TCP三次握手原理?
一、TCP握手协议 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。完成三次握手,客户端与服务器开始传送数据,在上述过程中,还有一些重要的概念:未连接队列:在三次握手协议中,服务器维护一个未连接队列,该队列为每个客户端的SYN包(syn=j)开设一个条目,该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包。这些条目所标识的连接在服务器处于Syn_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态。Backlog参数:表示未连接队列的最大容纳数目。SYN-ACK 重传次数 服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传,如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。注意,每次重传等待的时间不一定相同。 半连接存活时间:是指半连接队列的条目存活的最长时间,也即服务从收到SYN包到确认这个报文无效的最长时间,该时间值是所有重传请求包的最长等待时间总和。有时我们也称半连接存活时间为Timeout时间、SYN_RECV存活时间。

TCP三次握手怎么建立???原理是什么
建立连接协议(三次握手) (1)客户端发送一个带SYN标志的TCP报文到服务器。这是三次握手过程中的报文1。(2) 服务器端回应客户端的,这是三次握手中的第2个报文,这个报文同时带ACK标志和SYN标志。因此它表示对刚才客户端SYN报文的回应;同时又标志SYN给客户端,询问客户端是否准备好进行数据通讯。 (3) 客户必须再次回应服务段一个ACK报文,这是报文段3。

什么是TCP的三次握手原理?
1、对每次发送的数据量跟踪进行协商,使数据段的发送和接收同步 2、根据所接收到的数据量而确定的数据确认数及数据发送 3、接收完毕后撤销联系,并建立虚连接。

TCP/IP三次握手具体过程是什么?
端口扫描,这种入侵检测方法大家想必都经常用到,但是你对这些方法的基本原理又了解多少呢? 首先,你可以选择都种工具,本人喜欢nmap for linux,但不是常在linux下混,毕竟还是windows方便点,呵呵,高手别笑我哦!下面谈下端口扫描方式!大体可以分为两种,TCP扫描和秘密扫描TCP扫描最常见的有两种全扫描、半扫描说到TCP,就一定要谈3次握手客户端——SYN——>服务器客户端<——SYN+ACK——服务器客户端——ACK——〉服务器这就是3次握手,也就是全扫描的全过程,但是,由于这种方式要与目标建立连接,所以一定会被记录下来,所以,这种扫描方式是不隐密的,容易暴露身份。所以,就有了半扫描这种扫描方式,会发送一个SYN包给目标服务器,然后如果对方在特定端口监听,就会回复一个ACK+SYN,如果主机在活动,但没有监听特定端口,就会回一个RST包。这种方法并没有完成3次握手,所以一般不会被主机记录。下面,我们就抛开TCP协议,看看有没有办法通过其他方式扫描!说到文件传送,大家最先想到的就应该是FTP协议了,那么,能不能通过FTP扫描呢?答案是可以,出于设计上的需要,当FTP客户端要以主动模式请求传送数据时,服务器必须要建立一个返回到客户机端口上的连接客户端发出PORT命令,以IP和端口作为参数,如果参数中有另一台主机的IP数据,服务器将与这台主机相连。我们就利用FTP的这种特点来执行代理端口扫描。 还有FIN,ident,XMAS扫描等等,由于时间关系和其他种种原因,我现在就不讲了,lz有兴趣,可以加我大家一起探讨~
TCP需要三次握手才能建立连接,那么为什么需要三次握手呢?

为了消除重复连接请求的三次握手方法是怎样工作的?
所谓的“三握手”:对每次发送的数据量是怎样跟踪进行协商使数据段的发送和接收同步,根据所接收到的数据 量而确定的数据确认数及数据发送、接收完毕后何时撤消联系,并建立虚连接。为了提供可靠的传送,TCP 在发送新的数据之前,以特定的顺序将数据包的序号,并需要这些包传送给目标机之后的确认消息。TCP 总是用来发送大批量的数据。当应用程序在收到数据后要做出确认时也要用到TCP。 [编辑本段]三次握手-释意 TCP握手协议 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;三次握手协议第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。完成三次握手,客户端与服务器开始传送数据,在上述过程中,还有一些重要的概念:未连接队列:在三次握手协议中,服务器维护一个未连接队列,该队列为每个客户端的SYN包(syn=j)开设一个条目,该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包。这些条目所标识的连接在服务器处于Syn_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态。Backlog参数:表示未连接队列的最大容纳数目。SYN-ACK 重传次数 服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传,如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。注意,每次重传等待的时间不一定相同。半连接存活时间:是指半连接队列的条目存活的最长时间,也即服务从收到SYN包到确认这个报文无效的最长时间,该时间值是所有重传请求包的最长等待时间总和。有时我们也称半连接存活时间为Timeout时间、SYN_RECV存活时间。[1] * SYN:同步标志同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立TCP连接时有效。它提示TCP连接的服务端检查序列编号,该序列编号为TCP连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP序列编号看作是一个范围从0到4,294,967,295的32位计数器。通过TCP连接交换的数据中每一个字节都经过序列编号。在TCP报头中的序列编号栏包括了TCP分段中第一个字节的序列编号。*ACK:确认标志确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。TCP报头内的确认编号栏内包含的确认编号(w+1,Figure-1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。*RST:复位标志复位标志有效。用于复位相应的TCP连接。*URG:紧急标志紧急(The urgent pointer) 标志有效。紧急标志置位,*PSH:推标志该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用处理。在处理 telnet 或 rlogin 等交互模式的连接时,该标志总是置位的。*FIN:结束标志带有该标志置位的数据包用来结束一个TCP回话,但对应端口仍处于开放状态,准备接收后续数据。 [编辑本段]三次握手协议-工作原理 由于TCP 需要时刻跟踪,这需要额外开销,使得TCP 的格式有些显得复杂。下面就让我们看一个TCP 的三次握手协议经典案例,这是后来被称为MITNICK 攻击中KEVIN 开创了两种攻击技术:TCP 会话劫持和SYN FLOOD(同步洪流)在这里我们讨论的是TCP 会话劫持的问题。先让我们明白TCP 建立连接的基本简单的过程。为了建设一个小型的模仿环境我们假设有3 台接入互联网的机器。A 为攻击者操纵的攻击机。B 为中介跳板机器(受信任的服务器)。C 为受害者使用的机器(多是服务器),这里把C 机器锁定为目标机器。A 机器向B机器发送SYN 包,请求建立连接,这时已经响应请求的B 机器会向A 机器回应SYN/ACK表明同意建立连接,当A 机器接受到B 机器发送的SYN/ACK 回应时,发送应答ACK 建立A 机器与B 机器的网络连接。这样一个两台机器之间的TCP 通话信道就建立成功了。B 终端受信任的服务器向C 机器发起TCP 连接,A 机器对服务器发起SYN 信息,使C 机器不能响应B 机器。在同时A 机器也向B 机器发送虚假的C 机器回应的SYN 数据包,接收到SYN 数据包的B 机器(被C 机器信任)开始发送应答连接建立的SYN/ACK 数据包,这时C 机器正在忙于响应以前发送的SYN 数据而无暇回应B 机器,而A 机器的攻击者预测出B 机器包的序列号(现在的TCP 序列号预测难度有所加大)假冒C 机器向B 机器发送应答ACK 这时攻击者骗取B 机器的信任,假冒C 机器与B 机器建立起TCP 协议的对话连接。这个时候的C 机器还是在响应攻击者A 机器发送的SYN 数据。 TCP 协议栈的弱点:TCP 连接的资源消耗,其中包括:数据包信息、条件状态、序列号等。通过故意不完成建立连接所需要的三次握手过程,造成连接一方的资源耗尽。通过攻击者有意的不完成建立连接所需要的三次握手的全过程,从而造成了C 机器的资源耗尽。序列号的可预测性,目标主机应答连接请求时返回的SYN/ACK 的序列号是可预测的。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/61366.html。