支持同时多个请求。HTTP2 提供了多路传输功能,多个http请求,可以同时在同一个TCP连接中进行传输。页面资源请求时,浏览器会同时和服务器建立多个TCP连接,在同一个TCP连接上顺序处理多个HTTP请求。所以浏览器的并发性就体现在可以建立多个TCP连接,来支持多个http同时请求。Chrome浏览器最多允许对同一个域名Host建立6个TCP连接,不同的浏览器有所区别。补充如果图片都是HTTPS的连接,并且在同一域名下,浏览器会先和服务器协商使用 HTTP2 的 Multiplexing 功能进行多路传输,不过未必所有的挂在这个域名下的资源都会使用同一个TCP连接。如果用不了HTTPS或者HTTP2(HTTP2是在HTTPS上实现的),那么浏览器会就在同一个host建立多个TCP连接,每一个TCP连接进行顺序请求资源。参考:[1]. 第8题-浏览器HTTP请求并发数和TCP连接的关系
      TCP连接相关

      图解TCP建立连接全过程

      TCP是因特网中的传输层协议,使用三次握手协议建立连接,下面是TCP建立连接的全过程。 上图画出了TCP建立连接的过程。假定主机A是TCP客户端,B是服务端。最初两端的TCP进程都处于CLOSED状态。图中在主机下面的是TCP进程所处的状态。A是主动打开连接,B是被动打开连接。首先A向B发出连接请求报文段,这时首部中的同步位SYN=1,同时选择一个初始序号seq=x。TCP规定,SYN报文段不能携带数据,但要消耗掉一个序号。这时,A进入SYN-SENT状态。B收到请求后,向A发送确认。在确认报文段中把SYN和ACK位都置为1,确认号是ack=x+1,同时也为自己选择一个初始序号seq=y。请注意,这个报文段也不能携带数据,但同样要消耗掉一个序号。这时B进入SYN-RCVD状态。A收到B的确认后,还要向B给出确认。确认报文段的ACK置为1,确认号ack=y+1,而自己的序号seq=x+1。这时,TCP连接已经建立,A进入ESTABLISHED状态,当B收到A的确认后,也会进入ESTABLISHED状态。以上给出的连接建立过程就是常说的TCP三次握手。为什么A还要发送一次确认呢?这主要是为了防止已失效的连接请求报文段突然又传送到了B,因而产生错误。所谓已失效的连接请求报文段是这样产生的。A发送连接请求,但因连接请求报文丢失而未收到确认,于是A重发一次连接请求,成功后建立了连接。数据传输完毕后就释放了连接。现在假定A发出的第一个请求报文段并未丢失,而是在某个网络节点长时间滞留了,以致延误到连接释放以后的某个时间才到达B。本来这是一个早已失效的报文段。但B收到此失效的连接请求报文段后,就误以为A又发了一次新的连接请求,于是向A发出确认报文段,同意建立连接。假如不采用三次握手,那么只要B发出确认,新的连接就建立了。由于A并未发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。但B却以为新的运输连接已经建立了,并一直等待A发来数据,因此白白浪费了许多资源。 采用TCP三次握手的方法可以防止上述现象发生。例如在刚才的情况下,由于A不会向B的确认发出确认,连接就不会建立。下面留个思考题给大家:如果在TCP第三次握手中的报文段丢失了会发生什么情况?
      图解TCP建立连接全过程

      TCP 可靠传输的实现(二)TCP的重传机制

      TCP使用可靠的传输协议,即意味着必须按序、无差错的传送数据到目的端,那么如果在传输过程中发送的包丢失了该怎么办?TCP的重传机制就是:如果发送方认为发生了丢包现象就重发这些数据包。显然,我们需要一个方法去 猜测是否发生了丢包 。最简单的想法就是,接收方每接收到一个包就向发送者返回一个ACK,表示自己已经收到了这段数据,反过来,如果发送方一段时间内没有收到ACK,就知道 很可能是数据包丢失 了,紧接着就重发该数据包,直到收到ACK为止。 为什么是 猜测 呢? 因为即使是超时了,这个数据包也可能并没有丢,它只是绕了段远程,来的很晚而已。毕竟TCP协议是位于传输层的协议,不可能明确知道数据链路层和物理层发生了什么。但是这并不妨碍我们的超时重传机制,因为接收方会自动忽略收到的重复的包。下面我们具体讲一讲TCP的重传机制:这种机制下,每个数据包都有相应的计时器,当超过指定的时间后,没有收到对方的 ACK 确认应答报文就会重发该数据包。超时时间应该设置为多少我们先来了解一下RTT (Round-Trip Time 往返时延)而超时时间是以RTO(Retransmission Timeout 超时重传时间) 表示。超时时间不宜设置的过长或过短,否则:综上可知,RTO设置的值应该略大于RTT的值。RTO值的计算:https://blog.csdn.net/JXH_123/article/details/27345151值得注意的是:每触发一次超时重传,都 会将下一次超时时间间隔设为先前值的两倍 。遇到超时说明网络环境差,不宜频繁发送。Wireshark 抓包显示:超时重传存在的问题是:当一个报文段丢失时,会等待一定的超时时间后才重传,增加了端到端的时延;当一个报文段丢失时,在其等待超时的过程中,可能会出现这种情况: 其后的报文段已经被接收端接收但却迟迟得不到确认,发送端就也以为丢失了,从而引起不必要的重传,既浪费时间也浪费资源。(例如: 数据包5丢失,数据包6、7、8、9都已到达接收方,这个时候客户端只能等服务端发送ACK,因此对于客户端来说,它完全不知道丢了几个包,可能就悲观的认为:5后面的数据包都丢了,就重传这5个数据包,这就比较浪费了)。刚刚提到过,基于计时器的重传往往要等待很长时间,而快速重传使用了很巧妙的方法来解决这个问题。快速重传(Fast Retransmit)机制 不以时间为驱动,而是以数据为驱动重传。由于TCP采用的是累计确认机制,当接收端收到比期望序号大的报文段时,便会重复发送最近一次确认的报文段的确认号,即冗余 ACK (Duplicate ACK)。这样,如果在超时重传定时器溢出之前,接收到连续的三个重复冗余 ACK (第一个ACK是正常的,后三个是冗余的),发送端便知晓哪个报文段在传输过程中丢失了,于是重发该报文段,而不需要等待超时重传定时器溢出,大大提高了效率。Wireshark 抓包显示:但是,快速重传仍然没有解决第二个问题:到底该重传多少个包?改进的方法就是 SACK (Selective Acknowledgment),简单来说就是在快速重传的基础上,返回最近收到的报文段的序列号范围,这样客户端就知道,哪些数据包已经到达服务器了。看下例子:存在 SACK 选项时当500-599报文到达,接收方发送  ACK 200  ,SACK [500,600)当600-699报文到达,接收方发送  ACK 200  ,SACK [500,700)当700-799报文到达当800-899报文到达当900-999报文到达,接收方累积确认发送  ACK 200  ,SACK [500,1000)连续收到3个重复ACK,发送方经检查发现200-499的数据丢失了,执行快速重传,待接收方接收到200-499的数据,并返回 ACK 1000时,发送方的所有数据均已确认完毕,移动滑动窗口到1000位置处。使用 SACK可以告知发送方 收到了哪些数据,发送方收到这些消息后就会知道哪些数据丢失,然后立即重传丢失的部分。需要注意的是: 只有收到失序的分组时才可能会发送SACK 。SACK 包括了两个TCP选项,一个选项用于标识是否支持 SACK(SACK_Permitted),在TCP建立连接时发送;另一种选项则包含了具体的 SACK信息。(1)SACK_Permitted 选项该选项只允许在TCP连接建立时,有 SYN标志的包中设置,在连接建立阶段,主动发起连接的一方在它的SYN中指定选项。只有在它从另一方的SYN中收到了这个选项之后,SACK机制才会被使能。(2)SACK 信息选项SACK 选项参数告诉对方 已经接收到 并缓存的不连续的数据块,发送方可据此信息检查究竟是哪个块丢失,从而发送相应的数据块。Left Edge:本区块的第一个序号。 Right Edge:本区块的最后序号的下一个序号。[Left Edge, Right Edge)区间的ACK 序号表示本次确认收到的序号。问题1:SACK选项最多能包含多少个需重传的块?由于TCP首部的最大长度为 60 byte,而固定首部占用了 20 byte,对于SACK选项本身占用了2 byte,所以剩下 60-20-2=38 byte。而每个块(包括开始和结束)占用 8 byte,所以最多可标识的块数为 38/8 = 4块,所以 SACK 最多可以包括4个需重传的块。同时由于SACK有些时候会和时间戳(占10字节)一起用,因此,此种情况下最多只有3个SACK。问题2:SACK选项的使用规则是怎么样的?SACK 的发送方,即 报文的接收端第一个块需要指出是哪一个到达的报文触发的 SACK尽可能多的把所有的块填满SACK 要报告最近接收的不连续的数据块SACK 的接收端,即 报文的发送端:数据没有被确认前,都会保持在滑动窗口内每个数据包都有一个 SACKed 的标志,对于已经标示的报文,再次接收到时会忽略如果SACK丢失,超时重传之后,重置所有数据包SACKed 标志DSACK是在SACK的基础上做了一些 扩展 ,主要用于对收到的 重复报文 进行了处理。它的主要作用是:告诉发送方有哪些数据被重复接收了。DSACK同样使用了与SACK一样的报文格式,唯一区别在于: 第一个连续的block指定的是触发DSACK的重复报文的序号空间。如果第一个段的范围被ACK范围所覆盖,那么就是DSACK。或者,第一个段的范围被SACK的第二个段覆盖,那么就是DSACK。引入DSACK的好处有:1)可以让发送方知道,是发出去的包丢了,还是回来的ACK包丢了;2)是不是自己的 timeout 设置太小了,导致重传;3)网络上出现了先发的包后到的情况(又称数据包失序);4)网络上是不是把我的数据包给复制了;总之,DSACK的目的是帮助发送方判断,是否发生了包失序、ACK丢失、包重复或伪重传,让TCP可以更好的做网络流量控制。 超时重传机制能解决数据包丢失的问题,但是超时重传机制存在等待时间太长,浪费时间在等待上,降低了传输效率和无法知道需要重传哪些数据包的问题。 快速重传能解决超时重传的等待时间太长的问题,但是对于究竟该重传哪些包的问题仍然不能有效解决。SACK能需要重传哪些数据包的问题,它可以知道哪些包是被确认接收的,客户端能据此判断需要重传的包。DSACK则是作为SACK的一个辅助措施,可以用来判断网络究竟是出现了什么情况,据此做好网络流量控制。
      TCP 可靠传输的实现(二)TCP的重传机制

      简述TCP协议建立连接的过程

      TCP协议建立连接的过程: 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。完成三次握手,客户端与服务器开始传送数据,在上述过程中,还有一些重要的概念:未连接队列:在三次握手协议中,服务器维护一个未连接队列,该队列为每个客户端的SYN包(syn=j)开设一个条目,该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包。这些条目所标识的连接在服务器处于Syn_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态。Backlog参数:表示未连接队列的最大容纳数目。SYN-ACK 重传次数 服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传,如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。注意,每次重传等待的时间不一定相同。 半连接存活时间:是指半连接队列的条目存活的最长时间,也即服务从收到SYN包到确认这个报文无效的最长时间,该时间值是所有重传请求包的最长等待时间总和,有时也称半连接存活时间为Timeout时间、SYN_RECV存活时间。
      1,tcp使用三次握手 (three-wayhandshake)协议来建立连接,这三次握手为:请求端(通常称为客户)发送一个syn报文段(syn为1)指明客户打算连接的服务器的端口,以及初始顺序号(isn)。服务器发回包含服务器的初始顺序号的syn报文段(syn为1)作为应答。同时,将确认号设置为客户的isn加1以对客户的syn报文段进行确认(ack也为1)。客户必须将确认号设置为服务器的isn加1以对服务器的syn报文段进行确认(ack为1),该报文通知目的主机双方已完成连接建立。发送第一个syn的一端将执行主动打开(activeopen),接收这个syn并发回下一个syn的另一端执行被动打开(passiveopen)。另外,tcp的握手协议被精心设计为可以处理同时打开(simultaneousopen),对于同时打开它仅建立一条连接而不是两条连接。因此,连接可以由任一方或双方发起,一旦连接建立,数据就可以双向对等地流动,而没有所谓的主从关系。2,应用层向tcp层发送用于网间传输的、用8位字节表示的数据流,然后tcp把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传送单元(mtu)的限制)。之后tcp把结果包传给ip层,由它来通过网络将包传送给接收端实体的tcp层。tcp为了保证不发生丢包,就给每个字节一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ack); 如果发送端实体在合理的往返时延(rtt)内未收到确认,那么对应的数据(假设丢失了)将会被重传。tcp用一个校验和函数来检验数据是否有错误;在发送和接收时都要计算校验和。
      当然是可以建立的

      简述TCP协议建立连接的过程

      tcp发送数据过程

      最简单形象地说,TCP协议依靠三次握手原则。即:客户端向服务器发出请求、服务器端同意客户端的请求、客户端向服务器端传输数据。
      tcp发送数据过程

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/45591.html

          热门文章

          文章分类