数据仓库实施内容有哪些
1、处理性能 日常业务涉及频繁、简单的数据存取,因此对操作型处理的性能要求是比较高的,需要数据库能够在很短时间内做出反应。2、数据集成企业的操作型处理通常较为分散,传统数据库面向应用的特性使数据集成困难。3、数据更新操作型处理主要由原子事务组成,数据更新频繁,需要并行控制和恢复机制。4、数据时限操作型处理主要服务于日常的业务操作。5、数据综合操作型处理系统通常只具有简单的统计功能。数据库已经在信息技术领域有了广泛的应用,我们社会生活的各个部门,几乎都有各种各样的数据库保存着与我们的生活息息相关的各种数据。作为数据库的一个分支,数据仓库概念的提出,相对于数据库从时间上就近得多。美国著名信息工程专家WilliamInmON博士在90年代初提出了数据仓库概念的一个表述,认为:“一个数据仓库通常是一个面向主题的、集成的、随时间变化的、但信息本身相对稳定的数据集合,它用于对管理决策过程的支持。”这里的主题,是指用户使用数据仓库进行决策时所关心的重点方面,如:收入、客户、销售渠道等;所谓面向主题,是指数据仓库内的信息是按主题进行组织的,而不是像业务支撑系统那样是按照业务功能进行组织的。集成,是指数据仓库中的信息不是从各个业务系统中简单抽取出来的,而是经过一系列加工、整理和汇总的过程,因此数据仓库中的信息是关于整个企业的一致的全局信息。 随时间变化,是指数据仓库内的信息并不只是反映企业当前的状态,而是记录了从过去某一时点到当前各个阶段的信息。

典型的数据仓库系统包括哪几部分
1.数据源-> 2.ETL -> 3.数据仓库存储与管理-> 4.OLAP -> 5.BI工具 **数据源:**是数据仓库系统的数据源泉,通常包括企业各类信息,包括存放于RDBMS中的各种业务处理数据和各类文档数据;各类法律法规、市场信息和竞争对手的信息等等;ETL工具(informatica,ssis,owb,datastage),以及该工具简单讲述特点。DataStage是一套专门对多种操作数据源的数据抽取、转换和维护过程进行简化和自动化,并将其输入数据集市或数据仓库目标数据库的集成工具。它有四个组件:Administrator:用来管理project和环境变量。Manager:用于job表定义的引导引出。Designer:用来设计job。Direct:用运查看job运行日志。数据的存储与管理:数据的存储和管理是整个数据仓库的核心,是关键。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。从数据仓库的技术特点着手分析,来决定采用什么产品和技术来建立数据仓库,然后针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。OLAP服务器:对需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP(关系型在线分析处理)、MOLAP(多维在线分析处理)和HOLAP(混合型线上分析处理)。ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。前端工具:主要包括各查询工具、数据分析工具、数据挖掘工具、种报表工具以及各种基于数据仓库或数据集市的应用开发工具。 数据分析工具主要针对OLAP服务器。报表工具、数据挖掘工具主要针对数据仓库。

数据仓库系统有哪三个工具层
【数据仓库系统的三个工具层】数据仓库系统通常采用3层的体系结构,底层为数据仓库服务器,中间层为OLAP服务器,顶层为前端工具。具体如下: 1、数据源和数据的存储与管理部分可以统称为数据仓库服务器。(1)数据源:是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息,等等。(2)数据的存储与管理:是整个数据仓库系统的核心。数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。2、OLAP服务器:对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP、MOLAP和HOLAP。ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。 3、前端工具:主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具,以及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具主要针对数据仓库。
没有工具层的概念。 如果你指的是数据仓库有几层的话,是三层:ODS、DW、DM. 如果你指的是使用哪几类工具实现的话,主要是:数据抽取工具和BI展现工具。如:datastage、BO等
工具包括单不限于: 报表展现:BI报表工具 BIEE、BO、COGNOS等ETL数据抽取转换处理工具: datastage、informatic、ssis、kettle底层数据库: oracle、db2、sqlserve 还有essbase、greenplum等数据仓库专业数据库 数据仓库架构分层ODS、DW、DM ,不过落地实施的时候结构就不是看起来这么简单了。

数据仓库的关键技术是
数据仓库是决策支持系统和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、集成性、稳定性和时变性。 数据仓库 ,由数据仓库之父比尔·恩门于1990年提出,主要功能仍是将组织透过资讯系统之联机事务处理经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,作一有系统的分析整理,以利各种分析方法如联机分析处理、数据挖掘之进行,并进而支持如决策支持系统、主管资讯系统之创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟定及快速回应外在环境变动,帮助建构商业智能。

数据仓库技术的特点
数据仓库最根本的特点是物理地存放数据,而且这些数据并不是最新的、专有的,而是来源于其它数据库的。数据仓库的建立并不是要取代数据库,它要建立在一个较全面和完善的信息应用的基础上,用于支持高层决策分析,而事务处理数据库在企业的信息环境中承担的是日常操作性的任务。数据仓库是数据库技术的一种新的应用,而且到目前为止,数据仓库还是用关系数据库管理系统来管理其中的数据。
开放系统技术使得分析大量数据的成本趋于合理,并且硬件解决方案也更为成熟。在数据仓库应用中主要使用的技术如下: 1、 计算的硬件环境、操作系统环境、数据库管理系统和所有相关的数据库操作、查询工具和技术、应用程序等各个领域都可以从并行的最新成就中获益。2、 分区功能使得支持大型表和索引会更加容易,同时也提高了数据管理和查询性能。 3、 数据压缩功能降低了数据仓库环境中通常需要的用于存储大量数据的磁盘系统的成本,同时不断更新的压缩技术也已经消除了压缩数据对查询性能造成的负面影响。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/48020.html。