tcp连接爆发(简述tcp建立连接的过程)

      最后更新:2023-03-25 00:22:23 手机定位技术交流文章

      关于tcp数据传输的问题……

      这是我网络中找的参考,希望对你有帮助。 在多线程任务中,TCP任务通过三次握手能建立可靠的连接,但是经常会发生在数据传输或通信时发生网络突然断开或者长时间连接空循环监听而未进行操作,需要在软件设计时考虑程序运行中检测到服务器对客户端的这一“虚连接”现象。如果主机崩溃,write是否阻塞取决于内核的tcp缓冲区,但read将一直阻塞,直到超时ETIMEOUT,或由于某些中间路由器的原因返回EHOSTUNREACH/ENETUNREACH。select不能检测到该情况。如果主机崩溃并重起,客户的write到达主机时主机响应RST,客户的read将返ECONNRESET。此处的”非正常断开”指TCP连接不是以优雅的方式断开,如网线故障等物理链路的原因,还有突然主机断电等原因。心跳机制有两种方法可以检测:1.TCP连接双方定时发握手消息2.利用TCP协议栈中的KeepAlive探测第二种方法简单可靠,只需对TCP连接两个Socket设定KeepAlive探测,所以本文只讲第二种方法在Linux,Window2000下的实现(在其它的平台上没有作进一步的测试)1)Windows平台C代码//定义结构及宏struct TCP_KEEPALIVE {u_longonoff;u_longkeepalivetime;u_longkeepaliveinterval;} ;#define SIO_KEEPALIVE_VALS _WSAIOW(IOC_VENDOR,4)//KeepAlive实现TCP_KEEPALIVE inKeepAlive = {0}; //输入参数unsigned long ulInLen = sizeof(TCP_KEEPALIVE);TCP_KEEPALIVE outKeepAlive = {0}; //输出参数unsigned long ulOutLen = sizeof(TCP_KEEPALIVE);unsigned long ulBytesReturn = 0;//设置socket的keep alive为5秒,并且发送次数为3次inKeepAlive.onoff = 1;inKeepAlive.keepaliveinterval = 5000; //两次KeepAlive探测间的时间间隔inKeepAlive.keepalivetime = 5000; //开始首次KeepAlive探测前的TCP空闭时间if (WSAIoctl((unsigned int)s, SIO_KEEPALIVE_VALS,(LPVOID)&inKeepAlive, ulInLen,(LPVOID)&outKeepAlive, ulOutLen,&ulBytesReturn, NULL, NULL) == SOCKET_ERROR){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) WSAIoctl failed. error code(%d)!n"), WSAGetLastError()));}//定义结构及宏 struct TCP_KEEPALIVE { u_longonoff; u_longkeepalivetime; u_longkeepaliveinterval; } ; #define SIO_KEEPALIVE_VALS _WSAIOW(IOC_VENDOR,4) //KeepAlive实现 TCP_KEEPALIVE inKeepAlive = {0}; //输入参数 unsigned long ulInLen = sizeof(TCP_KEEPALIVE); TCP_KEEPALIVE outKeepAlive = {0}; //输出参数 unsigned long ulOutLen = sizeof(TCP_KEEPALIVE); unsigned long ulBytesReturn = 0; //设置socket的keep alive为5秒,并且发送次数为3次 inKeepAlive.onoff = 1; inKeepAlive.keepaliveinterval = 5000; //两次KeepAlive探测间的时间间隔 inKeepAlive.keepalivetime = 5000; //开始首次KeepAlive探测前的TCP空闭时间 if (WSAIoctl((unsigned int)s, SIO_KEEPALIVE_VALS, (LPVOID)&inKeepAlive, ulInLen, (LPVOID)&outKeepAlive, ulOutLen, &ulBytesReturn, NULL, NULL) == SOCKET_ERROR) { ACE_DEBUG ((LM_INFO, ACE_TEXT ("(%P|%t) WSAIoctl failed. error code(%d)!n"), WSAGetLastError())); }2)Linux平台C代码#include……////KeepAlive实现//下面代码要求有ACE,如果没有包含ACE,则请把用到的ACE函数改成linux相应的接口int keepAlive = 1;//设定KeepAliveint keepIdle = 5;//开始首次KeepAlive探测前的TCP空闭时间int keepInterval = 5;//两次KeepAlive探测间的时间间隔int keepCount = 3;//判定断开前的KeepAlive探测次数if(setsockopt(s,SOL_SOCKET,SO_KEEPALIVE,(void*)&keepAlive,sizeof(keepAlive)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) setsockopt SO_KEEPALIVE error!n")));}if(setsockopt(s,SOL_TCP,TCP_KEEPIDLE,(void *)&keepIdle,sizeof(keepIdle)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) setsockopt TCP_KEEPIDLE error!n")));}if(setsockopt(s,SOL_TCP,TCP_KEEPINTVL,(void *)&keepInterval,sizeof(keepInterval)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t) setsockopt TCP_KEEPINTVL error!n")));}if(setsockopt(s,SOL_TCP,TCP_KEEPCNT,(void *)&keepCount,sizeof(keepCount)) == -1){ACE_DEBUG ((LM_INFO,ACE_TEXT ("(%P|%t)setsockopt TCP_KEEPCNT error!n")));}心跳机制:定时发送一个自定义的结构体(心跳包),让对方知道自己还活着,以确保连接的有效性。网络中的接收和发送数据都是使用WINDOWS中的SOCKET进行实现。但是如果此套接字已经断开,那发送数据和接收数据的时候就一定会有问题。可是如何判断这个套接字是否还可以使用呢?这个就需要在系统中创建心跳机制。其实TCP中已经为我们实现了一个叫做心跳的机制。如果你设置了心跳,那TCP就会在一定的时间(比如你设置的是3秒钟)内发送你设置的次数的心跳(比如说2次),并且此信息不会影响你自己定义的协议。所谓“心跳”就是定时发送一个自定义的结构体(心跳包或心跳帧),让对方知道自己“在线”。以确保链接的有效性。所谓的心跳包就是客户端定时发送简单的信息给服务器端告诉它我还在而已。代码就是每隔几分钟发送一个固定信息给服务端,服务端收到后回复一个固定信息如果服务端几分钟内没有收到客户端信息则视客户端断开。比如有些通信软件长时间不使用,要想知道它的状态是在线还是离线就需要心跳包,定时发包收包。发包方:可以是客户也可以是服务端,看哪边实现方便合理。一般是客户端。服务器也可以定时轮询发心跳下去。心跳包之所以叫心跳包是因为:它像心跳一样每隔固定时间发一次,以此来告诉服务器,这个客户端还活着。事实上这是为了保持长连接,至于这个包的内容,是没有什么特别规定的,不过一般都是很小的包,或者只包含包头的一个空包。在TCP的机制里面,本身是存在有心跳包的机制的,也就是TCP的选项。系统默认是设置的是2小时的心跳频率。但是它检查不到机器断电、网线拔出、防火墙这些断线。而且逻辑层处理断线可能也不是那么好处理。一般,如果只是用于保活还是可以的。心跳包一般来说都是在逻辑层发送空的包来实现的。下一个定时器,在一定时间间隔下发送一个空包给客户端,然后客户端反馈一个同样的空包回来,服务器如果在一定时间内收不到客户端发送过来的反馈包,那就只有认定说掉线了。只需要send或者recv一下,如果结果为零,则为掉线。但是,在长连接下,有可能很长一段时间都没有数据往来。理论上说,这个连接是一直保持连接的,但是实际情况中,如果中间节点出现什么故障是难以知道的。更要命的是,有的节点(防火墙)会自动把一定时间之内没有数据交互的连接给断掉。在这个时候,就需要我们的心跳包了,用于维持长连接,保活。在获知了断线之后,服务器逻辑可能需要做一些事情,比如断线后的数据清理呀,重新连接呀当然,这个自然是要由逻辑层根据需求去做了。总的来说,心跳包主要也就是用于长连接的保活和断线处理。一般的应用下,判定时间在30-40秒比较不错。如果实在要求高,那就在6-9秒。TCP连接异常断开后操作系统会告诉你,你查询套接字的状态会得到异常,或者当发现函数失败WSAGetLastError的时候也会得到内核的通知。// 发送回应消息int nSend = Send4IntMsg(sock, (char*)(LPCTSTR)strSendBuf,strSendBuf.GetLength(), errMsg);if (nSend < 0) //发送消息失败closesocket(sock);//重新连接 在B/S编程和UDP编程时才用到心跳。比如定期向web服务器发一个request证明自己在线。http协议是请求一下就断开了,每次都要重新连接,重新请求,这种情况下才有必要用心跳机制。一般的TCP通信都是长连接,不可能频繁连接和断开。对于长期保持连接的情况,一旦断开,操作系统底层都会通知你,你需要解决的是如何获取到系统的通知。
      TCP/IP 指传输控制协议/因特网互联协议(Transmission Control Protocol / Internet Protocol),又名网络通讯协议
      关于tcp数据传输的问题……

      TCP/IP连接中服务器发送[RST,ACK],客户端应该如何回应?

      TCP/IP详解--接收RST回应的几种情况:1、端口未打开服务器程序端口未打开而客户端来连接。这种情况是最为常见和好理解的一种了。去telnet一个未打开的TCP的端口可能会出现这种错误。这个和操作系统的实现有关。在某些情况下,操作系统也会完全不理会这些发到未打开端口请求。2、请求超时曾经遇到过这样一个情况:一个客户端连接服务器,connect返回-1并且error=EINPROGRESS。 直接telnet发现网络连接没有问题。ping没有出现丢包。用抓包工具查看,客户端是在收到服务器发出的SYN之后就莫名其妙的发送了RST。3、提前关闭关于TCP,我想我们在教科书里都读到过一句话,'TCP是一种可靠的连接'。 而这可靠有这样一种含义,那就是操作系统接收到的来自TCP连接中的每一个字节,我都会让应用程序接收到。扩展资料TCP/IP连接三次握手在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认; SYN:同步序列编号(Synchronize Sequence Numbers)第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。完成三次握手,客户端与服务器开始传送数据。
      1、首先,创建tcp服务器,创建的方式如下面图中所示,先创建一个net服务,然后监听connect和data事件,并对收到的数据进行确认,监听端口8431。2、创建tcp客户端,连接上面建立的tcp服务器,并发送 你好,并接收来自服务器的确认信息。3、下面显示的是服务器接收到的数据,并显示出来,然后向客户端发送数据确认。4、显示来自服务器的确认数据,这样一个tcp服务器和客户端就建立起来了。
      仅从抓包信息看是服务器的一个流量控制机制启动了。服务器发回rst位,同时win置为0,是告诉客户端不要发包。按tcp流控机制来说,此时客户端应该停止发包,直至服务器发送信息告诉客户端可以继续发送。
      TCP/IP连接中服务器发送[RST,ACK],客户端应该如何回应?

      TCP连接中 A向B发起连接 如果A短时间内重复上一个连接问题几万甚至几十万次会出现什么结果。原因是什么?

      TCP连接中 ,A向B发起连接, 如果A短时间内重复上一个连接问题几万甚至几十万次,会出现B来不及处理,最终导致处理服务中断。这就是的典型的DDoS攻击(分布式拒绝服务攻击)。
      TCP连接中 A向B发起连接 如果A短时间内重复上一个连接问题几万甚至几十万次会出现什么结果。原因是什么?

      TCP SYN Flood攻击是什么原因造成

      TCP SYN Flood攻 击的原理机制/检测与防范及防御方法现在的攻击者,无所不在了.对于一些攻击手法,很多高 手也都是看在眼里而没什么实质性防范措施.除了改端 口,换IP,弄域名..还能做什么? 本篇文章介绍了TCP SYN Flood攻击的原理机制/检测与防范及防御方法,希望能给大伙一个思路. TCP SYN Flood攻击的机制客户端通过发送在TCP报头中SYN标志置位的数据分段到服务端来请求建立连接。通常情况下,服务端会按照IP报头中的来源地址来返回SYN/ACK置位 的数据包给客户端,客户端再返回ACK到服务端来完成一个完整的连接(Figure-1)。 在攻击发生时,客户端的来源IP地址是经过伪造的(spoofed),现行的IP路由机制仅检查目的IP地址并进行转发,该IP包到达目的主机后返回 路径无法通过路由达到的,于是目的主机无法通过TCP三次握手建立连接。在此期间因为TCP缓存队列已经填满,而拒绝新的连接请求。目的主机一直尝试直至 超时(大约75秒)。这就是该攻击类型的基本机制。发动攻击的主机只要发送较少的,来源地址经过伪装而且无法通过路由达到的SYN连接请求至目标主机提供TCP服务的端口,将目的主机的TCP缓存队列 填满,就可以实施一次成功的攻击。实际情况下,发动攻击时往往是持续且高速的。 Figure-3 SYN Flood Attack 这里需要使用经过伪装且无法通过路由达到的来源IP地址,因为攻击者不希望有任何第三方主机可以收到来自目的系 统返回的SYN/ACK,第三方主机会返回一个RST(主机无法判断该如何处理连接情况时,会通过RST重置连接),从而妨碍攻击进行。 Figure-4 IP Spoofing 由此可以看到,这种攻击方式利用了现有TCP/IP协议本身的薄弱环节,而且攻击者可以通过IP伪装有效的隐蔽自己。但对于目的主机来说,由于无法判 断攻击的真正来源。而不能采取有效的防御措施。TCP SYN Flood检测与防范 一、分析 从上面的分析,可以看出TCP SYN Flood远程拒绝服务攻击具有以下特点:针对TCP/IP协议的薄弱环节进行攻击; 发动攻击时,只要很少的数据流量就可以产生显著的效果;攻击来源无法定位; 在服务端无法区分TCP连接请求是否合法。二、系统检查 一般情况下,可以一些简单步骤进行检查,来判断系统是否正在遭受TCP SYN Flood攻击。1、服务端无法提供正常的TCP服务。连接请求被拒绝或超时; 2、通过 netstat -an 命 令检查系统,发现有大量的SYN_RECV连接状态。 三、防范 如何才能做到有效的防范呢?1、 TCP Wrapper 使用TCP Wrapper(只有unix-like系统支持该功能,NT?可怜)可能在某些有限的场合下有用,比如服务端只处理有限来源IP的TCP连接请求,其它 未指定来源的连接请求一概拒绝。这在一个需要面向公众提供服务的场合下是不适合的。而且攻击者可以通过IP伪装(IP Spoof)来直接攻击受TCP Wrapper保护的TCP服务,更甚者可以攻击者可以伪装成服 务器本身的地址进行攻击。 2、增加TCP Backlog容量 增加TCP Backlog容量是一种治标不治本的做法。它一方面要占用更多的系统内存,另一方面延长了TCP处理缓存队列的时间。攻击者只要不停地的进行SYN Flood一样可以达到拒绝服务的目的。3、 ISP接入 所有的ISP在边界处理进入的主干网 络的IP数据包时检测其来源地址是否合法,如果非指定来源IP地址范围,可以认为是IP Spoofing行为并将之丢弃。 在实际环境中,应为涉及的范围太过广泛,该方案无法实施。这是一个社会问题而非技 术问题。TCP SYN Flood检测与防范 一、TCP连接监控(TCP Interception) 为了有效的防范TCP SYN Flood攻击,在保证通过慢速网络的用户可以正常建立到服务端的合法连接的同时,需要尽可能的减少服务端TCP Backlog的清空时间,大多数防 火墙采用了TCP连接监控的工作模式。 1.防火墙接到来自用户端Z的SYN连接请求,在本地建立面向该连接的监控表项;2.防火墙将该连接请求之转发至服务端A; 3.服务端A相应该连接请求返回SYN/ACK,同时更新与该连接相关联的监控表项;4.防火墙将该SYN/ACK转发至用户端Z; 5.防火墙发送ACK至服务端A,同时服务端A中TCP Backlog该连接的表项被移出;6.这时,根据连接请求是否合法,可能有以下两种情况发生: a.如果来自用户端Z的连接请求合法,防火墙将该ACK转发至服务端A,服务端A会忽略该ACK,因为一个完整的TCP连接已经建立; b.如果来自用户端Z的连接请求非法(来源IP地址非法),没有在规定的时间内收到返回的ACK,防火墙会发送RST至服务端A以拆除该连接。7.开始TCP传输过程。 由此可以看出,该方法具有两个局限: 1.不论是否合法的连接请求都直接转发至服务端A,待判断为非法连接(无返回ACK)时才采取措施拆除连接,浪费服务端系统资源; 2.防火墙在本地建立表项以监控连接(一个类似TCP Backlog的表),有可能被攻击者利用。二、天网DoS防御网关 天网防火墙采用经过优化的TCP连接监控工作方式。该方式在处理TCP连接请求的时候,在确定连接请求是否合法以前,用户端Z与服务端A是隔断的。 1.防火墙接到来自用户端Z的SYN连接请求; 2.防火墙返回一个经过特殊处理的SYN/ACK至客户端Z以验证连接的合法性;3.这时,根据连接请求是否合法,可能有以下两种情况发生: a.防火墙接收到来自客户端Z的ACK回应,该连接请求合法。转至第4步继续;b.防火墙没有接收到来自客户端Z的ACK回应,该连接请求非法,不进行处理; 4.防火墙在本地建立面向该连接的监控表项,并发送与该连接请求相关联的SYN至服务端A; 5.防火墙接到来自服务端A的SYN/ACK回应;6.防火墙返回ACK以建立一个完整的TCP连接; 7.防火墙发送ACK至客户端Z,提示可以开始TCP传输过程。其中,在第2/3/4/7步过程中,防火墙内部进行了如下操作: 1.在第2步中,为了验证连接的合法性,防火墙返回的SYN/ACK是经过特殊处理的,并提示客户端Z暂时不要传送有效数据; 2.在第3步中,防火墙接收到来自客户端Z的ACK,检验其合法性。 3.在第4步中,防火墙在本地建立面向该连接的监控表项,同时发送与该连接相关的SYN至服务端A; 4.在第7步中,防火墙通过将TCP数据传输与监控表项进行比对,并调整序列号和窗口以使之匹配。开始TCP数据传输。 在这里,天网防火墙通过高效的算法(64K位的Hash)提供了超过30万以上的同时连接数的容量,为数据传输的高效和可靠提供了强有力地保障。
      TCP SYN Flood攻击是什么原因造成

      如何防范tcp syn flood 攻击

      TCP SYN Flood攻 击的原理机制/检测与防范及防御方法现在的攻击者,无所不在了.对于一些攻击手法,很多高 手也都是看在眼里而没什么实质性防范措施.除了改端 口,换IP,弄域名..还能做什么? 本篇文章介绍了TCP SYN Flood攻击的原理机制/检测与防范及防御方法,希望能给大伙一个思路. TCP SYN Flood攻击的机制客户端通过发送在TCP报头中SYN标志置位的数据分段到服务端来请求建立连接。通常情况下,服务端会按照IP报头中的来源地址来返回SYN/ACK置位 的数据包给客户端,客户端再返回ACK到服务端来完成一个完整的连接(Figure-1)。 在攻击发生时,客户端的来源IP地址是经过伪造的(spoofed),现行的IP路由机制仅检查目的IP地址并进行转发,该IP包到达目的主机后返回 路径无法通过路由达到的,于是目的主机无法通过TCP三次握手建立连接。在此期间因为TCP缓存队列已经填满,而拒绝新的连接请求。目的主机一直尝试直至 超时(大约75秒)。这就是该攻击类型的基本机制。发动攻击的主机只要发送较少的,来源地址经过伪装而且无法通过路由达到的SYN连接请求至目标主机提供TCP服务的端口,将目的主机的TCP缓存队列 填满,就可以实施一次成功的攻击。实际情况下,发动攻击时往往是持续且高速的。 Figure-3 SYN Flood Attack 这里需要使用经过伪装且无法通过路由达到的来源IP地址,因为攻击者不希望有任何第三方主机可以收到来自目的系 统返回的SYN/ACK,第三方主机会返回一个RST(主机无法判断该如何处理连接情况时,会通过RST重置连接),从而妨碍攻击进行。 Figure-4 IP Spoofing 由此可以看到,这种攻击方式利用了现有TCP/IP协议本身的薄弱环节,而且攻击者可以通过IP伪装有效的隐蔽自己。但对于目的主机来说,由于无法判 断攻击的真正来源。而不能采取有效的防御措施。TCP SYN Flood检测与防范 一、分析 从上面的分析,可以看出TCP SYN Flood远程拒绝服务攻击具有以下特点:针对TCP/IP协议的薄弱环节进行攻击; 发动攻击时,只要很少的数据流量就可以产生显著的效果;攻击来源无法定位; 在服务端无法区分TCP连接请求是否合法。二、系统检查 一般情况下,可以一些简单步骤进行检查,来判断系统是否正在遭受TCP SYN Flood攻击。1、服务端无法提供正常的TCP服务。连接请求被拒绝或超时; 2、通过 netstat -an 命 令检查系统,发现有大量的SYN_RECV连接状态。 三、防范 如何才能做到有效的防范呢?1、 TCP Wrapper 使用TCP Wrapper(只有unix-like系统支持该功能,NT?可怜)可能在某些有限的场合下有用,比如服务端只处理有限来源IP的TCP连接请求,其它 未指定来源的连接请求一概拒绝。这在一个需要面向公众提供服务的场合下是不适合的。而且攻击者可以通过IP伪装(IP Spoof)来直接攻击受TCP Wrapper保护的TCP服务,更甚者可以攻击者可以伪装成服 务器本身的地址进行攻击。 2、增加TCP Backlog容量 增加TCP Backlog容量是一种治标不治本的做法。它一方面要占用更多的系统内存,另一方面延长了TCP处理缓存队列的时间。攻击者只要不停地的进行SYN Flood一样可以达到拒绝服务的目的。3、 ISP接入 所有的ISP在边界处理进入的主干网 络的IP数据包时检测其来源地址是否合法,如果非指定来源IP地址范围,可以认为是IP Spoofing行为并将之丢弃。 在实际环境中,应为涉及的范围太过广泛,该方案无法实施。这是一个社会问题而非技 术问题。TCP SYN Flood检测与防范 一、TCP连接监控(TCP Interception) 为了有效的防范TCP SYN Flood攻击,在保证通过慢速网络的用户可以正常建立到服务端的合法连接的同时,需要尽可能的减少服务端TCP Backlog的清空时间,大多数防 火墙采用了TCP连接监控的工作模式。 1.防火墙接到来自用户端Z的SYN连接请求,在本地建立面向该连接的监控表项;2.防火墙将该连接请求之转发至服务端A; 3.服务端A相应该连接请求返回SYN/ACK,同时更新与该连接相关联的监控表项;4.防火墙将该SYN/ACK转发至用户端Z; 5.防火墙发送ACK至服务端A,同时服务端A中TCP Backlog该连接的表项被移出;6.这时,根据连接请求是否合法,可能有以下两种情况发生: a.如果来自用户端Z的连接请求合法,防火墙将该ACK转发至服务端A,服务端A会忽略该ACK,因为一个完整的TCP连接已经建立; b.如果来自用户端Z的连接请求非法(来源IP地址非法),没有在规定的时间内收到返回的ACK,防火墙会发送RST至服务端A以拆除该连接。7.开始TCP传输过程。 由此可以看出,该方法具有两个局限: 1.不论是否合法的连接请求都直接转发至服务端A,待判断为非法连接(无返回ACK)时才采取措施拆除连接,浪费服务端系统资源; 2.防火墙在本地建立表项以监控连接(一个类似TCP Backlog的表),有可能被攻击者利用。二、天网DoS防御网关 天网防火墙采用经过优化的TCP连接监控工作方式。该方式在处理TCP连接请求的时候,在确定连接请求是否合法以前,用户端Z与服务端A是隔断的。 1.防火墙接到来自用户端Z的SYN连接请求; 2.防火墙返回一个经过特殊处理的SYN/ACK至客户端Z以验证连接的合法性;3.这时,根据连接请求是否合法,可能有以下两种情况发生: a.防火墙接收到来自客户端Z的ACK回应,该连接请求合法。转至第4步继续;b.防火墙没有接收到来自客户端Z的ACK回应,该连接请求非法,不进行处理; 4.防火墙在本地建立面向该连接的监控表项,并发送与该连接请求相关联的SYN至服务端A; 5.防火墙接到来自服务端A的SYN/ACK回应;6.防火墙返回ACK以建立一个完整的TCP连接; 7.防火墙发送ACK至客户端Z,提示可以开始TCP传输过程。其中,在第2/3/4/7步过程中,防火墙内部进行了如下操作: 1.在第2步中,为了验证连接的合法性,防火墙返回的SYN/ACK是经过特殊处理的,并提示客户端Z暂时不要传送有效数据; 2.在第3步中,防火墙接收到来自客户端Z的ACK,检验其合法性。 3.在第4步中,防火墙在本地建立面向该连接的监控表项,同时发送与该连接相关的SYN至服务端A; 4.在第7步中,防火墙通过将TCP数据传输与监控表项进行比对,并调整序列号和窗口以使之匹配。开始TCP数据传输。 在这里,天网防火墙通过高效的算法(64K位的Hash)提供了超过30万以上的同时连接数的容量,为数据传输的高效和可靠提供了强有力地保障。 希望能帮到你,求采纳。
      SYN Flood是当前最流行的DoS(拒绝服务攻击)与DDoS(分布式拒绝服务攻击)的方式之一,它是利用TCP协议缺陷,发送大量伪造的TCP连接请求,从而使得被攻击方资源耗尽(CPU满负荷或内存不足)的攻击方式,最终导致系统或服务器宕机。在讨论SYNFlood原理前,我们需要从TCP连接建立的过程开始说起:TCP与UDP不同,它是基于连接的,为了在服务端和客户端之间传送TCP数据,必须先建立一个虚拟电路,也就是TCP连接。也就是我们经常听说的TCP协议中的三次握手(Three-wayHandshake),建立TCP连接的标准过程如下:首先,客户端发送一个包含SYN标志的TCP报文,SYN即同步(Synchronize),同步报文会指明客户端使用的端口以及TCP连接的初始序号;其次,服务器在收到客户端的SYN报文后,将返回一个SYN+ACK(即确认Acknowledgement)的报文,表示客户端的请求被接受,同时TCP初始序号自动加一。最后,客户端也返回一个确认报文ACK给服务器端,同样TCP序列号被加一,到此一个TCP连接完成。SYNFlood攻击正是利用了TCP连接的三次握手,假设一个用户向服务器发送了SYN报文后突然死机或掉线,那么服务器在发出SYN+ACK应答报文后是无法收到客户端的ACK报文的(第三次握手无法完成),这种情况下服务器端一般会重试(再次发送SYN+ACK给客户端)并等待一段时间后丢弃这个未完成的连接,这段时间的长度我们称为SYNTimeout,一般来说这个时间是分钟的数量级(大约为30秒-2分钟);一个用户出现异常导致服务器的一个线程等待1分钟并不会对服务器端造成什么大的影响,但如果有大量的等待丢失的情况发生,服务器端将为了维护一个非常大的半连接请求而消耗非常多的资源。我们可以想象大量的保存并遍历也会消耗非常多的CPU时间和内存,再加上服务器端不断对列表中的IP进行SYN+ACK的重试,服务器的负载将会变得非常巨大。如果服务器的TCP/IP栈不够强大,最后的结果往往是堆栈溢出崩溃。相对于攻击数据流,正常的用户请求就显得十分渺小,服务器疲于处理攻击者伪造的TCP连接请求而无暇理睬客户的正常请求,此时从正常客户会表现为打开页面缓慢或服务器无响应,这种情况就是我们常说的服务器端SYNFlood攻击(SYN洪水攻击)。从防御角度来讲,存在几种的解决方法:第一种是缩短SYNTimeout时间,由于SYNFlood攻击的效果取决于服务器上保持的SYN半连接数,这个值=SYN攻击的频度xSYNTimeout,所以通过缩短从接收到SYN报文到确定这个报文无效并丢弃改连接的时间,例如设置为20秒以下,可以成倍的降低服务器的负荷。但过低的SYNTimeout设置可能会影响客户的正常访问。第二种方法是设置SYNCookie,就是给每一个请求连接的IP地址分配一个Cookie,如果短时间内连续受到某个IP的重复SYN报文,就认定是受到了攻击,并记录地址信息,以后从这个IP地址来的包会被一概丢弃。这样做的结果也可能会影响到正常用户的访问。上述的两种方法只能对付比较原始的SYNFlood攻击,缩短SYNTimeout时间仅在对方攻击频度不高的情况下生效,SYN Cookie更依赖于对方使用真实的IP地址,如果攻击者以数万/秒的速度发送SYN报文,同时利用SOCK_RAW随机改写IP报文中的源地址,以上的方法将毫无用武之地。
      如何防范tcp syn flood 攻击

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/60005.html

          热门文章

          文章分类