tcp接口对接(TCP接口)

      最后更新:2023-03-20 22:34:20 手机定位技术交流文章

      什么是TCP/IP协议中的端到端通信?

      端到端通信建立在点到点通信的基础之上,它是由一段段的点到点通信信道构成的,是比点到点通信更高一级的通信方式,完成应用程序(进程)之间的通信。 OSI七层模型中的物理层、数据链路层和网络层是面向网络通信的低三层,为网络环境中的主机提供点对点通信服务。这种通信是直接相连的节点对等实体的通信,它只提供一台机器到另一台机器之间的通信,不会涉及到程序或进程的概念。同时点到点通信并不能保证数据传输的可靠性,也不能说明源主机与目的主机之间是哪两个进程在通信。端到端通信建立在点到点通信的基础上,是经点到点通信更高一级的通信方式,完成应用程序(进程)之间的通信。OSI参考模型中的传输层功能的裨是最终完成端到端的可靠连接。“端”是指用户应用程序的“端口”,端口号标识了应用层中不同的进程,多个进程的数据传递通过不同的端口完成。TCP/IP协议不是TCP和IP这两个协议的合称,而是指因特网整个TCP/IP协议族。TCP/IP协议模块关系从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层、网络层、传输层、应用层。TCP/IP协议并不完全符合OSI的七层参考模型,OSI(Open System Interconnect)是传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层(网络接口层)、网络层(网络层)、传输层(传输层)、会话层、表示层和应用层(应用层)。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。由于ARPANET的设计者注重的是网络互联,允许通信子网(网络接口层)采用已有的或是将来有的各种协议,所以这个层次中没有提供专门的协议。实际上,TCP/IP协议可以通过网络接口层连接到任何网络上,例如X.25交换网或IEEE802局域网。注意tcp本身不具有数据传输中噪音导致的错误检测功能,但是有实现超时的错误重传功能;TCP/IP结构对应OSITCP/IPOSI应用层应用层 表示层会话层主机到主机层(TCP)(又称传输层) 传输层网络层(IP)(又称互联层) 网络层网络接口层 数据链路层 (又称链路层)物理层
      端到端通信指传输层的通信,实现通信双方机器中进程之间的通信。
      第二层的通信,可以简单理解为从a端口到b端口。
      我也要做作业,但是不知道!
      答案:C TCP是面向连接的通信协议,通过三次握手建立连接,通讯时完成时要拆除连接。
      什么是TCP/IP协议中的端到端通信?

      TCP协议的通讯过程

      你大概说的是3步握手吧,这跟传真机的5部握手很类似。 下面的资料希望对你有用TCP/IP 是很多的不同的协议组成,实际上是一个协议组,TCP 用户数据报表协议(也称作TCP 传输控制协议,Transport Control Protocol。可靠的主机到主机层协议。这里要先强调一下,传输控制协议是OSI 网络的第四层的叫法,TCP 传输控制协议是TCP/IP 传输的6 个基本协议的一种。两个TCP 意思非相同。)。TCP 是一种可靠的面向连接的传送服务。它在传送数据时是分段进行的,主机交换数据必须建立一个会话。它用比特流通信,即数据被作为无结构的字节流。通过每个TCP 传输的字段指定顺序号,以获得可靠性。是在OSI参考模型中的第四层,TCP 是使用IP 的网间互联功能而提供可靠的数据传输,IP 不停的把报文放到网络上,而TCP 是负责确信报文到达。在协同IP 的操作中TCP 负责:握手过程、报文管理、流量控制、错误检测和处理(控制),可以根据一定的编号顺序对非正常顺序的报文给予从新排列顺序。关于TCP 的RFC 文档有RFC793、RFC791、RFC1700。在TCP 会话初期,有所谓的“三握手”:对每次发送的数据量是怎样跟踪进行协商使数据段的发送和接收同步,根据所接收到的数据量而确定的数据确认数及数据发送、接收完毕后何时撤消联系,并建立虚连接。为了提供可靠的传送,TCP 在发送新的数据之前,以特定的顺序将数据包的序号,并需要这些包传送给目标机之后的确认消息。TCP 总是用来发送大批量的数据。当应用程序在收到数据后要做出确认时也要用到TCP。由于TCP 需要时刻跟踪,这需要额外开销,使得TCP 的格式有些显得复杂。下面就让我们看一个TCP 的经典案例,这是后来被称为MITNICK 攻击中KEVIN 开创了两种攻击技术:TCP 会话劫持SYN FLOOD(同步洪流)在这里我们讨论的时TCP 会话劫持的问题。先让我们明白TCP 建立连接的基本简单的过程。为了建设一个小型的模仿环境我们假设有3 台接入互联网的机器。A 为攻击者操纵的攻击机。B 为中介跳板机器(受信任的服务器)。C 为受害者使用的机器(多是服务器),这里把C 机器锁定为目标机器。A 机器向B机器发送SYN 包,请求建立连接,这时已经响应请求的B 机器会向A 机器回应SYN/ACK表明同意建立连接,当A 机器接受到B 机器发送的SYN/ACK 回应时,发送应答ACK 建立A 机器与B 机器的网络连接。这样一个两台机器之间的TCP 通话信道就建立成功了。B 终端受信任的服务器向C 机器发起TCP 连接,A 机器对服务器发起SYN 信息,使C 机器不能响应B 机器。在同时A 机器也向B 机器发送虚假的C 机器回应的SYN 数据包,接收到SYN 数据包的B 机器(被C 机器信任)开始发送应答连接建立的SYN/ACK 数据包,这时C 机器正在忙于响应以前发送的SYN 数据而无暇回应B 机器,而A 机器的攻击者预测出B 机器包的序列号(现在的TCP 序列号预测难度有所加大)假冒C 机器向B 机器发送应答ACK 这时攻击者骗取B 机器的信任,假冒C 机器与B 机器建立起TCP 协议的对话连接。这个时候的C 机器还是在响应攻击者A 机器发送的SYN 数据。TCP 协议栈的弱点:TCP 连接的资源消耗,其中包括:数据包信息、条件状态、序列号等。通过故意不完成建立连接所需要的三次握手过程,造成连接一方的资源耗尽。通过攻击者有意的不完成建立连接所需要的三次握手的全过程,从而造成了C 机器的资源耗尽。序列号的可预测性,目标主机应答连接请求时返回的SYN/ACK 的序列号时可预测的。(早期TCP 协议栈,具体的可以参见1981 年出的关于TCP 雏形的RFC793 文档)TCP 头结构TCP 协议头最少20 个字节,包括以下的区域(由于翻译不禁相同,文章中给出相应的英文单词):TCP 源端口(Source Port):16 位的源端口其中包含初始化通信的端口。源端口和源IP 地址的作用是标示报问的返回地址。TCP 目的端口(Destination port):16 位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。TCP 序列号(序列码,Sequence Number):32 位的序列号由接收端计算机使用,重新分段的报文成最初形式。当SYN 出现,序列码实际上是初始序列码(ISN),而第一个数据字节是ISN+1。这个序列号(序列码)是可以补偿传输中的不一致。TCP 应答号(Acknowledgment Number):32 位的序列号由接收端计算机使用,重组分段的报文成最初形式。,如果设置了ACK 控制位,这个值表示一个准备接收的包的序列码。数据偏移量(HLEN):4 位包括TCP 头大小,指示何处数据开始。保留(Reserved):6 位值域,这些位必须是0。为了将来定义新的用途所保留。标志(Code Bits):6 位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。窗口(Window):16 位,用来表示想收到的每个TCP 数据段的大小。校验位(Checksum):16 位TCP 头。源机器基于数据内容计算一个数值,收信息机要与源机器数值结果完全一样,从而证明数据的有效性。优先指针(紧急,Urgent Pointer):16 位,指向后面是优先数据的字节,在URG标志设置了时才有效。如果URG 标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。选项(Option):长度不定,但长度必须以字节。如果没有选项就表示这个一字节的域等于0。填充:不定长,填充的内容必须为0,它是为了数学目的而存在。目的是确保空间的可预测性。保证包头的结合和数据的开始处偏移量能够被32 整除,一般额外的零以保证TCP 头是32 位的整数倍。标志控制功能URG:紧急标志紧急(The urgent pointer) 标志有效。紧急标志置位,ACK:确认标志确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。TCP 报头内的确认编号栏内包含的确认编号(w+1,Figure:1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。PSH:推标志该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用处理。在处理telnet 或rlogin 等交互模式的连接时,该标志总是置位的。RST:复位标志复位标志有效。用于复位相应的TCP 连接。SYN:同步标志同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立TCP 连接时有效。它提示TCP 连接的服务端检查序列编号,该序列编号为TCP 连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP 序列编号看作是一个范围从0 到4,294,967,295 的32 位计数器。通过TCP 连接交换的数据中每一个字节都经过序列编号。在TCP 报头中的序列编号栏包括了TCP 分段中第一个字节的序列编号。FIN:结束标志带有该标志置位的数据包用来结束一个TCP 回话,但对应端口仍处于开放状态,准备接收后续数据。服务端处于监听状态,客户端用于建立连接请求的数据包(IP packet)按照TCP/IP协议堆栈组合成为TCP 处理的分段(segment)。分析报头信息: TCP 层接收到相应的TCP 和IP 报头,将这些信息存储到内存中。检查TCP 校验和(checksum):标准的校验和位于分段之中(Figure:2)。如果检验失败,不返回确认,该分段丢弃,并等待客户端进行重传。查找协议控制块(PCB{}):TCP 查找与该连接相关联的协议控制块。如果没有找到,TCP 将该分段丢弃并返回RST。(这就是TCP 处理没有端口监听情况下的机制) 如果该协议控制块存在,但状态为关闭,服务端不调用connect()或listen()。该分段丢弃,但不返回RST。客户端会尝试重新建立连接请求。建立新的socket:当处于监听状态的socket 收到该分段时,会建立一个子socket,同时还有socket{},tcpcb{}和pub{}建立。这时如果有错误发生,会通过标志位来拆除相应的socket 和释放内存,TCP 连接失败。如果缓存队列处于填满状态,TCP 认为有错误发生,所有的后续连接请求会被拒绝。这里可以看出SYN Flood 攻击是如何起作用的。丢弃:如果该分段中的标志为RST 或ACK,或者没有SYN 标志,则该分段丢弃。并释放相应的内存。发送序列变量SND.UNA : 发送未确认SND.NXT : 发送下一个SND.WND : 发送窗口SND.UP : 发送优先指针SND.WL1 : 用于最后窗口更新的段序列号SND.WL2 : 用于最后窗口更新的段确认号ISS : 初始发送序列号接收序列号RCV.NXT : 接收下一个RCV.WND : 接收下一个RCV.UP : 接收优先指针IRS : 初始接收序列号当前段变量SEG.SEQ : 段序列号SEG.ACK : 段确认标记SEG.LEN : 段长SEG.WND : 段窗口SEG.UP : 段紧急指针SEG.PRC : 段优先级CLOSED 表示没有连接,各个状态的意义如下:LISTEN : 监听来自远方TCP 端口的连接请求。SYN-SENT : 在发送连接请求后等待匹配的连接请求。SYN-RECEIVED : 在收到和发送一个连接请求后等待对连接请求的确认。ESTABLISHED : 代表一个打开的连接,数据可以传送给用户。FIN-WAIT-1 : 等待远程TCP 的连接中断请求,或先前的连接中断请求的确认。FIN-WAIT-2 : 从远程TCP 等待连接中断请求。CLOSE-WAIT : 等待从本地用户发来的连接中断请求。CLOSING : 等待远程TCP 对连接中断的确认。LAST-ACK : 等待原来发向远程TCP 的连接中断请求的确认。TIME-WAIT : 等待足够的时间以确保远程TCP 接收到连接中断请求的确认。CLOSED : 没有任何连接状态。TCP 连接过程是状态的转换,促使发生状态转换的是用户调用:OPEN,SEND,RECEIVE,CLOSE,ABORT 和STATUS。传送过来的数据段,特别那些包括以下标记的数据段SYN,ACK,RST 和FIN。还有超时,上面所说的都会时TCP 状态发生变化。序列号请注意,我们在TCP 连接中发送的字节都有一个序列号。因为编了号,所以可以确认它们的收到。对序列号的确认是累积性的。TCP 必须进行的序列号比较操作种类包括以下几种:①决定一些发送了的但未确认的序列号。②决定所有的序列号都已经收到了。③决定下一个段中应该包括的序列号。对于发送的数据TCP 要接收确认,确认时必须进行的:SND.UNA = 最老的确认了的序列号。SND.NXT = 下一个要发送的序列号。SEG.ACK = 接收TCP 的确认,接收TCP 期待的下一个序列号。SEG.SEQ = 一个数据段的第一个序列号。SEG.LEN = 数据段中包括的字节数。SEG.SEQ+SEG.LEN-1 = 数据段的最后一个序列号。如果一个数据段的序列号小于等于确认号的值,那么整个数据段就被确认了。而在接收数据时下面的比较操作是必须的:RCV.NXT = 期待的序列号和接收窗口的最低沿。RCV.NXT+RCV.WND:1 = 最后一个序列号和接收窗口的最高沿。SEG.SEQ = 接收到的第一个序列号。 SEG.SEQ+SEG.LEN:1 = 接收到的最后一个序列号。
      这是一个很复杂的过程,还是找本书看一下,或者在网上看一下吧,三言两语很难说得清楚。
      TCP协议的通讯过程

      tcp,udp 的协议端口如何实现

      TCP 和 UDP 都是 IP 层的传输协议,是 IP 与上层之间的处理接口。TCP 和 UDP 协议端口号被设计来区分运行在单个设备上的多重应用程序的 IP 地址。+---------+--------------+--------------+-----------------------------------+|MAC      | IP           | TCP/UDP      |    Data                           |+---------+--------------+--------------+-----------------------------------+基本情况就是上述帧格式:五元组分别位于MAC, IP, TCP/UDP里面:MAC里面的type决定了是否是IP帧,IP里面给出了SrcIp和DestIp,TCP、UDP头给出了到底是那种传输层协议。绑定bind主要用于服务,而客户端一般采用连接connect。 其过程就像启动一个服务,然后绑定到一个特定端口,对该端口所有进来的tcp/udp请求进行响应。一个TCP连接需要由四元组来形成,即(src_ip,src_port,dst_ip,dst_port)。当一个连接请求过来的时候,服务端调用accept函数,新生成一个socket,这个socket所占用的本地端口依然是80端口。由四元组就很容易分析到了,同一个(src_ip,src_port),它所对应的(dst_ip,dst_port)可以无穷变化,这样就可以建立很多个客户端的请求了。UDP的connect函数,给udp进行了链接,那么udp的异步错误是不会返回到udp套接字的。般情况下,不connect的udp是不知道对面有没有错的,如果有错,那真的是晕啊。因为万一对面服务挂了,客户端一直都不知道,一直等到死。再次调用connect有2个目的:1.指定新的ip和端口 (指定新的即可)2.断开套接字 (family成员设置为AF_UNSPEC:sin_family,sin6_family)对于tcp来说,connect只能调用一次,万万不可调用2次。TCP层为连接状态的维持保留有一段时间,在这段时间内连接状态没有被修改之前是不允许重复connect的。TCP的有一个种2MSL等待时间。udp在发送数据的时候才知道链接不上,而tcp还没有发送数据的时候,就已经知道链接不上鸟udp缺乏流量控制,udp发送端淹没接收端是轻而易举的事情。因套接字满而丢弃鸟。高级udp编程时再讲解如何给udp程序增加一些可靠性。
      不管TCP还是UDP,都含有网络服务必须的源端口和目的端口信息,以建立和实现网络传输服务。这时,你的疑问就来了:既然都用于传输,为何要搞两个不同的协议呢?这就需要从网络中不同服务的需求来谈起。 在网络中,有些服务,如HTTP、FTP等,对数据的可靠性要求较高,在使用这些服务时,必须保证数据包能够完整无误的送达;而另外一些服务,如DNS、即时聊天工具等,并不需要这么高的可靠性,高效率和实时性才是它们所关心的。根据这两种服务不同的需求,也就诞生了面向连接的TCP协议,以及面向无连接的UDP协议。这里的连接(Connection)和无连接(Connectionless)是网络传输中常用的术语,它们的关系可以用一个形象地比喻来说明,就是打电话和写信。打电话时,一个人首先必须拨号(发出连接请求),等待对方响应,接听电话(建立了连接)后,才能够相互传递信息。通话完成后,还需要挂断电话(断开连接),才算完成了整个通话过程。写信则不同,你只需填写好收信人的地址信息,然后将信投入邮局,就算完成了任务。此时,邮局会根据收信人的地址信息,将信件送达指定目的地。我们可以看到,这两者之间有很大不同。打电话时,通话双方必须建立一个连接,才能够传递信息。连接也保证了信息传递的可靠性,因此,面向连接的协议必然是可靠的。无连接就没有这么多讲究,它不管对方是否有响应,是否有回馈,只管将信息发送出去。就像信件一旦进了邮箱,在它到达目的地之前,你没法追踪这封信的下落;接收者即使收到了信件,也不会通知你信件何时到达。在整个通讯过程中,没有任何保障。因此我们常说,面向无连接的协议也是不可靠的。当然,邮局会尽力将右键送到目的地,99%的情况信件会安全到达,但在少数情况下也有例外。 面向连接的协议比面向无连接的协议在可靠性上有着显著的优势,但建立连接前必须等待接收方响应,传输信息过程中必须确认信息是否传到,断开连接时需要发出响应信号等,无形中加大了面向连接协议的资源开销。具体到TCP和UDP协议来说,除了源端口和目的端口,TCP还包括序号、确认信号、数据偏移、控制标志(通常说的URG、ACK、PSH、RST、SYN、FIN)、窗口、校验和、紧急指针、选项等信息,UDP则只包含长度和校验和信息。UDP数据报比TCP小许多,这意味着更小的负载和更有效的使用带宽。许多即时聊天软件采用UDP协议,与此有莫大的关系。
      tcp和udp传送协议是微软公司和操作系统开发时一起定义好了的,重要的端口已经在dll动态链接库文件和API函数文件里面定义好了的。1-9999的端口大部分都是系统定义好了的。因为操作系统的微软公司的。比如445,135,139,21,22,80,3389,4899,25,端口号都是人家在操作系统内核编程的时候早就定义好了的,1-9999以下通用的端口号是大家约定俗成。文件传输一般用TCP协议,QQ数据一般用UDP,端口号一般在10000以上,程序sokt套接字里面设定,当然在三层交换机,路由器上面也要设置。我说的可不是普通家庭的,是思科的大型交换机,路由器。那里面也要设置端口。
      不管TCP还是UDP,都含有网络服务必须的源端口和目的端口信息,以建立和实现网络传输服务。这时,你的疑问就来了:既然都用于传输,为何要搞两个不同的协议呢?这就需要从网络中不同服务的需求来谈起。 在网络中,有些服务,如HTTP、FTP等,对数据的可靠性要求较高,在使用这些服务时,必须保证数据包能够完整无误的送达;而另外一些服务,如DNS、即时聊天工具等,并不需要这么高的可靠性,高效率和实时性才是它们所关心的。根据这两种服务不同的需求,也就诞生了面向连接的TCP协议,以及面向无连接的UDP协议。这里的连接(Connection)和无连接(Connectionless)是网络传输中常用的术语,它们的关系可以用一个形象地比喻来说明,就是打电话和写信。打电话时,一个人首先必须拨号(发出连接请求),等待对方响应,接听电话(建立了连接)后,才能够相互传递信息。通话完成后,还需要挂断电话(断开连接),才算完成了整个通话过程。写信则不同,你只需填写好收信人的地址信息,然后将信投入邮局,就算完成了任务。此时,邮局会根据收信人的地址信息,将信件送达指定目的地。我们可以看到,这两者之间有很大不同。打电话时,通话双方必须建立一个连接,才能够传递信息。连接也保证了信息传递的可靠性,因此,面向连接的协议必然是可靠的。无连接就没有这么多讲究,它不管对方是否有响应,是否有回馈,只管将信息发送出去。就像信件一旦进了邮箱,在它到达目的地之前,你没法追踪这封信的下落;接收者即使收到了信件,也不会通知你信件何时到达。在整个通讯过程中,没有任何保障。因此我们常说,面向无连接的协议也是不可靠的。当然,邮局会尽力将右键送到目的地,99%的情况信件会安全到达,但在少数情况下也有例外。 面向连接的协议比面向无连接的协议在可靠性上有着显著的优势,但建立连接前必须等待接收方响应,传输信息过程中必须确认信息是否传到,断开连接时需要发出响应信号等,无形中加大了面向连接协议的资源开销。具体到TCP和UDP协议来说,除了源端口和目的端口,TCP还包括序号、确认信号、数据偏移、控制标志(通常说的URG、ACK、PSH、RST、SYN、FIN)、窗口、校验和、紧急指针、选项等信息,UDP则只包含长度和校验和信息。UDP数据报比TCP小许多,这意味着更小的负载和更有效的使用带宽。许多即时聊天软件采用UDP协议,与此有莫大的关系。
      tcp,udp 的协议端口如何实现

      TCP传输接口

      TCP端口就是为TCP协议通信提供服务的端口。TCP (Transmission Control Protocol) ,TCP是一种面向连接(连接导向)的、可靠的、基于字节流的运输层(Transport layer)通信协议,由IETF的RFC 793说明(specified)。在计算机网络OSI模型中,它完成第四层传输层所指定的功能。我们的电脑与网络连接的许多应用都是通过TCP端口所实现的。
      TCP传输接口

      什么是并行的TCP连接?

      TCP即传输控制协议。TCP连接是互联网连接协议集的一种。TCP通信最重要的特征是:有序和可靠。有序通过将文本流分段并编号实现,可靠通过ACK回复和重复发送实现。TCP连接状态图:TCP/IP协议的优点:1.开放的协议标准,可以免费使用,并独立于特定的计算机硬件与操作系统。2.独立特定的网络硬件,可以运行在局域网,广域网。3.统一的网络地址分配方案,使得整个TCP/IP设备在网中都具有唯一的地址。4.标准化的高层协议,可以提供多种可靠的用户服务。缺点:1.没有清楚地区分哪些是规范、哪些是现实。2.TCP/IP模型的主机-网路层并不是常规意义上的一层,它定义了网络层与数据链路层接口。接口和层区别是非常重要的,而TCP/IP模型却没有把它们区分开来。
      每个连接都要建立PCB的,都要消耗2RTT,但是,他说的并行应该和操作系统上的并行是一个概念,就是这一时刻占用信道的,只可能是一个TCP,但是,一段时间间隔内大家轮流占用了信道,是并行的,没有让信浪费,在单位时间内信息量更大了,不需要一个TCP释放后才建立另一个TCP,这样,利用率太低, 另外在发起tcp连接的第一个RTT过程中,客户方也可以再发起 tcp 连接请求,你说的10连接2RTT, 应该是正确的,但是准确的应该是大于2RTT。因为微观上是串行的。
      用图表示应该这样吧,4个并行tcp
      你的是不是最近刚更新了最新的固件?我觉得应该是固件的BUG ,我的御PRo 更新了最新的固件後,今天也现了同样问题,不过我没有飞到很高,几十米的样子,提示断开后,我点了自动返航,就飞回来了。
      这个道理就好像你上网一样啊,打开一个网站和同时打开200个网站你觉得速度一样吗?你只是请求了,还要人家服务器那边应答才行的
      什么是并行的TCP连接?

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/58936.html

          热门文章

          文章分类