数据链路层的主要任务是什么?网络层的主要功能有哪些?
1、数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:(1)如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;(2)如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;(3)以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。2、网络层的目的是实现两个端系统之间的数据透明传送,具体功能包括寻址和路由选择、连接的建立、保持和终止等。它提供的服务使传输层不需要了解网络中的数据传输和交换技术。如果您想用尽量少的词来记住网络层,那就是“路径选择、路由及逻辑寻址”。扩展资料OSI模型有7层结构,每层都可以有几个子层。 OSI的7层从上到下分别是 7应用层6表示层5 会话层 4传输层3网络层2数据链路层1物理层1、应用层与其它计算机进行通讯的一个应用,它是对应应用程序的通信服务的。例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。但是,如果添加了一个传输文件的选项,那么字处理器的程序员就需要实现OSI的第7层。2、表示层这一层的主要功能是定义数据格式及加密。例如,FTP允许你选择以二进制或ASCII格式传输。如果选择二进制,那么发送方和接收方不改变文件的内容。如果选择ASCII格式,发送方将把文本从发送方的字符集转换成标准的ASCII后发送数据。在接收方将标准的ASCII转换成接收方计算机的字符集。示例:加密,ASCII等。3、会话层它定义了如何开始、控制和结束一个会话,包括对多个双向消息的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。示例:RPC,SQL等。4、传输层这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。示例:TCP,UDP,SPX。5、网络层这层对端到端的包传输进行定义,它定义了能够标识所有结点的逻辑地址,还定义了路由实现的方式和学习的方式。为了适应最大传输单元长度小于包长度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。示例:IP,IPX等。6、数据链路层它定义了在单个链路上如何传输数据。这些协议与被讨论的各种介质有关。示例:ATM,FDDI等。数据链路层:是为了提供功能上和规程上的方法,以便建立、维护和释放网络实体间的数据链路 。物理链路(物理线路):是由传输介质与设备组成的。原始的物理传输线路是指没有采用高层差错控制的基本的物理传输介质与设备。数据链路(逻辑线路):在一条物理线路之上,通过一些规程或协议来控制这些数据的传输,以保证被传输数据的正确性。实现这些规程或协议的硬件和软件加到物理线路,这样就构成了数据链路。从数据发送点到数据接收点(点到点 point to point)所经过的传输途径。当采用复用技术时,一条物理链路上可以有多条数据链路。7、物理层OSI的物理层规范是有关传输介质的特性标准,这些规范通常也参考了其他组织制定的标准。连接头、帧、帧的使用、电流、编码及光调制等都属于各种物理层规范中的内容。物理层常用多个规范完成对所有细节的定义。示例:Rj45,802.3等。参考资料来源:百度百科—网络层参考资料来源:百度百科—数据链路层
1、数据链路层功能在两个网络实体之间提供数据链路连接的创建、维持和释放管理。构成数据链路数据单元(frame:数据帧或讯框),并对帧定界、同步、收发顺序的控制。传输过程中的网络流量控制、差错检测和差错控制等方面。只提供导线的一端到另一端的数据传输。数据链路层会在 frame 尾端置放检查码(parity,sum,CRC)以检查实质内容,将物理层提供的可能出错的物理连接改造成逻辑上无差错的数据链路,并对物理层的原始数据进行数据封装。2、网络层的主要功能对网络层而言使用IP地址来唯一标识互联网上的设备,网络层依靠IP地址进行相互通信(类似于数据链路层的MAC地址),详细的编址方案参见IPv4和IPv6。扩展资料设计数据链路层的原因1、在原始的物理线路上传输数据信号是有差错的。2、设计数据链路层的主要目的就是在原始的、有差错的物理传输线路的基础上,采取差错检测、差错控制与流量控制等方法,将有差错的物理线路改进成逻辑上无差错的数据链路,向网络层提供高质量的服务。3、从网络参考模型的角度看,物理层之上的各层都有改善数据传输质量的责任,数据链路层是最重要的一层。参考资料:百度百科-数据链路层
数据链路层的任务是将有噪声线路变成无传输差错的通信线路,为达此目的,数据被分割成( 帧),为防止发送过快,总是提供( 流控制)。网络层的功能属于通信子网,它通过网络连接交换传输层发出的实体数据。交换过程中,选择合适的传输路径,解决网络中出现的局部拥挤或全面的阻塞。此外,网络层还应有记账功能,一边通过网络中交换的分组或字符数、位数收取费用。当传输的数据跨越一个网络边界时,网络层根据不同的分组长度、寻址方式、通信协议进行交换,使得异构网络能够互相通信。扩展资料:设计数据链路层的原因1、在原始的物理线路上传输数据信号是有差错的。2、设计数据链路层的主要目的就是在原始的、有差错的物理传输线路的基础上,采取差错检测、差错控制与流量控制等方法,将有差错的物理线路改进成逻辑上无差错的数据链路,向网络层提供高质量的服务。3、从网络参考模型的角度看,物理层之上的各层都有改善数据传输质量的责任,数据链路层是最重要的一层。链路层的主要功能 链路层是为网络层提供数据传送服务的,这种服务要依靠本层具备的功能来实现。链路层应 具备如下功能:① 链路连接的建立,拆除,分离.② 帧定界和帧同步.链路层的数据传输单元是帧,协议不同,帧的长短和界面也有差别,但 无论如何必须对帧进行定界.③ 顺序控制,指对帧的收发顺序的控制.④ 差错检测和恢复。还有链路标识,流量控制等等.差错检测多用方阵码校验和循环码校 验来检测信道上数据的误码,而帧丢失等用序号检测.各种错误的恢复则常靠反馈重发 技术来完成.链路管理功能主要用于面向连接的服务。当链路两端的节点要进行通信前,必须首先确认对方已处于就绪状态,并交换一些必要的信息以对帧序号初始化,然后才能建立连接,在传输过程中则要能维持该连接。如果出现差错,需要重新初始化,重新自动建立连接。传输完毕后则要释放连接。数据连路层连接的建立维持和释放就称作链路管理。在多个站点共享同一物理信道的情况下(例如在LAN中)如何在要求通信的站点间分配和管理信道也属于数据链路层管理的范畴。参考资料:百度百科——数据链路层
1、数据链路层功能在两个网络实体之间提供数据链路连接的创建、维持和释放管理。构成数据链路数据单元(frame:数据帧或讯框),并对帧定界、同步、收发顺序的控制。传输过程中的网络流量控制、差错检测和差错控制等方面。只提供导线的一端到另一端的数据传输。数据链路层会在 frame 尾端置放检查码(parity,sum,CRC)以检查实质内容,将物理层提供的可能出错的物理连接改造成逻辑上无差错的数据链路,并对物理层的原始数据进行数据封装。2、网络层的主要功能对网络层而言使用IP地址来唯一标识互联网上的设备,网络层依靠IP地址进行相互通信(类似于数据链路层的MAC地址),详细的编址方案参见IPv4和IPv6。在同一个网络中的内部通信并不需要网络层设备,仅仅靠数据链路层就可以完成相互通信,对于不同的网络之间相互通信则必须借助路由器等三层设备。扩展资料:根据建议X.200,OSI将计算机网络体系结构划分为以下七层,标有1~7,第1层在底部。第7层 应用层应用层(Application Layer)提供为应用软件而设的接口,以设置与另一应用软件之间的通信。例如: HTTP,HTTPS,FTP,TELNET,SSH,SMTP,POP3等。第6层 表达层表达层(Presentation Layer)把数据转换为能与接收者的系统格式兼容并适合传输的格式。第5层 会话层会话层(Session Layer)负责在数据传输中设置和维护计算机网络中两台计算机之间的通信连接。第4层 传输层传输层(Transport Layer)把传输表头(TH)加至数据以形成数据包。传输表头包含了所使用的协议等发送信息。例如:传输控制协议(TCP)等。第3层 网络层网络层(Network Layer)决定数据的路径选择和转寄,将网络表头(NH)加至数据包,以形成分组。网络表头包含了网络数据。例如:互联网协议(IP)等。第2层 数据链路层数据链路层(Data Link Layer)负责网络寻址、错误侦测和改错。当表头和表尾被加至数据包时,会形成帧。数据链表头(DLH)是包含了物理地址和错误侦测及改错的方法。数据链表尾(DLT)是一串指示数据包末端的字符串。例如以太网、无线局域网(Wi-Fi)和通用分组无线服务(GPRS)等。分为两个子层:逻辑链路控制(leogic link control,LLC)子层和介质访问控制(media access control,MAC)子层。第1层 物理层物理层(Physical Layer)在局部局域网上传送数据帧(data frame),它负责管理计算机通信设备和网络媒体之间的互通。包括了针脚、电压、线缆规范、集线器、中继器、网卡、主机适配器等。参考资料:百度百科 OSI
数据链路层的主要功能:1、将数据组合成数据块,封装成帧;2、差错控制;3、流量控制;4、链路控制;5、MAC寻址;6、区分数据和控制信息;7、透明传输。数据链路层本教程操作环境:windows10系统、Dell G3电脑。数据链路层的主要功能1. 成帧(帧同步)---将数据组合成数据块,封装成帧为了向网络层提供服务,数据链路层必须使用物理层提供的服务。而物理层是以比特流进行传输的,这种比特流并不保证在数据传输过程中没有错误,接收到的位数量可能少于、等于或者多于发送的位数量。而且它们还可能有不同的值,这时数据链路层为了能实现数据有效的差错控制,就采用了一种”帧”的数据块进行传输。而要采帧格式传输,就必须有相应的帧同步技术,这就是数据链路层的”成帧”(也称为”帧同步”)功能。采用帧传输方式的好处是:在发现有数据传送错误时,只需将有差错的帧再次传送,而不需要将全部数据的比特流进行重传,这就在传送效率上将大大提高。采用帧传输方式的好处是带来了两方面的问题:(1)如何识别帧的开始与结束;(2)在夹杂着重传的数据帧中,接收方在接收到重传的数据帧时是识别成新的数据帧,还是识别成重传帧呢?这就要靠数据链路层的各种”帧同步”技术来识别了。”帧同步”技术既可使接收方能从并不是完全有序的比特流中准确地区分出每一帧的开始和结束,同时还可识别重传帧。2. 差错控制在数据通信过程中可能会因物理链路性能和网络通信环境等因素,难免会出现一些传送错误,但为了确保数据通信的准确,又必须使得这些错误发生的几率尽可能低。这一功能也是在数据链路层实现的,就是它的”差错控制”功能。在数字或数据通信系统中,通常利用抗干扰编码进行差错控制。一般分为4类:前向纠错(FEC)、反馈检测(ARQ)、混合纠错(HEC)和信息反馈(IRQ)。FEC方式是在信息码序列中,以特定结构加入足够的冗余位–称为”监督元”(或”校验元”)。接收端解码器可以按照双方约定的这种特定的监督规则,自动识别出少量差错,并能予以纠正。FEC最适合于实时的高速数据传输的情况。在非实时数据传输中,常用ARQ差错控制方式。解码器对接收码组逐一按编码规则检测其错误。如果无误,向发送端反馈”确认”ACK信息;如果有错,则反馈回ANK信息,以表示请求发送端重复发送刚刚发送过的这一信息。ARQ方式的优点在于编码冗余位较少,可以有较强的检错能力,同时编解码简单。由于检错与信道特征关系不大,在非实时通信中具有普遍应用价值。HEC方式是上述两种方式的有机结合,即在纠错能力内,实行自动纠错;而当超出纠错能力的错误位数时,可以通过检测而发现错码,不论错码多少都可以利用ARQ方式进行纠错。IRQ方式是一种全回执式最简单差错控制方式。在该检错方式中,接收端将收到的信码原样转发回发送端,并与原发送信码相比较,若发现错误,则发送端再进行重发。只适于低速非实时数据通信,是一种较原始的做法。3. 流量控制在双方的数据通信中,如何控制数据通信的流量同样非常重要。它既可以确保数据通信的有序进行,还可避免通信过程中不会出现因为接收方来不及接收而造成的数据丢失。这就是数据链路层的”流量控制”功能。数据的发送与接收必须遵循一定的传送速率规则,可以使得接收方能及时地接收发送方发送的数据。并且当接收方来不及接收时,就必须及时控制发送方数据的发送速率,使两方面的速率基本匹配。4. 链路控制数据链路层的”链路管理”功能包括数据链路的建立、维持和释放三个主要方面。当网络中的两个节点要进行通信时,数据的发送方必须确知接收方是否已处在准备接收的状态。为此通信双方必须先要交换一些必要的信息,以建立一条基本的数据链路。在传输数据时要维持数据链路,而在通信完毕时要释放数据链路。5. MAC寻址这是数据链路层中的MAC子层主要功能。这里所说的”寻址”与下一章将要介绍的”IP地址寻址”是完全不一样的,因为此处所寻找的地址是计算机网卡的MAC地址,也称”物理地址”、”硬件地址”,而不是IP地址。在以太网中,采用媒体访问控制(Media Access Control, MAC)地址进行寻址,MAC地址被烧入每个以太网网卡中。这在多点连接的情况下非常必需,因为在这种多点连接的网络通信中,必须保证每一帧都能准确地送到正确的地址,接收方也应当知道发送方是哪一个站。6. 区分数据和控制信息由于数据和控制信息都是在同一信道中传输,在许多情况下,数据和控制信息处于同一帧中,因此一定要有相应的措施使接收方能够将它们区分开来,以便向上传送仅是真正需要的数据信息。7. 透明传输这里所说的”透明传输”是指可以让无论是哪种比特组合的数据,都可以在数据链路上进行有效传输。这就需要在所传数据中的比特组合恰巧与某一个控制信息完全一样时,能采取相应的技术措施,使接收方不会将这样的数据误认为是某种控制信息。只有这样,才能保证数据链路层的传输是透明的。注:在以上七大链路层功能中,主要的还是前面的五项,后面两项功能是在前五项功能中附带实现的,无需另外的技术,所以在此仅介绍前面五项功能。链路层向网络层提供的服务数据链路层的设计目标就是为网络层提供各种需要的服务。实际的服务随系统的不同而不同,但是一般情况下,数据链路层会向网络层提供以下三种类型的服务:1. 无确认的无连接服务“无确认的无连接服务”是指源计算机向目标计算机发送独立的帧,目标计算机并不对这些帧进行确认。这种服务,事先无需建立逻辑连接,事后也不用解释逻辑连接。正因如此,如果由于线路上的原因造成某一帧的数据丢失,则数据链路层并不会检测到这样的丢失帧,也不会恢复这些帧。出现这种情况的后果是可想而知的,当然在错误率很低,或者对数据的完整性要求不高的情况下(如话音数据),这样的服务还是非常有用的,因为这样简单的错误可以交给OSI上面的各层来恢复。如大多数局域网在数据链路层所采用的服务也是无确认的无连接服务。2. 有确认的无连接服务为了解决以上“无确认的无连接服务”的不足,提高数据传输的可靠性,引入了“有确认的无连接服务”。在这种连接服务中,源主机数据链路层必须对每个发送的数据帧进行编号,目的主机数据链路层也必须对每个接收的数据帧进行确认。如果源主机数据链路层在规定的时间内未接收到所发送的数据帧的确认,那么它需要重发该帧。 这样发送方知道每一帧是否正确地到达对方。这类服务主要用于不可靠信道,如无线通信系统。它与下面将要介绍的“有确认的面向连接服务”的不同之处在于它不需要在帧传输之前建立数据链路,也不要在在帧传输结束后释放数据链路。3. 有确认的面向连接服务大多数数据链路层都采用向网络层提供面向连接确认服务。利用这种服务,源计算机和目标计算机在传输数据之前需要先建立一个连接,该连接上发送的每一帧也都被编号,数据链路层保证每一帧都会被接收到。而且它还保证每一帧只被按正常顺序接收一次。这也正是面向连接服务与前面介绍的“有确认无连接服务”的区别,在无连接有确认的服务中,在没有检测到确认时,系统会认为对方没收到,于是会重发数据,而由于是无连接的,所以这样的数据可能会复发多次,对方也可能接收多次,造成数据错误。这种服务类型存在3个阶段,即:数据链路建立、数据传输、数据链路释放阶段。每个被传输的帧都被编号,以确保帧传输的内容与顺序的正确性。大多数广域网的通信子网的数据链路层采用面向连接确认服务。以太网采用无连接的工作方式,读发送的数据帧不进行编号,也不要求对方发回确认。目的站收到有差错的帧就把他丢弃,不采取其他行为。其他知识点局域网的优点:具有广播功能,从一个站点可以很方便的访问全网;便于系统的扩展和逐渐演变;提高了系统的可靠性、可用性和生存性。以太网采用的协议是具有冲突检测的载波监听多点接入CMSA/CD。协议的要点是:发送前先监听,便发送边监听,一旦发现总线上出现了碰撞,就立即停止发送。然后按照退避算法等待一段随机时间后再次发送。因此,每一个站在自己发送数据之后的一小段时间内,存在着遭遇碰撞的可能性。以太网上各站点都平等的争用以太网信道。更多相关知识,请访问www.lllt.net java编程网 常见问题栏目!

数据链路层的主要功能有哪六个?
您好,数据链路可以粗略地理解为数据通道。物理层要为终端设备间的数据通信提供传输媒体及其连接.媒体是长期的,连接是有生存期的.在连接生存期内,收发两端可以进行不等的一次或多次数据通信. 1、数据链路层是OSI参考模型中的第二层,介乎于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能2、与其它计算机进行通讯的一个应用,它是对应应用程序的通信服务的。例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。但是,如果添加了一个传输文件的选项,那么字处理器的程序员就需要实现OSI的第7层。示例:telnet,HTTP,FTP,NFS,SMTP等。 3、数据链路(逻辑线路):在一条物理线路之上,通过一些规程或协议来控制这些数据的传输,以保证被传输数据的正确性。实现这些规程或协议的硬件和软件加到物理线路,这样就构成了数据链路。从数据发送点到数据接收点(点到点 point to point)所经过的传输途径。
物理层的基本功能是:利用传输介质为数据链路层提供物理连接,实现比特流的透明传输。 数据链路层的基本功能是:通过各种控制协议,将有差错的物理信道变为无差错的、能可靠传输数据帧的数据链路。 网络层基本功能是:通过路由选择算法,为报文或分组通过通信子网选择最适当的路径。 在计算机网络中由于各种干扰的存在,物理链路是不可靠的。因此,这一层的主要功能是在物理层提供的比特流的基础上,通过差错控制、流量控制方法,使有差错的物理线路变为无差错的数据链路,即提供可靠的通过物理介质传输数据的方法。 数据链路层中使用的物理地址(如MAC地址)仅解决网络内部的寻址问题。在不同子网之间通信时,为了识别和找到网络中的设备,每一子网中的设备都会被分配一个唯一的地址。由于各子网使用的物理技术可能不同,因此这个地址应当是逻辑地址(如IP地址)。

数据链路层的三个基本问题是什么?
1. 封装成帧 封装成帧(framing):就是在一段数据的前后分别添加首部和尾部,这样就构成了一个帧。2. 透明传输由于帧的开始和结束的标记是使用专门指明的控制字符,因此,所传输的数据中的任何8比特的组合一定不允许和用作帧定界的控制字符的比特编码一样,否则就会出现帧定界的错误。3. 差错检测 传输差错:可分为两大类,一类就是最基本的比特差错,另一类就是收到的帧并没有出现比特错误,但却出现了帧丢失、帧重复或帧失序。

【网络】TCP/IP-数据链路层
本文主要从数据链路层主要功能展开,涉及到以下相关概念 首先我们看看TCP/IP网络模型中数据链路层的功能定义:透明传输,差错检测,封装成帧数据链路层进程的任务是在两个网络层进程之间提供无错误的,透明的通信1 提供差错检测机制(处理传输错误)2使用滑动窗口机制进行流量控制 (调节数据流,确保慢速的接收方不会被发送方淹没)3 向网络层提供一个定义良好的网络接口在OSI参考模型中,上层使用下层所提供的服务必须与下层交换命令,这些命令称为 服务原语 。相邻层之间的接口称为 服务访问点SAP ,对等层之间传送的数据单位称为 协议数据单元PDU以下图说明网络链路,数据传输构成,和数据链路层分层可分为 (面向字符的通信规程) 和 (面向比特的通信规程) 两类“TCP 是一个面向字节流的协议”指的是“字节就是字节”在令牌环网中,令牌环的帧格式有两种,分别是 (令牌帧) 和 (数据帧)在点-点链路中,发送信息和命令的站称为主站,接收信息和命令而发出确认信息或响应的站称为从站,兼有主、从功能可发送命令与响应的站称为复合站透明传输模式0201 工作原理以太网有两类01 经典以太网,解决多路访问问题02 交互式以太网,使用交换机连接不同的计算机。交换机中每个端口有自己独立的冲突域。采用较为灵活的无连接的工作方式,即不必先建立连接就可以直接发送数据。以太网对发送的数据帧不进行编号,也不要求对方发回确认。以太网提供的服务是不可靠的交付,即尽最大努力的交付。以太网是使用1-持续CSMA/CD 技术的总线型网络。以太网的逻辑结构是总线型结构,物理结构是星型或者拓扑星型结构。以太网属于数据链路层协议应用,规定的最短帧长 最短帧长度为64字节。为了确保最小帧长为64字节,同时维持网络直径为200m,千兆以太网采用了载波扩展和数据包分组两种技术。为什么要限制最短帧长以太网的争用期是指总线两端的两个站之间的往返传播时延,又称为碰撞窗口。以太网的端到端往返时延 2τ称为争用期,或碰撞窗口。争用期长度为 2τ,即端到端 传播时延 的两倍。经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发生碰撞网桥工作在数据链路层,作用是连接不用的物理局域网形成逻辑局域网,它们通过检查数据链路层地址来转发帧。用于连接类型相似的局域网。在网桥中,帧从物理层往上传给以太网的MAC层。路由器作用于网络层,提供网络层协议转换。通过检查数据包地址,并基于数据包地址路由数据包。在网络之间存储和转发分组网关提供传输层及以上各层协议之间的转换网桥与路由器的区别1 二层设备与三层设备2 网桥连接相似的局域网,路由器连接不同的网络3 网桥不隔离广播,而路由器可以隔离广播网桥的主要任务是地址学习和帧转发以太网交换机实际上是一个多端口的网桥。节点交换机与以太网交换机都是数据链路层设备,前者使用点对点信道,后者使用广播信道。例:以太网交换机在收到一帧后先进行存储,在转发帧是,对于未知目的的帧,可以采用广播的方式转发。交换机是按照存储转发方式工作的,在收到一帧后,一定是先将它存储再进行处理,不管目的地址。在转发时,查找转发表和收到帧的源地址有无匹配的项目,有则更新,无则向除接收该帧的接口以外转发帧,即广播。以太网交换机按照自学习算法建立转发表,它通过 ARP协议 进行地址学习。ARP协议 不属于链路层 。A RP不是向网络层提供服务,它 本身就是网络层的一部分,帮 助向传输层提供服务。在数据链路层不存在IP 地址的问题。数据链路层协议是象HDLC 和PPP 这样的协议,它们把比特串从线路的一端传送到另一端。例题高级数据链路控制(High-Level Data Link Control或简称HDLC),是一个在同步网上传输数据、面向比特的【可靠传输】数据链路层协议。目前我们普遍使用HDLC作为数据链路控制协议。HDLC帧格式如下当我们传输数据时,要传输的不仅仅是数据的大小,还会给这些数据加上头和尾,以及一些其他的标志。比如标志位有八位,就是一个字节。所以除数据外其他的字段加在一起要占据6字节的空间。HDLC定义了三种类型的站:分别是主站,从站,复合站HDLC包括三种类型的帧,信息帧,监控帧,和无编号帧。第1位为“0”表示是信息帧,第1、2位为“10”是监控帧,“11”是无编号帧。信息帧用于传送有效信息或数据,通常简称I帧。监控帧用于监视和控制数据链路,完成信息帧的接收确认、重发请求、暂停发送请求等功能。监控帧不具有信息字段。无编号帧用于数据链路的控制,它本身不带编号,可以在任何需要的时刻发出HDLC的帧类型中用于差错控制和流量控制的帧是 A.命令帧 B.信息帧 C.无编号帧 D.监控帧答案 DATM是一种 面向分组 的技术,其分组称为信元。 ATM 信元由信元头和净荷(Payload)两部分构成。信元头中包含信元控制信息,净荷用于承载用户的数据。ATM是一种面向连接的技术,传输基于固定长度的信息信元,每个信元在他的头部带有虚电路标识符,交换设备根据此标识符演着连接建立的路径转发信元。ATM是异步传输模式的缩写,是两种交换技术的结合,电路交换和分组交换。信元和信元头长度分别是53字节和5字节在计算机网络中,数据交换的方式有:(1)线路交换。在数据传送之前需建立一条物理通路, 在线路被释放之前,该通路将一直被一对用户完全占有。(2)报文交换。报文从发送方传送到接收方采用存储转发 的方式。在传送报文时,只占用一段通路;在交换节点中需要 缓冲存储,报文需要排队。因此,这种方式不满足实时通信的 要求。(3)分组交换。此方式与报文交换类似,但报文被分成组传送,并规定了分组的最长度,到达目的地后需重新将分组组装成报文。这是网络中最广泛采用的一种交换技术。常用的差错控制方法是在数据中加入差错控制编码,在所要发送的信息位之前按照某种规则加上一定的冗余位,构成一个码字再传送。交换机可以用来分割LAN,连接不同的LAN,或者扩展LAN的覆盖范围。4B/5B编码是将数字数据转换为数字信号的编码方式。数据链路层和大多数高层都存在的一个问题是如何避免一个快速发送方用数据【淹没】一个慢速接受方。所以需要一个流量调节机制,以便让发送方知道接收方何时可以接收更多的数据。两种方式:1 基于反馈的流量控制接收方给发送方发信息2 基于速率的流量控制限制发送方传输速率数据链路层和传输层的TCP协议都会涉及到滑动窗口机制。侧重点不一样。数据链路层主要有两种: 停-等流量控制和滑动窗流量控制 。发送方窗口内的序列号代表了那些已经被发送,但是还没有被确认的帧,或者是那些可以被发送的帧。首先整理下滑动窗口涉及到的3个协议1 停等协议:发送方每发送一帧,都要等待接收方的应答信号,之后才能发送下一帧;接收方每接收一帧,都要反馈一个应答信号,表示可接收下一帧,如果接收方不反馈应答信号,则发送方必须一直等待。2 后退N帧协议:在后退n协议中,接收方若发现错误帧就不再接收后续的帧,即使是正确到达的帧,这显然是一种浪费。接受方发现接收到的信息帧时序有问题时,要求发送方发送最后一次正确发送后确认接收的帧之后的所有的未被确认的帧。3 选择重传协议:当接收方发现某帧出错后,其后继续送来的正确的帧虽然不能立即递交给接收方的高层。但接收方仍可收下来,存放在一个缓冲区中,同时要求发送方重新传送出错的那一帧,一旦收到重新传来的帧后,就可以原已存于缓冲区中的其余帧一并按正确的顺序递交高层。总之海明码:如果要检测 d位错误,需要海明距为 d+1的编码方案;如果要纠正 d位错误,需要海明 距 为 2d+1的 编 码 方 案 。1.集线器本身是一个 冲突域 ,因为它不能分隔冲突域。2.交换机本身是一个 广播域 ,它分隔冲突域,即它的每一个端口都是一个冲突域。3. 路由器 分隔 广播域 ,它的每一个接口都是一个 广播域 。4.交换机和 路由器 相连的链路即是冲突域又是广播域。某用户程序采用 UDP协议进行传输,则差错控制应由 协议完成。A.数据链路层 B.网络层 C.物理层 D.应用层PPP协议是透明传输,实际上就是通常所说的透传。PPP协议使用的是一种面向字节的协议,所有的帧长度都是整数个字节,使用一种特殊的字符填充法完成数据的填充。例题为实现透明传输,PPP协议使用的填充方法是()。BA.位填充B.字符填充C.对字符数据使用字符填充,对非字符数据使用位填充D.对字符数据使用位填充,对非字符数据使用字符填充例题:PPP 帧的起始和结束标志都是 0x7e,若在信息字段中出现与此相同的字符,必须进行填充。在同步数据链路中,采用___比特填充法____方法进行填充;在异步数据链路中,采用___字符填充法____方法进行填充1 纠错,PPP协议只进行检错2流量控制 3 序号 PPP协议是不可靠的传输协议,因此不需要给帧编号。

数据链路层的主要功能
数据链路层要完成许多特定的功能。这些功能包括为网络层提供设计良好的服务接口,处理帧同步,处理传输差错,调整帧的流速,不至于使慢速接收方被快速发送方淹没。 数据链路层的功能是为网络层提供服务。其基本服务是将源机器中来自网络层的数据传输给目的机器的网络层。 数据链路层一般都提供3种基本服务,即无确认的无连接服务、有确认的无连接服务、有确认 的面向连接的服务。(1)无确认的无连接服务无确认的无连接服务是源机器向目的机器发送独立的帧,而目的机器对收到的帧不作确认。如果由于线路上的噪声而造成帧丢失,数据链路层不作努力去恢复它,恢 复工作留给上层去完成。这类服务适用于误码率很低的情况,也适用于像语音之类的实时传输,实时传输情况下有时数据延误比数据损坏影响更严重。大多数局域网 在数据链路层都使用无确认的无连接服务。(2)有确认的无连接服务这种服务仍然不建立连接,但是所发送的每一帧都进行单独确认。以这种方式,发送方就会知道帧是否正确地到达。如果在某个确定的时间间隔内,帧没有到达,就必须重新发此帧。(3)有确认的面向连接的服务采用这种服务,源机器和目的机器在传递任何数据之前,先建立一条连接。在这条连接上所发送的每一帧都被编上号,数据链路层保证所发送的每一帧都确实已收 到。而且,它保证每帧只收到一次,所有的帧都是按正确顺序收到的。面向连接的服务为网络进程间提供了可靠地传送比特流的服务。2.帧同步在数据链路层,数据的传送单位是帧。所谓帧,是指从物理层送来的比特流信息按照一 定的格式进行分割后形成的若干个信息块。数据一帧一帧地传送,就可以在出现差错时,将有差错的帧再重传一次,从而避免了将全部数据都重传。帧同步是指接收方应当能从收到的比特流中准确地区分出一帧的开始和结束在什么地方。3.差错控制传送帧时可能出现的差错有:位出错,帧丢失,帧重复,帧顺序错。位 出错的分布规律及出错位的数量很难限制在预定的简单模式中,一般采用漏检率及其微小的CRC检错码再加上反馈重传的方法来解决。为了保证可靠传送,常采用 的方法是向数据发送方提供有关接收方接收情况的反馈信息。一个否定性确认意味着发生了某种差错,相应的帧必须被重传。这种做法即是反馈重传。更复杂的情况是,一个帧可能完全丢失(比如,消失在突发性噪声中)。在这种情况下,发送方将会永远等下去。 这个问题可以通过在数据链路层中引入计时器来解决。
数据链路层:OSI参考模型中的第二层

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/48030.html。