TCP/IP协议
TCP/IP协议是一个协议集合,HTTP协议,IP协议,TCP协议,DNS协议等都属于TCP/IP协议。 TCP/IP协议是为了保证全球亿万台计算机能准确、无误的通信。TCP/IP中分层是很重要的概念,每层完成不同的功能。分为应用层,传输层,网络层,数据链路层。分层的目的是为了层级之间的功能相对队里,互不影响。TCP/IP通信数据流HTTP是基于TCP/IP协议的应用层协议,它不涉及数据包的传输,主要规定了客户端和服务器端的通信协议,默认端口是80IP协议的作用是将各种数据包准确无误的传递给对方,其中重要的条件是IP地址和MAC地址。由于IP地址是稀有资源,不可能每个人都有一个IP地址,所以我们通常的IP地址都是路由器给我们生成的IP地址,路由器里面会记录我们的MAC地址,而MAC地址是唯一的。IP实现的两个基本功能:寻址和分段寻址功能就是原地址和目标地址之间建立连接,需要使用ARP协议(Address Resolution Protocol),IP协议就是找到一条连接两台电脑的路径,从而完成数据的交互。地址解析协议,ARP协议,是根据IP地址获取物理地址的一个TCP/IP协议。IP间的通信依赖MAC地址。在进行中转时,会利用下一站中转设备的MAC地址来搜索下一个中转目标,这时就会采用ARP协议,根据通讯放的IP地址就可以反查出对应的MAC地址,从而进行精确的定位,完成寻址的功能。分段功能是为了适应不同网络对包的要求,对数据进行重新组装。TCP协议就是将数据包安全的给对方,IP协议是找到对方的详细地址,分工不同,互不冲突。TCP属于传输层,提供可靠的字节流服务。字节流类似于数据切割,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。可靠的传输服务是指,能够把数据准确可靠的传给对方。TCP协议为了更容易的传输大数据才将数据进行分割,而且TCP协议能够确认数据最终是否送达对方。为了确保信息准确无误的送达,TCP采用了三次握手策略(three-way-handshaking)。TCP建立连接时需要三次握手,在关闭连接时还需要四次握手。 这部分占用了http请求过程的中大量时间,在高并发时,可以考虑优化这部分。和HTTP协议一样是处于应用层的服务,提供域名到IP地址之间的解析服务。1、可缓存:get请求能缓存,post请求不能;响应报文的状态码是可缓存的,包括:200, 203, 204, 206, 300, 301, 404, 405, 410, 414, and 501。2、get是获取资源,post用于传输实体主体。3、参数:get请求的参数在url里面,会被浏览器保存历史记录,post的请求数据在数据包里面,同时因为url只支持ASCII码,因此get的参数如果存在汉字就要先进性编码,post请求支持更多的编码类型且不对数据类型限制;post传输的数据比get的多;url的长度有限制,会影响get请求;4、安全的HTTP方法不会改变服务器状态,也就说是只读的。所以get是安全的,post不是安全的。5、幂等性:get是幂等的,post不是幂等的。6、XMLHttpRequest: 在使用XMLHttpRequest时,post请求发送时,浏览器会先发送header再发送Data;get请求header和data一起发送。XMLHttpRequest 是一个 API,它为客户端提供了在客户端和服务器之间传输数据的功能。它提供了一个通过 URL 来获取数据的简单方式,并且不会使整个页面刷新。这使得网页只更新一部分页面而不会打扰到用户。XMLHttpRequest 在 AJAX 中被大量使用。200 OK,表示从客户端发来的请求在服务器端被正确处理。204 No content,表示请求成功,但是想要报文不包含实体的主体部分。206 Partial Content ,进行范围请求。301 moved permanently 永久性重定向,表示自愿一杯分配了新的URL。302 found 临时性重定向,表示自愿临时被分配了新的URL。303 see other 表示资源存在着另一个URL,应使用GET方法获取资源。和 302 有着相同的功能,但是 303 明确要求客户端应该采用 GET 方法获取资源。注:虽然 HTTP 协议规定 301、302 状态下重定向时不允许把 POST 方法改成 GET 方法,但是大多数浏览器都会在 301、302 和 303 状态下的重定向把 POST 方法改成 GET 方法。304 not modified 表示服务器允许访问资源,但因发生请求未满足条件的情况。307 temporary redirect,临时重定向,和302含义相同。但是 307 要求浏览器不会把重定向请求的 POST 方法改成 GET 方法。400 bad request 请求报文存在语法错误401 unauthorized 表示没有权限403 forbidden 表示对请求资源的访问被服务器拒绝404 not found 表示在服务器上没有找到请求的资源500 internal sever error 表示服务器端在执行请求时错误503 service unavailable 表明服务器暂时处于超负载或正在停机维护,无法处理请求HTTPS是HTTP建立在SSL/TLS安全协议上的。在IOS中,客户端本地会存有CA证书,在HTTPS请求时,会首先向服务器获取公钥,获得公钥后会使用本地的CA证书验证公钥的正确性,然后通过正确的公钥加密信息发送给服务器,服务器会使用私钥解密信息。SSL/TSL握手阶段分为五步:HTTP和HTTPS的对比:HTTP:无状态,协议对客户端没有状态存储;无连接,每次请求都会和服务器重新建立连接;基于请求和响应,由客户端发起,服务端响应;简单快速,灵活;使用明文,请求和响应不会对通信方进行确认,无法保证数据的完整性。 HTTPS:内容加密,采用混合加密技术,中间者无法直接查看明文内容;验证身份,通过证书认真客户端访问的是自己的服务器;保护数据完整性,放置传输的内容被中间人冒充或篡改。

TCP报文结构和功能简析
TCP:传输、控制、协议。TCP与UDP最大却别就在那个C上面,它充分实现了数据传输时各种控制功能。可以进行丢包重发控制,还可以对次序乱掉的数据包进行顺序控制,还能控制传输流量,这些是UDP中没有的。即T C P 提供一种面向连接的、可靠的字节流服务。TCP是一中面向有链接的协议,只有在确认对端存在的时候,才会发送分数据,从而也可以控制通信流量的浪费。什么是可靠的传输:不丢包、不损坏、不乱序、不重复。TCP通过校验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制来实现可靠传输。接收端查询就收数据TCP首部中的序号和数据长度。将自己下一步应该接受的序列号作为确认应答返送回去。就这样,通过序列号和确认应答,TCP实现可靠传输。一般使用TCP首部用于控制的字段来管理连接。一个连接的建立和断开,正常过程中,至少需要来回共7个包才能完成。TCP首部的数据结构如图所示:TCP包首部为了便于理解,忽略选项部分,固定首部通常为20个字节,将按作用分类分析。前4个字节来标识了发送方的端口号和接收方的端口号,即该数据包由谁发送,由谁接收。前2个字节标识源端口号,紧接着2个字节标识目的端口号。即发送方:(11111111,1111111)2= (65535)10,除去0~1023.即接收方:(11111111,1111111)2= (65535)10,除去0~1023.TCP是面向字节流的。在一个TCP连接中传送的字节流中的每一个字节都按顺序编号。整个要传送的字节流的起始序号必须在连接建立时设置。首部中的序号字段值则是指的是本报文段所发送的数据的第一个字节的序号。长度为4字节,序号是32bit的无符号数,序号到达232- 1后又从0开始。ack:确认序号,即确认字节的序号,更确切地说,是发送确认的一端所期望收到的下一个序号。所谓的发送确认的一端就是将确认信息发出的一端。比如第二次握手的S端就是发送确认的一端。确认序号为上次接收的最后一个字节序号加1.只有确认标志位(ACK)为1的时候,确认序号才有效。也叫首部长度,占4个bit,它指出TCP报文段的数据起始处距离TCP报文段的起始处有多远。TCP报文结构由于首部中还有长度不确定的选项字段,因此数据偏移字段是必要的。“首部长度”是4位二进制数,单位是32位字,能表示的最大十进制数字是15。(1111)2=(15)10,即是15个32位,一个32位是4个字节,因此数据偏移的最大值是154=60个字节,这也是TCP首部的最大字节。因为固定首部的存在,数据偏移的值最小为20个字节,因此选项长度不能超过40字节*(减去20个字节的固定首部)。占6位,保留为今后使用,但目前应置为0。当URG=1时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快发送(相当于高优先级的数据),而不要按原来的排队顺序来传送。例如,已经发送了很长的一个程序要在远地的主机上运行。但后来发现了一些问题,需要取消该程序的运行,因此用户从键盘发出中断命令。如果不使用紧急数据,那么这两个字符将存储在接收TCP的缓存末尾。只有在所有的数据被处理完毕后这两个字符才被交付接收方的应用进程。这样做就浪费了很多时间。当URG置为1时,应用进程就告诉TCP有紧急数据要传送。于是TCP就把紧急数据插入到本报文段数据的最前面,而在紧急数据后面的数据仍然是普通数据。这时要与首部中紧急指针(Urgent Pointer)字段配合使用。仅当ACK = 1时确认号字段才有效,当ACK = 0时确认号无效。TCP规定,在连接建立后所有的传送的报文段都必须把ACK置为1。当两个应用进程进行交互式的通信时,有时在一端的应用进程希望在键入一个命令后立即就能收到对方的响应。在这种情况下,TCP就可以使用推送(push)操作。发送方TCP把PSH置为1,并立即创建一个报文段发送出去。接收方TCP收到PSH=1的报文段,就尽快地(即“推送”向前)交付接收应用进程。而不用再等到整个缓存都填满了后再向上交付。当RST=1时,表明TCP连接中出现了严重错误(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立传输连接。RST置为1还用来拒绝一个非法的报文段或拒绝打开一个连接。在连接建立时用来同步序号。当SYN=1而ACK=0时,表明这是一个连接请求报文段。对方若同意建立连接,则应在响应的报文段中使SYN=1和ACK=1。因此SYN=1就表示这是一个连接请求或连接接受报文。用来释放一个连接。当FIN=1时,表明此报文段的发送发的数据已发送完毕,并要求释放运输连接。占2字节。窗口值是(0,216-1)之间的整数。窗口指的是发送本报文段的一方的接受窗口(而不是自己的发送窗口),窗口大小是给对方用的。窗口值告诉对方:从本报文段首部中的确认号算起,接收方目前允许对方一次发送的数据量(以字节为单位)。之所以要有这个限制,是因为接收方的数据缓存空间是有限的。总之,窗口值作为接收方让发送方设置其发送窗口的依据。例如,A发送了一个报文段,其确认号是3000,窗口字段是1000.这就是告诉对方B:“从3000算起,A接收缓存空间还可接受1000个字节数据,字节序号是3000-3999”,可以想象到河道的阀门。总之:窗口字段明确指出了现在允许对方发送的数据量。窗口值经常在动态变化。占2字节。检验和字段检验的范围包括首部和数据这两部分。和UDP用户数据报一样,在计算检验和时,要在TCP报文段的前面加上12字节的伪首部。伪首部的格式和UDP用户数据报的伪首部一样。但应把伪首部第4个字段中的17改为6(TCP的协议号是6);把第5字段中的UDP中的长度改为TCP长度。接收方收到此报文段后,仍要加上这个伪首部来计算检验和。若使用TPv6,则相应的伪首部也要改变。占2字节。紧急指针仅在URG=1时才有意义,它指出本报文段中的紧急数据的字节数(紧急数据结束后就是普通数据) 。因此,在紧急指针指出了紧急数据的末尾在报文段中的位置。当所有紧急数据都处理完时,TCP就告诉应用程序恢复到正常操作。值得注意的是,即使窗口为0时也可以发送紧急数据。长度可变,最长可达40个字节。当没有使用“选项”时,TCP的首部长度是20字节。最大报文段长度(MSS:Maximum Segment Size)表示TCP传往另一端的最大块数据的长度。当一个连接建立时,连接的双方都要通告各自的MSS。当建立一个连接时,每一方都有用于通告它期望接收的MSS选项(MSS选项只能出现在SYN报文段中),如果一方不接收来自另一方的MSS值,则MSS就定为默认值536字节(这个默认值允许20字节的IP首部和20字节的TCP首部以适合576字节IP数据报) 。为什么要规定一个最大报文长度MSS呢?这并不是考虑接受方的接收缓存可能存放不下TCP报文段中的数据。实际上,MSS与接收窗口值没有关系。我们知道,TCP报文段的数据部分,至少要加上40字节的首部(TCP首部20字节和IP首部20字节,这里还没有考虑首部中的可选部分)才能组装成一个IP数据报。若选择较小的MSS长度,网络的利用率就降低。设想在极端情况下,当TCP报文段只含有1字节的数据时,在IP层传输的数据报的开销至少有40字节(包括TCP报文段的首部和IP数据报的首部)。这样,对网络的利用率就不会超过1/41。到了数据链路层还要加上一些开销。但反过来,若TCP报文段非常长,那么在IP层传输时就有可能要分解成多个短数据报片。在终点要把收到的各个短数据报片组成成原来的TCP报文段,当传输出错时还要进行重传,这些也都会使开销增大。因此,MSS应尽可能大些,只要在IP层传输时不需要分片就行。由于IP数据报所经历的路径是动态变化的,因此在这条路径上确定的不需要的分片的MSS,如果改走另一条路径就可能需要进行分片。因此最佳的MSS是很难确定的。在连接过程中,双方都把自己能够支持的MSS写入这一字段,以后就按照这个数值传输数据,两个传送方向可以有不同的MSS值。若主机未填写这一项,则MSS的默认值是536字节长。因此,所有在互联网上的主机都应该接受的报文段长度是536+20(固定首部长度)=556字节。后来又增加了几个选项如窗口扩大选项、时间戳选项等。窗口扩大选项是为了扩大窗口。我们知道,TCP首部中窗口字段长度是16位,因此最大的窗口大小为64K字节。虽然这对早期的网络是足够用的,但对于包含卫星信道的网络,传播时延和宽带都很大,要获得高吞吐量需要更大的窗口大小。窗口扩大选项占3字节,其中有一个字节表示移位值S。新的窗口值等于TCP首部中的窗口位数从16增大到(16+S)。移位值允许使用的最大值是14,相当于窗口最大值增大到2(16+14)-1=230-1。窗口扩大选项可以在双方初始建立TCP连接时进行协商。如果连接的某一端实现了窗口扩大,当它不再需要扩大其窗口时,可发送S=0选项,使窗口大小回到16。时间戳选项占10字节,其中最主要的字段是时间戳字段(4字节)和时间戳回送回答字段(4字节)。时间戳选项有以下两个概念:第一、 用来计算往返时间RTT。发送方在发送报文段时把当前时钟的时间值放入时间戳字段,接收方在确认该报文段时把时间戳字段复制到时间戳回送回答字段。因此,发送方在收到确认报文后,可以准确地计算出RTT来。第二、 用于处理TCP序号超过232的情况,这又称为防止序号绕回PAWS。我们知道,TCP报文段的序号只有32位,而每增加232个序号就会重复使用原来用过的序号。当使用高速网络时,在一次TCP连接的数据传送中序号很可能被重复使用。例如,当使用1.5Mbit/s的速度发送报文段时,序号重复要6小时以上。但若用2.5Gbit/s的速率发送报文段,则不到14秒钟序号就会重复。为了使接收方能够把新的报文段和迟到很久的报文段区分开,则可以在报文段中加上这种时间戳。从功能和性能的角度去理解三次握手建立连接第一次:C向S发送一个建立连接的请求。此过程中携带一些报文属性信息,这些信息,存在于报文首部,有初始化用的信息,比如,有用于认证的信息。初始化信息:如报文序列号、SYN:TCP在数据通信之前,通过TCP首部发送的一个SYN标志位,作为建立连接的请求等待接收方确认应答。如果S发来确认应答,则认为可以进行数据通信,否则,就不能进行通信。TCP规定:****SYN=1的报文段不能携带数据,但是要消耗掉一个序号:seq=x。这个时候C进入SYN-SENT(同步已发送)状态。第二次:S收到C请求后,如果同意建立连接,则向C返回确认信息:将SYN、ACK都置1,确认号为ack=seq+1(seq来自客户端),并携带自己的初始化,同时用于认证的信息S。同理:SYN=1的报文段不能携带数据,但是要消耗掉一个序号:seq=y。这个时候S进入SYN-RCVD(同步已接收)状态。C收到S返回的确认信息后,进入ESTABLISHED(已建立连接)的状态,第三次:C收到S返回的确认信息后,向S再一次发送确认报文。ACK置为1,确认号ack=seq+1(seq来自S),自己的seq=x+1。TCP规定:ACK报文可以携带数据。但是,如果不携带数据,则不消耗序号,这时,下一数据报文段的序号仍是seq=x+1。服务器收到客户端返回的确认信息后,也进入ESTABLISHED(已建立连接)的状态,从功能角度去考虑前两次握手,从性能的角度去理解为什么需要第三次握手。有第三次,是考虑到一种错误情况:假设C发了一请求建立连接的报文,长时间未收到S的确认报文,则C会重发,这个时候S与之建立连接、完成数据通信、关闭了连接,这个时候C第一发出的请求建立连接的报文到达了S,S则会等待C发送数据,实际上C已经CLOSED了,S就一直在这等待,浪费资源,确切地说,应该是至少四次数据交互才能实现一个连接的彻底关闭。关闭连接,需要四个报文来指示关闭。TCP是全双工通信的,所以在一端发送数据完毕后,还具有接收另一端的数据的能力,这就所谓的半关闭。四次挥手举个例子:如果C的数据已经发送完毕,C是不能立即关闭的,因为建立连接的通信双方是平等的。C首先告诉S:“数据发送完毕“,这个消息在TCP报文的首部由FIN来标识,让S知道C是准备断开连接了。这是第一次挥手。S收到C发来的FIN标识的报文后,要给C端恢复一个确认FIN的消息,告诉C说,知道你的数据发完了。这是第二次挥手。这个时候,如果S端的数据也发送完毕了,就给C发一个FIN=1报文。这是第三次挥手。C收到S发来的FIN标识的报文后,要给S端恢复一个确认FIN的消息,告诉C说,知道你的数据发完了。这是第四次挥手。然后就彻底断开连接了。TCP的状态变迁图

TCP协议详解
这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。TCP/IP中的协议以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:1. IP网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。2. TCP如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。3.UDPUDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。4.ICMPICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。5. TCP和UDP的端口结构TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:源IP地址发送包的IP地址。目的IP地址 接收包的IP地址。源端口 源系统上的连接的端口。目的端口目的系统上的连接的端口。 端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。
http://zhidao.baidu.com/question/13174752.html 这里看

什么是TCP协议,它的主要特点是什么
TCP/IP协议是现在互联网的基础。TCP/IP协议主要有如下的特点。 1、TCP/IP协议是一个开放的协议标准,所有人都可以免费试用,并且是独立于硬件和操作系统的。2、TCP/IP协议是不区分网络硬件的,它在局域网,广域网和互联网中都被广泛使用。3、TCP/IP协议使用统一的网络地址分配的方案。网络中的每台电脑都具有唯一的IP地址。 4、TCP/IP协议是一个标准的高层协议,拥有极高的可靠性,可以为用户提供可靠的服务。
TCP/IP协议是现在互联网的基础。TCP/IP协议主要有如下的特点。 1、TCP/IP协议是一个开放的协议标准,所有人都可以免费试用,并且是独立于硬件和操作系统的。2、TCP/IP协议是不区分网络硬件的,它在局域网,广域网和互联网中都被广泛使用。3、TCP/IP协议使用统一的网络地址分配的方案。网络中的每台电脑都具有唯一的IP地址。 4、TCP/IP协议是一个标准的高层协议,拥有极高的可靠性,可以为用户提供可靠的服务。
TCP/IP协议bai是du现在互联网的基础。TCP/IP协议主要有如下的特点zhi。 1、TCP/IP协议是一个开放dao的协议标准,所有人zhuan都可以免费shu试用,并且是独立于硬件和操作系统的。2、TCP/IP协议是不区分网络硬件的,它在局域网,广域网和互联网中都被广泛使用。3、TCP/IP协议使用统一的网络地址分配的方案。网络中的每台电脑都具有唯一的IP地址。 4、TCP/IP协议是一个标准的高层协议,拥有极高的可靠性,可以为用户提供可靠的服务。

分析tcp协议原理
原理四个主要方面:一、tcp协议之连接建立、断开二、tcp协议之超时重传三、tcp协议之窗口管理四、tcp协议之拥塞控制TCP是一种面向有连接的协议,也就是说必须确认对方存在时才能发送数据而TCP通过检验和、序列号、确认应答、重发控制、连接管理、窗口控制等机制来实现可靠传输。1. 目的:TCP三次握手是客户端和服务器总共发三个数据包,通过三个数据包来确认主动发送能力和被动接收能力是否正常。2. 实质:通过指定的四元组(源地址、源端口、目标地址、目标端口)来建立TCP连接,同步双方各自发送序列号seq和确认号ACK,同时也会交换窗口大小信息三次握手过程的实现方式就是交换序列号seq。随便在网上找个地址,如果通过域名想看ip地址,可以ping下看连接。① 192.168.3.7发送[SYN]报文段至222.169.228.146,告知序列号x为0。② 222.169.228.146发送[SYN,ACK]报文段至192.168.3.7,告知序列号y为0,确认号ACK为x+1=1。③192.168.3.7发送[ACK]报文段至222.169.228.146,告知确认号ACK为y+1=1。报文段中的其他参数:MSS=1460:允许从对方接收到的最大报文段,图中为1460字节(指承载的数据,不包含报文段的头部)。win=8192:滑动窗口的大小为8192字节。SACK_PERM=1:开启选择确认。为什么会使用SACK:tcp确认方式不是一段报文段一确认,而是采用累积确认方式。服务器接收到的报文段无序所以序列号也是不连续,服务器的接收队列会出现空洞情况。为了解决空洞,提前了解当前空洞,应对丢失遗漏,采取重传。提前了解方式就是通过SACK选项信息,SACK信息包含接收方已经成功接收的数据块的序列号范围。而SACK_PERM字段为1表明,选择开启了SACK功能。网络层可能会出现丢失、重复、乱序的问题,tcp是提供可靠的数据传输服务的,为了保证数据的正确性,tcp协议会重传它认为的已经丢失的包。重传两种机制:一种基于时间重传,一种基于确认报文段提供的信息重传。RTT:数据完全发送完(完成最后一个比特推送到数据链路上)到收到确认信号的时间(往返时间)。RTO:重传超时时间(tcp发送数据时设置一个计时器,当计时器超时没有收到数据确认信息,引发超时而重传,判断的标准就是RTO)。思考:发送序列号为1、2、3、4这4个报文段,但是出现了序列号2报文段丢失,怎么办?发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端当收到序列号为3的报文(2已丢失),发送ack为4的确认报文,发送端正等待ack为2的确认报文,面对跳跃的报文,那么发送端会一直等待,直到超出指定时间,重传报文2。为什么不跳跃确认呢?tcp是累积确认方式,如果确认报文3,那么意味着报文1和报文2都已经成功接收。超时处理方式:思考:上面计时器是以时间为标准重传,那么可以通过确认报文的次数来决定重传。发送端接收到seq1的确认报文(ACK=2)后,等待seq=2的确认报文。接收端收到报文3、4、5,但是没收到报文2,那么接收端发送三个ACK为2的确认报文,发送端收到这个三个确认报文,重传报文2。思考:如果快速重传中丢失包的地方很多(报文2,报文,7,报文9,报文30,报文300....),那么需要从头到尾都重传,这很蛋疼?思考:SACK重传对于接收到重复数据段怎样运作没有明确规定,通过DSACK重传可以让发送方知道哪些数据被重复接收了,而且明确是什么原因造成的。发送端没有收到100-199的ACK包,超过指定时间,重传报文。接收端都已经收到200-299的发送报文了,又来100-199是重复报文。再向发送端发送一个ACK报文,设置SACK 100-199,告知发送端,已经收到了100-199包,只是回应ACK包丢失。发送端发送包100-199,由于网络延迟,一直没有达到接收端。接收端连续发送三个ACK 200确认报文,触发快速重传,发送端收到了ACK 500的确认报文,表明之前的报文都已经交付成功。接收端又收到了延迟的报文100-199,再次向发送端发送一个SACK 100-199的ACK 500报文。发送端发现这是重复报文,判断为网络延迟造成的。计时器重传:根据超时,重传。快速重传:根据接收三次相同ACK报文,重传。选择确认重传:根据接收端提供的SACK信息,重传。DSACK重传:根据重复报文,明确丢失ACK报文还是网络延迟。Category1:已发送且已确认(已经收到ACK报文的数据)。Category2:已发送但未收到确认。Category3:即将发送。Category4:窗口移动前都不能发送。可用窗口:46-51字节。发送窗口:32-51字节。RCV.NXT:左边界RCV.WND:接收窗口RCV.NXT+RCV.WND:右边界接收端接收到序列号小于左边界,那么被认为重复数据而被丢弃。接收端接收到序列号大于右边界,那么被认为超出处理范围,丢弃。注意:tcp协议为累积ACK结构,只有当达到数据序列号等于左边界时,数据才不会被丢弃。如果窗口更新ACK丢失,对于发送端,窗口左边界右移,已发送数据得到ACK确认之后,左右边界距离减小,发送端窗口会减小,当左右边界相等时,称为零窗口。零窗口之后:接收端发送窗口更新能会发生窗口更新ACK丢失。<>解释:TCP是通过接收端的通告窗口来实现流量控制的,通告窗口指示了接收端可接收的数据量。当窗口值变为0时,可以有效阻止发送端继续发送,直到窗口大小恢复为非零值。当接收端重新获得可用空间时,会给发送端传输一个窗口更新告知其可继续发送数据。这样的窗口更新通常都不包含数据(纯ACK),接收端向发送端发送的窗口更新ACK可能丢失。结果双方处于等待状态,发生死锁。解决方案:发送端会采用一个持续计时器间歇性地查询接收端,看其窗口是否已增长。触发窗口探测,强制要求接收端返回ACK。发送几次探测,窗口大小还是0,那么断开连接。出现SWS的情况:① 接收端通告窗口太小。② 发送端发送的数据太小。解决方案:① 针对接收端:不应通告小窗口值[RFC1122]描述:在窗口可增至一个全长的报文段(接收端MSS)或者接收端缓存空间的一半(取两者中较小值)之前,不能通告比当前窗口更大的窗口值。标准:min(MSS , 缓存空间/2)。② 针对发送端:不应发送小的报文至少满足以下其一:(1)可以发送MSS字节的报文。window size >= MSS或者 数据大小>=MSS(2)数据段长度>=接收端通告过的最大窗口值的一半,才可以发送。收到之前发送的数据的ack回包,再发送数据,否则一直攒数据。(3) -1 没有未经确认的在传数据或者-2 连接禁用Nagle算法。tcp基于ACK数据包中的通告窗口大小字段实现了流量控制。当网络大规模通信负载而瘫痪,默认网络进入拥塞状态,减缓tcp的传输。发送方和接收方被要求承担超负荷的通信任务时,采取降低发送速率或者最终丢弃部分数据的方法。反映网络传输能力的变量称为拥塞窗口(cwnd)。通告窗口(awnd)。发送窗口swnd=min(cwnd,awnd)目的:tcp在用拥塞避免算法探寻更多可用带宽之前得到cwnd值,帮助tcp建立ACK时钟。[RFC5681] :在传输初始阶段,由于未知网络传输能力,需要缓慢探测可用传输资源,防止短时间内大量数据注入导致拥塞。慢启动算法针对这一问题而设计。在数据传输之初或者重传计时器检测到丢包后,需要执行慢启动。拥塞窗口值:每收到一个ACK值,cwnd扩充一倍。所以假设没有丢包且每个数据包都有相应ACK值,在k轮后swnd=,成指数增长。SMSS是发送方的最大段大小。慢启动阶段,cwnd会指数增长,很快,帮助确立一个慢启动阙值(ssthresh)。有了阙值,tcp会进入拥塞避免阶段,cwnd每次增长值近似于成功传输的数据段大小,成线性增长。实现公式:cwnd+=SMSS*SMSS/cwnd刚建立连接使用慢启动算法,初始窗口为4,收到一次ACK后,cwnd变为8,再收到一次ACK后,cwnd变为16,依次继续,32、64,达到阙值ssthresh为64。开始使用拥塞避免算法,设置ssthresh为ssthresh/2,值为32。重新从初始窗口4,线性递增到ssthresh=32。当cwnd < ssthresh时,使用慢启动算法当cwnd > ssthresh时,使用拥塞避免算法应用快速恢复算法时机:启动快速重传且正常未失序ACK段达到之前。启动快速恢复算法。实现过程:① 将ssthresh设置为1/2 cwnd,将cwnd设置为ssthresh+3*SMSS。② 每接收一个重复ACK,cwnd值暂时增加1 SMSS。③当接收到新数据ACK后,将cwnd设置为ssthresh。参考:<>

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/59092.html。