TCP 详解
title: TCP 总结date: 2018-03-25 09:40:24tags:categories:-计算机网络我们都知道 TCP 是位于传输层的协议,他还有一个兄弟就是 UDP ,他们两共同构成了传输层。显然他们之间有很大的区别要不然的话在传输层只需要一个就好了。其中最重要的区别就是一个面向连接另外一个不是,这个区别就导致了他们是否能够保证稳定传输,显然不面向连接的 UDP 是没办法保证可靠传输的,他只能靠底层的网络层和链路层来保证。我们都知道网络层采用的是不可靠的 IP 协议。好吧,网络层也保证不了可靠传输,所以 UDP 保证可靠传输只能依靠链路层了。而 TCP 就好说了他不仅仅有底层的链路层的支持,还有自己的面向链接服务来保证可靠传输。当然 TCP也不仅仅就是比 UDP 多了一个可靠传输,前面也说到了这只是他们之间一个重要的区别。其实他的三个重要特性就是它们之间的区别。* 可靠传输* 流量控制* 拥塞控制TCP 主要是 确认重传机制 数据校验 数据合理分片和排序 流量控制 拥塞控制 依靠来完成可靠传输的 , 下面详细介绍这几种保证可靠传输的方式。确认重传,简单来说就是接收方收到报文以后给发送方一个 ACK 回复,说明自己已经收到了发送方发过来的数据。如果发送方等待了一个特定的时间还没有收到接收方的 ACK 他就认为数据包丢了,接收方没有收到就会重发这个数据包。好的,上面的机制还是比较好理解的,但是我们会发现一个问题,那就是如果接收方已经收到了数据然后返回的 ACK 丢失,发送方就会误判导致重发。而此时接收方就会收到冗余的数据,但是接收方怎么能判定这个数据是冗余的还是新的数据呢?这就涉及到了 TCP 的另外一个机制就是采用序号和确认号,也就是每次发送数据的时候这个报文段里面包括了当前报文段的序号和对上面的报文的确认号,这样我们的接收方可以根据自己接受缓存中已经有的数据来确定是否接受到了重复的报文段。这时候如果出现上面所说的 ACK 丢失,导致接受重复的报文段时客户端丢弃这个冗余的报文段。好现在我们大致了解了确认重传机制,但是还有些东西还没有弄清楚,也就是 TCP 真正的实现究竟是怎样的。这就是我们要解决的第一个问题就是如何确认。这里涉及到两种确认方式,分别称为 累计确认(捎带确认)和单停等协议。用一张图来快速理解,就是每发送一次数据,就进行一次确认。等发送方收到了 ACK 才能进行下一次的发送。一样的也是采用的 ACK 机制,但是注意一点的是,并非对于每一个报文段都进行确认,而仅仅对最后一个报文段确认,捎带的确认了上图中的 203 号及以前的报文。总结:从上面可以看到累计确认的效率更加高,首先他的确认包少一些那么也就是在网络中出现的大部分是需要传输的数据,而不是一半的数据一半的 ACK ,然后我们在第二张图中可以看到我们是可以连续发送多个报文段的(究竟一次性能发多少这个取决于发送窗口,而发送窗口又是由接受窗口和拥塞窗口一起来决定的。),一次性发多个数据会提高网络的吞吐量以及效率这个可以证明,比较简单这里不再赘述!结论:显然怎么看都是后者比较有优势,TCP 的实现者自然也是采用的累计确认的方式!上文中的那个特定的时间就是超时时间,为什么有这个值呢? 其实在发送端发送的时候就为数据启动了一个定时器,这个定时器的初始值就是超时时间。超时时间的计算其实有点麻烦,主要是我们很难确定一个确定的值,太长则进行了无意义的等待,太短就会导致冗余的包。TCP 的设计者们设计了一个计算超时时间的公式,这个公式概念比较多,有一点点麻烦,不过没关系我们一点点的来。首先我们自己思考如何设计一个超时时间的计算公式,超时时间一般肯定是和数据的传输时间有关系的,他必然要大于数据的往返时间(数据在发送端接收端往返一趟所用的时间)。好,那么我们就从往返时间下手,可是又有一个问题就是往返时间并不是固定的我们有如何确定这个值呢?自然我们会想到我们可以取一小段时间的往返时间的平均值来代表这一时间点的往返时间,也就是微积分的思想!好了我们找到了往返时间(RTT),接下来的超时时间应该就是往返时间再加上一个数就能得到超时时间了。这个数也应该是动态的,我们就选定为往返时间的波动差值,也就是相邻两个往返时间的差。下面给出我们所预估的超时时间(TimeOut)公式:很好,看到这里其实你已经差不多理解了超时时间的计算方式了,只不过我们这个公式不够完善,但是思路是对的。我们这时候来看看 TCP 的实现者们采用的方式。好的,这就是 TCP 实现的超时时间的方式,但是在实际的应用中并不是一直采用的这种方式。假如说我们现在网络状态非常的差,一直在丢包我们根本没必要这样计算,而是采用直接把原来的超时时间加倍作为新的超时时间。总结:好的现在我们知道了在两种情况下的超时时间的计算方式,正常的情况下我们采用的上面的比较复杂的计算公式,也就是RTT+波动值否则直接加倍上面我们看到在发送方等待一个超时重传时间后会开始重传,但是我们计算的超时重传时间也不定就很准,也就是说我们经常干的一件事就会是等待,而且一般等的时间还挺长。那么可不可以优化一下呢?当然,在 TCP 实现中是做了优化的,也就是这里说到的快速重传机制。他的原理就是在发送方收到三个冗余的 ACK 的时候,就开始重传那个报文段。那么为什么是三个冗余的 ACK 呢?注意三个冗余的 ACK 其实是四个 ACK 。我们先了解一下发送 ACK 策略,这个是RFC 5681 文档规定的。好的,那么现在我们可以看到如果出现了三个冗余的 ACK 他只可能是发生了两次情况三,也就是发送了两个比期望值大的数据。但是注意出现情况三有两种可能,一个是丢包,另外一个是乱序到达。比如说我们现在是数据乱序到达的,我们来看一下。第一种乱序情况另外一种乱序丢包情况结论: 很显然我们可以看到,如果发生了乱序有可能会出现三次冗余 ACK,但是如果发现了丢包必然会有三次冗余 ACK 发生,只是 ACK 数量可能更多但是不会比三次少在我们发现丢包以后我们需要重传,但是我们重传的方式也有两种方式可以选择分别是GBN和SR翻译过来就是拉回重传和选择重传。好其实我们已经能从名字上面看出来他们的作用方式了,拉回重传就是哪个地方没收到那么就从那个地方及以后的数据都重新传输,这个实现起来确实很简单,就是把发送窗口和接受窗口移回去,但是同样的我们发现这个方式不实用干了很多重复的事,效率低。那么选择重传就是你想到的谁丢了,就传谁。不存在做无用功的情况。结论:TCP 实际上使用的是两者的结合,称为选择确认,也就是允许 TCP 接收方有选择的确认失序的报文段,而不是累计确认最后一个正确接受的有序报文段。也就是跳过重传那些已经正确接受的乱序报文段。数据校验,其实这个比较简单就是头部的一个校验,然后进行数据校验的时候计算一遍 checkSum 比对一下。在 UDP 中,UDP 是直接把应用层的数据往对方的端口上 “扔” ,他基本没有任何的处理。所以说他发给网络层的数据如果大于1500字节,也就是大于MTU。这个时候发送方 IP 层就需要分片。把数据报分成若干片,使每一片都小于MTU.而接收方IP层则需要进行数据报的重组。这样就会多做许多事情,而更严重的是 ,由于UDP的特性,当某一片数据传送中丢失时 , 接收方便无法重组数据报,将导致丢弃整个UDP数据报。而在 TCP 中会按MTU合理分片,也就是在 TCP 中有一个概念叫做最大报文段长度(MSS)它规定了 TCP 的报文段的最大长度,注意这个不包括 TCP 的头,也就是他的典型值就是 1460 个字节(TCP 和 IP 的头各占用了 20 字节)。并且由于 TCP 是有序号和确认号的,接收方会缓存未按序到达的数据,根据序号重新排序报文段后再交给应用层。流量控制一般指的就是在接收方接受报文段的时候,应用层的上层程序可能在忙于做一些其他的事情,没有时间处理缓存中的数据,如果发送方在发送的时候不控制它的速度很有可能导致接受缓存溢出,导致数据丢失。相对的还有一种情况是由于两台主机之间的网络比较拥塞,如果发送方还是以一个比较快的速度发送的话就可能导致大量的丢包,这个时候也需要发送方降低发送的速度。虽然看起来上面的两种情况都是由于可能导致数据丢失而让发送主机降低发送速度,但是一定要把这两种情况分开,因为前者是属于 流量控制而后者是拥塞控制,那将是我们后面需要讨论的事情。不要把这两个概念混了。其实说到流量控制我们就不得不提一下滑动窗口协议,这个是流量控制的基础。由于 TCP 连接是一个全双工的也就是在发送的时候也是可以接受的,所以在发送端和接收端同时维持了发送窗口和接收窗口。这里为了方便讨论我们就按照单方向来讨论。接收方维持一个接受窗口,发送方一个发送窗口。发送的时候要知道接受窗口还有多少空间,也就是发送的数据量不能超过接受窗口的大小,否则就溢出了。而当我们收到一个接收方的 ACK 的时候我们就可以移动接受窗口把那些已经确认的数据滑动到窗口之外,发送窗口同理把确认的移出去。这样一直维持两个窗口大小,当接收方不能在接受数据的时候就把自己的窗口大小调整为 0 发送窗口就不会发送数据了。但是有一个问题,这个时候当接收窗口再调大的时候他不会主动通知发送方,这里采用的是发送方主动询问。还是画个图看的比较直观:拥塞控制一般都是由于网络中的主机发送的数据太多导致的拥塞,一般拥塞的都是一些负载比较高的路由,这时候为了获得更好的数据传输稳定性,我们必须采用拥塞控制,当然也为了减轻路由的负载防止崩溃。这里主要介绍两个拥塞控制的方法,一个是慢开始,另外一个称为快恢复。那么问题来了,为什么需要序号呢?为什么又是三次握手而不是两次?以及什么是 SYN 洪泛攻击?这里需要说明一下的是最后的那个长长的 TIME_WAIT 状态一般是为了客户端能够发出 ACK 一般他的值是 1分钟 或者2分钟好了,今天真的写了不少,主要就是把 TCP 的可靠传输以及连接管理讲清楚了,以及里面的一下细节问题,真的很花时间。然后其他没有涉及到的就是关于 TCP 的头并没有详细的去分析,这个东西其实也不是很难,但是现在篇幅真的已经很大就先这样,头里面的都是固定的不需要太多的理解。

TCP协议解析
主要特点:面向连接、面向字节流、全双工通信、通信可靠。优缺点:应用场景:要求通信数据可靠时,即 数据要准确无误地传递给对方。如:传输文件:HTTP、HTTPS、FTP等协议;传输邮件:POP、SMTP等协议ps:首部的前 20 个字节固定,后面有 4n 字节根据需要增加。故 TCP首部最小长度 = 20字节(最大60个字节)。TCP报头中的源端口号和目的端口号同IP数据报中的源IP与目的IP唯一确定一条TCP连接。重要字段:客户端与服务器来回共发送三个TCP报文段来建立运输连接,三个TCP报文段分别为:(1)客户端A向服务器B发送的TCP请求报段“SYN=1,seq=x”;(2)服务器B向客户端A发送的TCP确认报文段“SYN=1,ACK=1,seq=y,ack=x+1”;(3)客户端A向服务器B发送的TCP确认报文段“ACK=1,seq=x+1,ack=y+1”。ps:在建立TCP连接之前,客户端和服务器都处于关闭状态(CLOSED),直到客户端主动打开连接,服务器才被动打开连接(处于监听状态 = LISTEN),等待客户端的请求。TCP 协议是一个面向连接的、安全可靠的传输层协议,三次握手的机制是为了保证能建立一个安全可靠的连接。通过上述三次握手,双方确认自己与对方的发送与接收是正常的,就建立起一条TCP连接,即可传送应用层数据。ps:因 TCP提供的是全双工通信,故通信双方的应用进程在任何时候都能发送数据;三次握手期间,任何1次未收到对面的回复,则都会重发。为什么两次握手不行呢?结论:防止服务器接收了早已经失效的连接请求报文,服务器同意连接,从而一直等待客户端请求,最终导致形成死锁、浪费资源。ps:SYN洪泛攻击:(具体见下文)为什么不需要四次握手呢?SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK确认序号标志消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。如何来解决半连接攻击?如何来解决全连接攻击?请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,客户端才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果服务器一收到 客户端的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,服务器结束 TCP 连接的时间要早于客户端。TCP是全双工的连接,必须两端同时关闭连接,连接才算真正关闭。简言之,客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器才会发送 FIN 连接释放报文,对方确认后就完全关闭了TCP连接。举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。ps:设想这样一个情景:客户端已主动与服务器建立了 TCP 连接。但后来客户端的主机突然发生故障。显然,服务器以后就不能再收到客户端发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就需要使用TCP的保活计时器。基本原理:tcp11种状态及变迁其实基本包含在正常的三次握手和四次挥手中,除开CLOSING。正常的三次握手包括4中状态变迁:服务器打开监听(LISTEN)->客户端先发起SYN主动连接标识->服务器回复SYN及ACK确认->客户端再确认即三次握手TCP连接成功。这里边涉及四种状态及变迁:正常的四次握手包含6种tcp状态变迁,如主动发起关闭方为客户端:客户端发送FIN进入FIN_WAIT1 -> 服务器发送ACK确认并进入CLOSE_WAIT(被动关闭)状态->客户端收到ACK确认后进入FIN_WAIT2状态 -> 服务器再发送FIN进入LAST_ACK状态 -> 客户端收到服务器的FIN后发送ACK确认进入TIME_WAIT状态 -> 服务器收到ACK确认后进入CLOSED状态断开连接 -> 客户端在等待2MSL的时间如果期间没有收到服务器的相关包,则进入CLOSED状态断开连接。CLOSING状态:连接断开期间,一般是客户端发送一个FIN,然后服务器回复一个ACK,然后服务器发送完数据后再回复一个FIN,当客户端和服务器同时接受到FIN时,客户端和服务器处于CLOSING状态,也就是此时双方都正在关闭同一个连接。在进入CLOSING状态后,只要收到了对方对自己发送的FIN的ACK,收到FIN的ACK确认就进入TIME_WAIT状态,因此,如果RTT(Round Trip Time TCP包的往返延时)处在一个可接受的范围内,发出的FIN会很快被ACK从而进入到TIME_WAIT状态,CLOSING状态持续的时间就特别短,因此很难看到这种状态。我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。应用场景:UDP协议比TCP协议的效率更高,TCP协议比UDP协议更加安全可靠。下面主要对数据传输出现错误/无应答/堵塞/超时/重复等问题。注意:TCP丢包:TCP是基于不可靠的网路实现可靠传输,肯定会存在丢包问题。如果在通信过程中,发现缺少数据或者丢包,那边么最大的可能性是程序发送过程或者接受过程中出现问题。总结:为了满足TCP协议不丢包,即保证可靠传输,规定如下:注意:TCP丢包有三方面的原因,一是网络的传输质量不好,二是安全策略,三是服务器性能瓶颈先理解2个基础概念:发送窗口、接收窗口工作原理:注意点:关于滑动窗口的知识点:滑动窗口中的数据类型:ARQ解决的问题:出现差错时,让发送方重传差错数据:即 出错重传类型:流量控制和拥塞控制解决的问题:当接收方来不及接收收到的数据时,可通知发送方降低发送数据的效率:即 速度匹配流量控制:注意:拥塞控制:慢开始与拥塞避免:快重传和快恢复:补充:流量控制和拥塞控制的区别什么情况造成TCP粘包和拆包?解决TCP粘包和拆包的方法:传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式,只是实现不在传输层,实现转移到了应用层。最简单的方式是在应用层模仿传输层TCP的可靠性传输。下面不考虑拥塞处理,可靠UDP的简单设计。https://www.jianshu.com/p/65605622234bhttp://www.open-open.com/lib/view/open1517213611158.htmlhttps://blog.csdn.net/dangzhangjing97/article/details/81008836https://blog.csdn.net/qq_30108237/article/details/107057946https://www.jianshu.com/p/6c73a4585eba

TCP/IP详解卷一 ——tcp
即使端口处于2MSL状态,使用该选项,仍然能够在该端口建立连接。服务器常会设置该选项,以防服务器重启。如果在TIME_WAIT时间内,收到了对端发送来的数据报(不是重置报文段都行),那么该状态将被破坏,称为时间等待错误。原因是,当收到报文段以后,通常Seq是旧的,所以本端就会发送ACK,对端已经关闭或者是别的连接,就会发送RST,导致TIME_WAIT状态被破坏。但是许多系统规定,TIME_WAIT状态是不对重置报文段做出反应。两端同时发送FIN,两端又同时ACK。又同时进入TIME_WAIT当处于TIME_WAIT的主机崩溃以后,重启,然后需要等待相当与一个MSL的时间才能建立新的连接。这段时间成为静默时间。当一段发现到达的报文段对相关连接(也就是进程,套接字对)而言不正确的时候,TCP就会发送一个重置报文段,从而导致对端的连接快速拆卸(也就是结束吧!)。重置报文段的ACK位必须有,而且ACK的值必须在正确的窗口范围内,这样可以防止被攻击。FIN正常关闭一条连接成为有序释放,通常不会出现丢失数据的情况。重置报文段终止一条连接成为终止释放。重置报文段在任何时候都可以发送,代替FIN来终止连接,且不学校对端ACK终止报文段特性:当该数值设置为0,那么也意味着,不会再连接终止之前为了确保本端缓存中的数据都发送出去而等待。TCP在发送数据时会设置计时器,如果计时器超时认为受到数据确认信息,就会引发相应的超时,或给予计时器的重传操作,计时器超时时成为重传超时(RTO)。TCP累计确认无法返回新的ACK,或者当ACK包含选择确认信息(SACK)时,表明出现书序数据报,空洞。就会引起快速重传。若RTO短与RTT,那么没分都会重传,反之,整个网络利用率就会随之下降。RTT样本:TCP在收到数据后会返回确认信息ACK,该信息中携带一个字节的数据,测量传输该确认需要的时间,该测量结果成为RTT样本。每个连接的RTT军独立计算。如何根据RTT来设置RTO,有如下的方法公式: SRTT=a*SRTT+(1-a)RTT ,a取 0.8-0.9 。当TCP运行在RTT变化较大的网络中,无法取得期望的结果。以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补因为丢失ACK,或者实际RTT显著增长,可能出现伪超时的现象。以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补每个包可以选择各自的传送路径。某些高级路由器的采用多个并行数据链路,不同的处理演示也会导致包的离开顺序和到达顺序不匹配包的失序会造成重传,很近单嘛,前面一个小号的Seq没到达,后面的先到达,那么ACK就会 重复当TCP超时重发是,循序执行重新租宝,发送送一个更大的报文段提高性能,不超过MSS和MTU。出现在每次传送的包较小,又丢包的情况每个交互键通常会生成一个单独的数据报,也就是每个按键是独立传输的。ssh调用一个shell,对客户端输入的字符做出辉县,因此,每个字符生成4个tcp数据段,客户端的交互按键输入,服务器对按键的ACK,服务器生成的辉县,客户端对回显的ACK。通常第二段和第三段合并,成为捎带延时确认。PSH位设置,意味着发送端的缓存为空,也就是没什么可以发送了。许多情况下,TCP并不是对每个到来的包都单独的ACK,利用累计ACK可以确认之前的ACK。累计确认可以允许TCP延时一段时间发送ACK,以便将ACK和相同方向上需要传输的数据结合发。这种捎带传输的方法常用于批量数据传输。不能任意的延迟ACK,会造成重传。同时当失序发生时,必须立刻传送ACK。系统可以设置,一般延时为200-600毫秒。该算法要求,当TCP连接中有在传数据(那些已发送,但是未确认的数据)时,小的报文段就不能被发送,知道所有的数据都受到ACK。并且受到ACK后,TCP收集这些小的数据,整合到一个报文段中发送。这种方法破事TCP遵循等停规程,只有收到所有传送数据的ACK后才能继续发送新数据。该算法的不同之处在于他实现了自时钟控制,ACK返回越快,传输也越快。在相对高延迟的广域网中,更需要减小小报文的数目,该算法使得单位时间内发送的报文数目更少,RTT控制发包速率。该算法减少小包数目的同时,也增大了传输时延,也就是总的发送时间。窗口大小表明本端可用缓存大小,对端传送的数据不应该超过改大小。也表明对端发送的数据的最大大小为TCP头部ACK号和窗口大小字段之和。也就是Seq = ACK+MSSTCP活动的两端都维护一个发送窗口结构和接受窗口结构。TCP以字节为单位维护窗口结构。每个TCP报文段都包含ACK号和窗口通告信息,TCP发送端可以据此调节窗口结构。窗口左边界不能左移。窗口的动作分为,关闭(收到ACK,左边右移),打开(MSS扩大,右边右移),收缩(MSS减小,右边左移)当收到ACK号增大,而MSS不变时窗口向前滑动当当左边界与右边界相等时,成为零窗口,此时发送端不能在发送新的数据,这种情况下,TCP开始探测对端窗口,伺机增大窗口。当接受窗口值变为0是,可以邮箱的组织发送端继续发送,知道窗口大小回复为非0值。当接收端窗口得到可用空间是,就会给发送端传输一个窗口更新,告知器可以继续发送数据,这样的这样的窗口更新通常不包含数据,成为纯ACK,因此不能保证传输的可靠性。如果一端的窗口更新ACK丢失,通信双方就会处于等待状态。为避免这种情况发生。发送端会采用一个持续计时器间歇性的查询接收端,看其窗口是否已经增长。持续计时器会触发窗口探测的传输,强制要求对端返回ACK。窗口探测包包含一个字节数据,采用TCP传输,因此可以避免窗口更新丢失导致的死锁。因为包含一个字节数据Seq改变,接受端必须处理,如果接受就会ACK。窗口大小还是0,那么就会丢弃该报,没有响应。这时候发送端会持续的发送窗口探测包。当接收端通告窗口较小,或者发送端发送的数据较小。这样数据报的有效携带率小,耗费网络资源多。避免方法以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补以后再补

详解 TCP(上)
让我们来看看这张图首先来了解每个部分的意义其他部分解释在这里:为什么建链接要 3 次握手,断链接需要 4 次挥手?另有一些需要注意的地方:Again,使用tcp_tw_reuse和tcp_tw_recycle来解决TIME_WAIT的问题是非常非常危险的,因为这两个参数违反了TCP协议(RFC 1122)SeqNum 的增加是和传输的字节数相关的。上图中,三次握手后,来了两个 Len:1440 的包,而第二个包的 SeqNum 就成了 1441。然后第一个 ACK 回的是 1441,表示第一个 1440 收到了。注意:如果你用 Wireshark 抓包程序看 3 次握手,你会发现 SeqNum 总是为 0,不是这样的,Wireshark 为了显示更友好,使用了 Relative SeqNum ——相对序号,你只要在右键菜单中的 protocol preference 中取消掉就可以看到“Absolute SeqNum”了TCP 要保证所有的数据包都可以到达,所以,必需要有重传机制。比如:发送端发了 1,2,3,4,5 五个包,接收端收到了 1,2 于是返回 ack 3,然后收到了 4(3 没收到)。此时的 TCP 会怎么办?因为正如前面所说的,SeqNum 和 Ack 是以字节数为单位,所以 ack 的时候,不能跳着确认,只能确认最大的连续收到的包,不然,发送端就以为之前的都收到了。有这样一个简单的办法:不回 ack,死等 3。当发送方发现收不到 3 的 ack 超时后,会重传 3。一旦接收方收到 3 后,会 ack 回 4——意味着 3 和 4 都收到了。但是这样有个非常大的 BUG,不回 ACK 那收到的 4,5 也不告诉发送方,这样发送方很有可能会认为 4,5 也没有到。导致 4,5 的重传于是,TCP引入了一种叫Fast Retransmit的算法,不以时间驱动,而以数据驱动重传。也就是说,如果,包没有连续到达,就 ack 最后那个可能被丢了的包,如果发送方连续收到 3 次相同的ack,就重传。Fast Retransmit 的好处是不用等 timeout 了再重传。比如说:我收到了 3 没收到 2,返回 ack2我又收到了 4 但还是没收到 2,返回 ack2但是 TMD 我又收到了 5 就是没收到 2,还是返回 ack2这个时候,不用等 timeout 的发送方就知道了 2 怕是掉了。于是会重新发 2。然后我接收到了我就返回 ack6**快速重传只解决了一个问题:不再需要等 timeout 就可以重新传包了。那重传多少呢?我知道 4 丢了,那要不要重传 5,6,7 呢? **所以就有了另一个更好的办法:Selective Acknowledgment (SACK)。这种方式需要在 TCP 头里加一个 SACK 的东西,ACK 还是 Fast Retransmit 的 ACK,SACK 则是汇报收到的数据碎版。参看下图:这样,在发送端就可以根据回传的 SACK 知道哪些数据到了,哪些数据没有到。于是就优化了 Fast Retransmit 的算法。当然,这个协议需要两边都支持。在 Linux下,可以通过tcp_sack参数打开这个功能(Linux 2.4后默认打开)。这里还需要注意一个问题——接收方 Reneging,所谓 Reneging 的意思就是接收方有权把已经报给发送端 SACK 里的数据给丢了。这样干是不被鼓励的,因为这个事会把问题复杂化了,但是,接收方这么做可能会有些极端情况,比如要把内存给别的更重要的东西。所以,发送方也不能完全依赖 SACK,还是要依赖 ACK,并维护 Time-Out,如果后续的 ACK 没有增长,那么还是要把 SACK 的东西重传,另外,接收端这边永远不能把 SACK 的包标记为 Ack。注意:SACK 会消费发送方的资源,试想,如果一个攻击者给数据发送方发一堆 SACK 的选项,这会导致发送方开始要重传甚至遍历已经发出的数据,这会消耗很多发送端的资源。详细的东西请参看《 TCP SACK的性能权衡 》Duplicate SACK 又称 D-SACK,其主要使用了 SACK 来告诉发送方有哪些数据被重复接收了。D-SACK 使用了 SACK 的第一个段来做标志下面的示例中,丢了两个 ACK,所以,发送端重传了第一个数据包(3000-3499),于是接收端发现重复收到,于是回了一个SACK=3000-3500,因为 ACK 都到了 4000 意味着收到了 4000 之前的所有数据,所以这个 SACK 就是 D-SACK——旨在告诉发送端我收到了重复的数据,而且我们的发送端还知道,数据包没有丢,丢的是 ACK 包。下面的示例中,网络包(1000-1499)被网络给延误了,导致发送方没有收到 ACK,而后面到达的三个包触发了“Fast Retransmit算法”,所以重传,但重传时,被延误的包又到了,所以,回了一个SACK=1000-1500,因为 ACK 已到了3000,所以,这个 SACK 是D-SACK——标识收到了重复的包。这个案例下,发送端知道之前因为“Fast Retransmit算法”触发的重传不是因为发出去的包丢了,也不是因为回应的 ACK 包丢了,而是因为网络延时了。可见,引入了D-SACK,有这么几个好处:知道这些东西可以很好得帮助TCP了解网络情况,从而可以更好的做网络上的流控。Linux 下的 tcp_dsack 参数用于开启这个功能(Linux 2.4后默认打开)陈皓大神讲的真的非常非常好,我仔仔细细把这篇文章过了一遍。

TCP是什么意思
TCP是一种传输控制协议,是面向连接的、可靠的、基于字节流之间的传输层通信协议,由IETF的RFC 793定义。在简化的计算机网络OSI模型中,TCP完成第四层传输层所指定的功能,用户数据报协议(UDP)是同一层内另一个重要的传输协议。在因特网协议族(Internet protocol suite)里面,TCP层是在IP层上面,应用层下面的一个中间层。不同主机的应用层之间经常会要用到可靠的、像管道一样的连接,但是IP层不会提供这样的流机制,而是提供不可靠的包交换。扩展资料:当应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,TCP则把数据流分割成适当长度的报文段,最大传输段大小(MSS)通常受该计算机连接的网络的数据链路层的最大传送单元(MTU)限制。之后TCP把数据包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。TCP为了保证报文传输的可靠,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。参考资料:百度百科-TCP (传输控制协议)
TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议。拓展资料:在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能,用户数据报协议是同一层内另一个重要的传输协议。在因特网协议族中,TCP层是位于IP层之上,应用层之下的中间层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。功能:当应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,TCP则把数据流分割成适当长度的报文段,最大传输段大小通常受该计算机连接的网络的数据链路层的最大传送单元限制。之后TCP把数据包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。
TCP:传输控制协议 (TCP:Transmission Control Protocol)传输控制协议 TCP 是 TCP/IP 协议栈中的传输层协议,它通过序列确认以及包重发机制,提供可靠的数据流发送和到应用程序的虚拟连接服务。与 IP 协议相结合, TCP 组成了因特网协议的核心。由于大多数网络应用程序都在同一台机器上运行,计算机上必须能够确保目的地机器上的软件程序能从源地址机器处获得数据包,以及源计算机能收到正确的回复。这是通过使用 TCP 的“端口号”完成的。网络 IP 地址和端口号结合成为唯一的标识 , 我们称之为“套接字”或“端点”。 TCP 在端点间建立连接或虚拟电路进行可靠通信。TCP 服务提供了数据流传输、可靠性、有效流控制、全双工操作和多路复用技术等。关于流数据传输 ,TCP 交付一个由序列号定义的无结构的字节流。 这个服务对应用程序有利,因为在送出到 TCP 之前应用程序不需要将数据划分成块, TCP 可以将字节整合成字段,然后传给 IP 进行发送。TCP 通过面向连接的、端到端的可靠数据报发送来保证可靠性。 TCP 在字节上加上一个递进的确认序列号来告诉接收者发送者期望收到的下一个字节。如果在规定时间内,没有收到关于这个包的确认响应,重新发送此包。 TCP 的可靠机制允许设备处理丢失、延时、重复及读错的包。超时机制允许设备监测丢失包并请求重发。TCP 提供了有效流控制。当向发送者返回确认响应时,接收 TCP 进程就会说明它能接收并保证缓存不会发生溢出的最高序列号。全双工操作: TCP 进程能够同时发送和接收包。 TCP 中的多路技术:大量同时发生的上层会话能在单个连接上时进行多路复用。
TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能,用户数据报协议(UDP)是同一层内另一个重要的传输协议。在因特网协议族(Internet protocol suite)中,TCP层是位于IP层之上,应用层之下的中间层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。
两个核心协议:TCP(传输控制协议)和IP(网际协议)TCP使用三次握手协议建立连接。三次握手完成,TCP客户端和服务器端成功地建立连接,可以开始传输数据了。(HTTP是一个客户端和服务器端请求和应答的标准(TCP),它是建立在TCP协议之上的一种应用。)IP实现两个基本功能:寻址和分段。IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。IP协议是找到对方的详细地址,TCP协议是把安全的把数据传输给对方。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/61118.html。