udp机制(udp重发机制)

      最后更新:2023-03-25 00:49:18 手机定位技术交流文章

      UDP是 什 么

      用户数据报协议(UDP)是 OSI 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。是一个简单的面向数据报的传输层协议,IETF RFC 768是UDP的正式规范。 UDP 协议基本上是 IP 协议与上层协议的接口。 UDP 协议适用端口分别运行在同一台设备上的多个应用程序。 由于大多数网络应用程序都在同一台机器上运行,计算机上必须能够确保目的地机器上的软件程序能从源地址机器处获得数据包,以及源计算机能收到正确的回复。这是通过使用 UDP 的“端口号”完成的。例如,如果一个工作站希望在工作站 128.1.123.1 上使用域名服务系统,它就会给数据包一个目的地址 128.1.123.1 ,并在 UDP 头插入目标端口号 53 。源端口号标识了请求域名服务的本地机的应用程序,同时需要将所有由目的站生成的响应包都指定到源主机的这个端口上。 UDP 端口的详细介绍可以参照相关文章。与 TCP 不同, UDP 并不提供对 IP 协议的可靠机制、流控制以及错误恢复功能等。由于 UDP 比较简单, UDP 头包含很少的字节,比TCP负载消耗少。UDP适用于不需要TCP可靠机制的情形,比如,当高层协议或应用程序提供错误和流控制功能的时候。 UDP是传输层协议,服务于很多知名应用层协议,包括网络文件系统(NFS)、简单网络管理协议(SNMP)、域名系统(DNS)以及简单文件传输系统(TFTP)、动态主机配置协议(DHCP)、路由信息协议(RIP)和某些影音串流服务等等。协议结构Source Port — 16位。源端口是可选字段。当使用时,它表示发送程序的端口,同时它还被认为是没有其它信息的情况下需要被寻址的答复端口。如果不使用,设置值为0。Destination Port — 16位。目标端口在特殊因特网目标地址的情况下具有意义。Length — 16位。该用户数据报的八位长度,包括协议头和数据。长度最小值为8。Checksum — 16位。IP 协议头、UDP 协议头和数据位,最后用0填补的信息假协议头总和。如果必要的话,可以由两个八位复合而成。Data — 包含上层数据信息。UDP协议有如下的特点:1、UDP传送数据前并不与对方建立连接,即UDP是无连接的,在传输数据前,发送方和接收方相互交换信息使双方同步。2、UDP不对收到的数据进行排序,在UDP报文的首部中并没有关于数据顺序的信息(如TCP所采用的序号),而且报文不一定按顺序到达的,所以接收端无从排起。3、UDP对接收到的数据报不发送确认信号,发送端不知道数据是否被正确接收,也不会重发数据。4、UDP传送数据较TCP快速,系统开销也少。5、由于缺乏拥塞控制(congestion control),需要基于网络的机制来减小因失控和高速UDP流量负荷而导致的拥塞崩溃效应。换句话说,因为UDP发送者不能够检测拥塞,所以像使用包队列和丢弃技术的路由器这样的网络基本设备往往就成为降低UDP过大通信量的有效工具。数据报拥塞控制协议(DCCP)设计成通过在诸如流媒体类型的高速率UDP流中增加主机拥塞控制来减小这个潜在的问题。 从以上特点可知,UDP提供的是无连接的、不可靠的数据传送方式,是一种尽力而为的数据交付服务。
      UDP是 什 么

      UDP报文传输机制是如何体现高效率传输的?

      UDP是OSI七层参考模型中传输层的一个协议,传输层共有两个协议,另外一个是TCP协议。其中,TCP协议是面向连接的协议,控制相对来说比较复杂,其中使用到的机制包括三次握手、流量控制、滑动窗口、序列号、确认号等,UDP是无连接的,链路的开销比较小,给你举几个例子吧。比如经常见到的魔兽争霸的游戏,游戏的控制使用的是TCP协议,声音使用的是UDP协议。总之链路开销小就提高了传输的效率。
      UDP报文传输机制是如何体现高效率传输的?

      什么是UDP协议

      UDP协议是英文UserDatagramProtocol的缩写,即用户数据报协议,主要用来支持那些需要在计算机之间传输数据的网络应用。包括网络视频会议系统在内的众多的客户/服务器模式的网络应用都需要使用UDP协议。UDP协议从问世至今已经被使用了很多年,虽然其最初的光彩已经被一些类似协议所掩盖,但是即使是在今天,UDP仍然不失为一项非常实用和可行的网络传输层协议。 与我们所熟知的TCP(传输控制协议)协议一样,UDP协议直接位于IP(网际协议)协议的顶层。根据OSI(开放系统互连)参考模型,UDP和TCP都属于传输层协议。UDP协议的主要作用是将网络数据流量压缩成数据报的形式。一个典型的数据报就是一个二进制数据的传输单位。每一个数据报的前8个字节用来包含报头信息,剩余字节则用来包含具体的传输数据。UDP报头UDP报头由4个域组成,其中每个域各占用2个字节,具体如下:源端口号目标端口号数据报长度校验值UDP协议使用端口号为不同的应用保留其各自的数据传输通道。UDP和TCP协议正是采用这一机制实现对同一时刻内多项应用同时发送和接收数据的支持。数据发送一方(可以是客户端或服务器端)将UDP数据报通过源端口发送出去,而数据接收一方则通过目标端口接收数据。有的网络应用只能使用预先为其预留或注册的静态端口;而另外一些网络应用则可以使用未被注册的动态端口。因为UDP报头使用两个字节存放端口号,所以端口号的有效范围是从0到65535。一般来说,大于49151的端口号都代表动态端口。数据报的长度是指包括报头和数据部分在内的总的字节数。因为报头的长度是固定的,所以该域主要被用来计算可变长度的数据部分(又称为数据负载)。数据报的最大长度根据操作环境的不同而各异。从理论上说,包含报头在内的数据报的最大长度为65535字节。不过,一些实际应用往往会限制数据报的大小,有时会降低到8192字节。 UDP协议使用报头中的校验值来保证数据的安全。校验值首先在数据发送方通过特殊的算法计算得出,在传递到接收方之后,还需要再重新计算。如果某个数据报在传输过程中被第三方篡改或者由于线路噪音等原因受到损坏,发送和接收方的校验计算值将不会相符,由此UDP协议可以检测是否出错。这与TCP协议是不同的,后者要求必须具有校验值。
      UDP协议 用户数据报协议UDP(User Datagram Protocol)是无连接传输层协议,提供应用程序之间传送数据报的基本机制。1.UDP报文的格式每个UDP报文称为一个用户数据报:它分为两部分:头部和数据区。如图6-14是一个UDP报文的格式,报文头中包含有源端口和目的端口、报文长度以及UDP检验和。源端口(Source Port)和目的端口(Destination Port)字段包含了16比特的UDP协议端口号,它使得多个应用程序可以多路复用同一个传输层协议 – UDP协议,仅通过不同的端口号来区分不同的应用程序。长度(Length)字段记录了该UDP数据包的总长度(以字节为单位),包括8字节的UDP头和其后的数据部分。最小值是8(即报文头的长度),最大值为65,535字节。UDP检验和(Checksum)的内容超出了UDP数据报文本身的范围,实际上,它的值是通过计算UDP数据报及一个伪包头而得到的。但校验和的计算方法与通用的一样,都是累加求和。 不危险,可以打开
      什么是UDP协议

      udp的解释是什么?

      UDP 是 User Datagram Protocol 的简称, 中文名是用户数据报协议。UDP是一个简单的面向数据报的运输层协议,进程的每个输出操作都正好产生一个UDP数据报,并组装成一份待发送的IP数据报。UDP不提供可靠性,它把应用程序传给IP层的数据发送出去,但是并不保证他们能到达目的地。UDP的特征1、UDP是无连接的,通信之前无须建连便可直接发送数据报,而TCP是面向连接的。UDP不提供差错纠正,但UDP提供差错检测(端到端校验和)。2、UDP不做重复消除。UDP不做流量控制。UDP不做拥塞控制,没有协议机制防止高速UDP流量对其他网络用户的消极影响。3、UDP不可靠,UDP只负责把应用程序传给IP层的数据发送出去,并不能保证数据报到达目的地,可靠传递需要应用程序去实现。以上内容参考:百度百科-UDP
      udp的解释是什么?

      图文并茂,讲解TCP和UDP协议的原理以及区别

      最近重新认知了一下TCP和UDP的原理以及区别,做一个简单的总结。首先,tcp和udp都是工作在传输层,用于程序之间传输数据的。数据一般包含:文件类型,视频类型,jpg图片等。TCP是基于连接的,而UDP是基于非连接的。tcp传输数据稳定可靠,适用于对网络通讯质量要求较高的场景,需要准确无误的传输给对方,比如,传输文件,发送邮件,浏览网页等等udp的优点是速度快,但是可能产生丢包,所以适用于对实时性要求较高但是对少量丢包并没有太大要求的场景。比如:域名查询,语音通话,视频直播等。udp还有一个非常重要的应用场景就是隧道网络,比如:VXLAN以人与人之间的通信为例:UDP协议就相当于是写信给对方,寄出去信件之后不能知道对方是否收到信件,信件内容是否完整,也不能得到及时反馈,而TCP协议就像是打电话通信,在这一系列流程都能得到及时反馈,并能确保对方及时接收到。如下图:tcp是如何保证以上过程的?分为三个步骤:三次握手,传输确认,四次挥手。三次握手是建立连接的过程。当客户端向服务端发起连接时,会先发一包连接请求数据,过去询问一下,能否与你建立连接?这包数据称之为SYN包,如果对端同意连接,则回复一包SYN+ACK包,客户端收到之后,发送一包ACK包,连接建立,因为这个过程中互相发送了三包数据,所以称之为三次握手。这是为了防止,因为已失效的请求报文,突然又传到服务器,引起错误,这是什么意思?假设采用两次握手建立连接,客户端向服务端发送一个syn包请求建立连接,因为某些未知的原因,并没有到达服务器,在中间某个网络节点产生了滞留,为了建立连接,客户端会重发syn包,这次的数据包正常送达,服务端发送syn+ack之后就建立起了连接。但是第一包数据阻塞的网络突然恢复,第一包syn包又送达到服务端,这时服务端会认为客户端又发起了一个新的连接,从而在两次握手之后进入等待数据状态,服务端认为是两个连接,而客户端认为是一个连接,造成了状态不一致,如果在三次握手的情况下,服务端收不到最后的ack包,自然不会认为连接建立成功。所以三次握手本质上来说就是为了解决网络信道不可靠的问题,为了在不可靠的信道上建立起可靠的连接,经过三次握手之后,客户端和服务端都进入了数据传输状态。一包数据可能会被拆成多包发送,如何处理丢包问题,这些数据包到达的先后顺序不同,如何处理乱序问题?针对这些问题,tcp协议为每一个连接建立了发送缓冲区,从建立链接后的第一个字节的序列号为0,后面每个字节的序列号就会增加1,发送数据时,从数据缓冲区取一部分数据组成发送报文,在tcp协议头中会附带序列号和长度,接收端在收到数据后需要回复确认报文,确认报文中的ack等于接受序列号加长度,也就是下包数据发送的起始序列号,这样一问一答的发送方式,能够使发送端确认发送的数据已经被对方收到,发送端也可以发送一次的连续的多包数据,接受端只需要回复一次ack就可以了。如图:六、四次挥手:处于连接状态的客户端和服务端,都可以发起关闭连接请求,此时需要四次挥手来进行连接关闭。假设客户端主动发起连接关闭请求,他给服务端发起一包FIN包,标识要关闭连接,自己进入终止等待1装填,服务端收到FIN包,发送一包ACK包,标识自己进入了关闭等待状态,客户端进入终止等待2状态,这是第二次挥手,服务端此时还可以发送未发送的数据,而客户端还可以接受数据,待服务端发送完数据之后,发送一包FIN包,最后进入确认状态,这是第3次挥手,客户端收到之后恢复ACK包,进入超时等待状态,经过超时时间后关闭连接,而服务端收到ACK包后,立即关闭连接,这是第四次挥手。为什么客户端要等待超时时间?这是为了保证对方已经收到ACK包,因为假设客户端发送完最后一包ACK包后释放了连接,一旦ACK包在网络中丢失,服务端将一直停留在 最后确认状态,如果等待一段时间,这时服务端会因为没有收到ack包重发FIN包,客户端会响应 这个FIN包进行重发ack包,并刷新超时时间,这个机制跟第三次握手一样。也是为了保证在不可靠的网络链路中进行可靠的连接断开确认。udp:首先udp协议是非连接的,发送数据就是把简单的数据包封装一下,然后从网卡发出去就可以了,数据包之间并没有状态上的联系,正因为udp这种简单的处理方式,导致他的性能损耗非常少,对于cpu,内存资源的占用也远小于tcp,但是对于网络传输过程中产生的丢包,udp并不能保证,所以udp在传输稳定性上要弱于tcp。所以,tcp和udp的主要区别:tcp传输数据稳定可靠,适用于对网络通讯质量要求较高的场景,需要准确无误的传输给对方。比如,传输文件,发送邮件,浏览网页等等,udp的优点是速度快,但是可能产生丢包,所以适用于对实时性要求较高但是对少量丢包并没有太大要求的场景。比如:域名查询,语音通话,视频直播等。udp还有一个非常重要的应用场景就是隧道网络,比如:VXLAN.
      图文并茂,讲解TCP和UDP协议的原理以及区别

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/60010.html

          热门文章

          文章分类