tcp三次握手的报文(以下什么报文是tcp三次握手的首包)

      最后更新:2023-03-24 11:43:13 手机定位技术交流文章

      TCP为什么需要3次握手与4次挥手

      三次握手(建立连接) 1)客户端发送一个带SYN标志的TCP报文到服务器,这是第1个报文;2)服务端回应客户端,是第2个报文,同时带有ACK标志和SYN标志,以此回应第1步,SYN用于询问客户端是否准备好进行通讯;3)客户再次回应服务端一个ACK报文,是第3个报文。为什么要进行3次握手?当服务端的LISTEN状态下的SOCKET收到SYN报文的请求后,可以把ACK和SYN放在1个报文中来发送,其中ACK的作用是应答,而SYN的作用是同步。四次挥手(连接终止协议)1)TCP客户端发哦是那个一个FIN,用于关闭客户发送到服务器的数据传送;2)服务器收到这个FIN,返回一个ACK,和SYN一样,一个FIN将占用一个序号;3)服务器关闭客户端的连接,发送FIN给客户端;4)客户端返回ACK报文,并将确认序号设置为收到的序号+1。为什么要进行4次挥手? 在TCP连接时,是将SYN和ACK一起发送的,但为什么挥手却没有一起发送呢?因为TCP是全双工模式,接收到FIN时将没有数据再发来,但还是可以继续发送数据。
      安全考虑,需要通信双方确认
      TCP为什么需要3次握手与4次挥手

      TCP和SSL 的三次握手和四次挥手

      第一次握手:客户端向服务端发送 SYN 报文,服务端确认接收了 SYN 报文。 第二次握手:服务端在确认接收了 SYN 报文之后,会返回向客户端发送 SYN 报文和 ACK 确认报文。第三次握手:客户端接收到 SYN 报文了 ACK 报文 之后双方就建立起了连接,可以好好玩耍了。第一次挥手:客户端向服务端发送数据,发送完成之后会发送一个 FIN 报文,告诉服务端数据发送完毕。第二次挥手:服务端接收到 FIN 报文之后,将 ACK 报文返回给客户端,告诉客户端(服务端)已经接收到数据。第三次挥手:服务端处理完数据之后再发送一个 FIN 报文给客户端,告诉客户端(服务端)已经处理完毕。 第四次挥手:客户端接收到服务端发来的 FIN 报文之后就能确认这次的数据传输完成。可以关闭本次数据传输连接了。
      TCP和SSL 的三次握手和四次挥手

      TCP三次握手原理

      本文主要内容1、TCP数据包格式TCP数据包格式如下:注意到中间还有几个标志位:数据包格式当中,最重要的是理解序号和确认序号。TCP为什么是稳定可靠的,与序号与确认序号这套机制紧密相关,这也是TCP的精髓。2、TCP的三次握手众所周知,TCP协议是可靠的,而UDP协议是不可靠的。在一些场景中必须用TCP,比如说用户登录,必须给出明确答复是否登录成功等。而有些场景中,用户是否接收到数据则不那么关键,比如网络游戏当中,玩家射出一颗子弹,另外的玩家是否看到,完全取决于当前网络环境,如果网络卡顿,就会有玩家已经被射杀,但界面仍然刷新不出来的情况。这种情形适合UDP。为了保证TCP协议可靠,在建立连接之时就要得到保证。最初两端的TCP进程都处于CLOSED关闭状态,A主动打开连接,而B被动打开连接。(A、B关闭状态CLOSED——B收听状态LISTEN——A同步已发送状态SYN-SENT——B同步收到状态SYN-RCVD——A、B连接已建立状态ESTABLISHED)B服务器进程就处于LISTEN(收听)状态,等待客户的连接请求。若有,则作出响应。3、TCP的传输和确认TCP 传输的可靠性,可以用一句话归结:每收到对方数据,就发送 ACK 进行确定,发送方发送后没有收到 ACK 就隔一段时间重发。就是 A 向 B 发送消息(下面将 TCP 的报文直接看做是消息,消息一词跟 TCP 报文混用),B 收到消息后需要向 A 发送 ACK。这个 ACK 相当于返回结果,没有返回结果,A 就重新发送消息。归纳起来,A 有 3 种消息需要确认。另外 A 也可以发送 RST 消息,代表出错了。出错消息不需要确认。RST 也可以当成返回接口,替代正常的 ACK。返回 ACK,表示消息发送并处理成功,返回 RST 表示消息处理失败。因为通过网络传输,还有第三种结果,就是不确定成功失败。这样归纳起来。就有三种返回结果。这两种具体情况,A 根本识别不了,都只能重发。4、TCP的序号和确认序号A 向 B 发送消息,假如同时发送 a、b、c、d 消息,因为通过网络,这些消息的顺序并非固定的。而 B 返回 ACK 结果,这样就有一个问题,这个结果到底对应了哪个消息?另外当 A 超时重发后,原来的消息延时一段时候,又重新到达了 B,这样 B 就收到两条相同的消息,那么 B 怎么确定这两条消息是相同的呢?为了解决这个对应问题,每一条消息都需要有一个编号,返回结果也应该有一个编号。TCP 的序号可以看成是发送消息的编号,确认序号可以看成是返回结果的编号。有了编号,重复的消息才可以忽略,返回结果(ACK)才可以跟消息对应起来。当建立连接的时候,TCP 选定一个初始序号,之后每发送一个数据包(消息),就将序号递增,保证每发送不同的数据包,数据包的序号都是不同的。TCP 是这样处理的:SYN、FIN 也需要递增序号。不然 A 向 B 重发多个 SYN 或者 FIN, B 根本判断不了 SYN 是否相同,这样就不可以忽略重复的数据包了。当 TCP 发送 ACK 时,相当于返回结果,需要带有确认序号,以便跟发送的消息对应起来。当发送包编号为 a,递增长度为 len。其中 SYN 和 FIN 可以看成是递增长度为 1。这条消息可以这样表示为:现在来回顾三次握手过程。 A 发送序列号x给 B , B 回复 A 确认号 x+ 1,同时发送序列号 y, A 接收到 B 的回复后,再回复确认号 y+1,同时发送序列号 x+1。给对方的回复一定是接收到的序号加1(或者是数据长度),这样对方才能知道我已经收到了,这样才能保证TCP是可靠的。
      TCP三次握手原理

      TCP和UDP的区别(三次握手四次挥手全过程图解)

      首先OSI有七层模型,从上往下依次是应用层、表示层、会话层、传输层、网络层、数据链路层、物理层,而TCP/UDP则属于传输层1、TCP和UDP的区别一般我们进行网络通信时,会使用TCP/UDP进行通信,那么我们首先介绍下TCP和UDP到底有什么区别,应用场景又有什么区别?TCP是一种面向连接,可靠稳定的传输协议,建立连接需要经历三次握手,握手成功才可通信,但是速度比较慢,效率比较低,容易被DOS,DDOS攻击。UDP是一种面向无连接,不可靠的传输协议,会直接建立连接,速度快,没有三次握手的机制,所以会相对安全,但是UDP还是可能会被flood攻击,在网络不好的情况,容易发生丢包。2、那么TCP又是如何准确无误的传输数据的呢?当客户端与服务器通过三次握手建立了TCP连接过后,当数据传送完毕,相应的就要断开TCP连接了,于是就有了四次分手的步骤。TCP头部:ACK : TCP协议规定,只有ACK=1时有效,也规定连接建立后所有发送的报文的ACK必须为1SYN:当SYN为1时,表明此数据包是一个同步包,用来表明正在请求连接。可能会形成死锁。假设客户端给服务器发送了一个连接请求报文,服务端成功接收并给客户端发送了确认应答报文,此时服务端并不能确认该应答报文是否成功到了客户端,但因为两次握手,所以这时候服务端就处于成功连接的状态了,并给客户端发送数据。如果客户端未收到服务端的应答报文,则不知道服务器是否确认好建立连接,甚至不知道自己发送给服务器的报文是否成功抵达,此时客户端会认为连接并未成功建立,会忽略服务端发送过来的任何数据。而服务端发送的数据未得到相应超时时,会重复发送同样的数据,这样就形成了死锁。(1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。(2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。(3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。(4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,我们也未必全部数据都发送给对方了,所以我们不可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,我们的ACK和FIN一般都会分开发送。
      TCP和UDP的区别(三次握手四次挥手全过程图解)

      动画图解TCP三次握手

      TCP 三次握手过程不管是对于本科计算机网络学习还是考研考计网的同学来说都是必考的一个,所以要掌握 TCP 整个握手的过程显得尤为重要。 一、TCP 是什么?TCP是Transmission Control Protocol(传输控制协议) 的简称,它提供一种面向连接的、可靠的、基于字节流的传输层通信协议。在学习 TCP 握手过程之前,我们首先要了解 TCP 报文头部的一些标志信息,因为在 TCP 握手的过程中,要用到TCP报文头部的一些信息。TCP头部1.1 源端口和目的端口对于端口,我们可以这么理解:我们可以想象发送方很多的窗户,接收方也有很多的窗户,这些窗口都标有不同的端口号,源端口号和目的端口号就分别代表从哪个规定的串口发送到对方接收的窗口。不同的应用程序都有着不同的端口,比如HTTP端口80,SMTP端口25等。1.2 序号TCP是面向字节流的,在一个TCP连接中传送的字节流中的每一个字节都按顺序编号。接收端根据这个编号进行确认,保证分割的数据段在原始数据包的位置。通俗一点的讲,每个字段在传送中用序列号来标记自己位置的,而这个字段就是用来完成双方传输中确保字段原始位置是按照传输顺序的。(发送方是数据是怎样一个顺序,到了接受方也要确保是这个顺序)1.3 确认号确认号是期望收到对方下一个报文段的第一个字节的序号。确认号 = N,则表示到序号N-1为止的所有数据都已经正确收到。例如:B正确收到了A发送过来的一个报文段,其序号字段值为500,而数据字段长度是200字节(序号501~700),这表明B正确收到了A发送的到序号700为止的数据,因此B期望收到A的下一个数据序号是701,于是B在发送给A的确认报文段中把确认号置为701。1.4 标志位TCP首部中有 6 个标志比特,它们中的多个可同时被设置为 1,主要是用于操控 TCP 的状态机的,依次为URG,ACK,PSH,RST,SYN,FIN。今天我们只介绍我们用到的三个。1.4.1 确认ACK这个标志位可以理解为发送端发送数据到接收端,发送的时候 ACK置 为 0,一旦接收端接收数据之后,就将 ACK 置为 1,发送端接收到之后,就知道了接收端已经接收了数据。需要注意的一点是:当且仅当ACK = 1时,确认号字段才有效。TCP规定,在连接建立后,所有传送的报文段 都将ACK置为1。1.4.2 同步SYNSYN是同步序列号,在建立TCP连接时用来同步序号。当SYN=1,ACK=0时,表明这是一个连接请求报文段。若对方同意建立连接,则应在响应的报文段中使SYN=1,ACK=1。因此,SYN置为1就表示这是一个连接请求或连接接受报文。1.4.3 终止FIN当发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送方FIN标志位置为1后,表示此报文段的发送方数据发送完毕,请求释放连接。二 T CP三次握手过程TCP 三次握手的过程解决以下三个问题1.要是每一方都能确知对方的存在2.要允许双方协商一些参数(如窗口最大值,是否使用窗口扩大选项以及时间戳选项等)3.能够对运输实体资源(如缓冲大小、连接表中的项目等)进行分配掌握了这些,TCP 的三次握手就简单多了。下面我们就以动画形式进行拆解三次握手过程。初始状态 :客户端处于closed(关闭)状态,服务器处于listen(监听)状态第一次握手 :客户端发送请求报文将SYN = 1同步序列号和初始化序列号seq = x发送给服务端,发送完之后客户端处于SYN_Send状态。第二次握手 :服务端受到SYN请求报文之后,如果同意连接,会以自己的同步序列号SYN(服务端) = 1、初始化序列号seq = y和确认序列号(期望下次收到的数据包)ack = x+ 1以及确认号ACK = 1报文作为应答,服务器为SYN_Receive状态。第三次握手 : 客户端接收到服务端的SYN + ACK之后,知道可以下次可以发送了下一序列的数据包了,然后发送同步序列号ack = y + 1和数据包的序列号seq = x + 1以及确认号ACK = 1确认包作为应答,客户端转为established状态。三、为什么不能是一次、二次握手,而必须是三次握手?为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。所谓“已失效的连接请求报文段”是这样产生的。考虑一种正常情况:A发出连接请求,但因连接请求报文丢失而未收到确认。于是A在重传一次连接请求,后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。在此过程中,A一共发送了两个连接请求报文段,其中一个丢失,第二个到达了B。没有已经失效的报文段。但现在出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某些网络结点长时间滞留了,以至延误到连接释放以后的某个时间才到达B。本来这是一个早已经失效的报文段,但B收到此失效的连接请求报文段后,就误认为是A又发出一次新的连接请求。于是就向A发出确认报文段,同意建立连接。假定不采用三次握手,那么只要B发出确认,新的连接就建立了。由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据,但B却以为新的运输连接已经建立了,并一直等待A发来数据。B的许多资源就这样白白浪费了。 采用三次握手的办法可以防止上述现象的发生,例如在刚才的情况下,A不会向B的确认发出确认。B由于收不到确认,就知道A并没有要求建立连接。
      动画图解TCP三次握手

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/59819.html

          热门文章

          文章分类