tcp协议实现过程(tcp协议的释放过程)

      最后更新:2023-03-31 12:28:12 手机定位技术交流文章

      简述tcp协议的工作过程

      TCP/IP协议(又名:网络通讯协议)即传输控制协议/互联网协议,是一个网络通信模型,以及一整个网络传输协议家族。这一模型是Internet最基本的协议,也是Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。 其定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。TCP负责发现传输的问题,而IP是给因特网的每一台联网设备规定一个地址。 为了减少网络设计的复杂性,大多数网络都采用分层结构。对于不同的网络,层的数量、名字、内容和功能都不尽相同。在相同的网络中,一台机器上的第N层与另一台机器上的第N层可利用第N层协议进行通信,协议基本上是双方关于如何进行通信所达成的一致。不同机器中包含的对应层的实体叫做对等进程。在对等进程利用协议进行通信时,实际上并不是直接将数据从一台机器的第N层传送到另一台机器的第N层,而是每一层都把数据连同该层的控制信息打包交给它的下一层,它的下一层把这些内容看做数据,再加上它这一层的控制信息一起交给更下一层,依此类推,直到最下层。最下层是物理介质,它进行实际的通信。相邻层之间有接口,接口定义下层向上层提供的原语操作和服务。相邻层之间要交换信息,对等接口必须有一致同意的规则。层和协议的集合被称为网络体系结构。每一层中的活动元素通常称为实体,实体既可以是软件实体,也可以是硬件实体。第N层实体实现的服务被第N+1层所使用。在这种情况下,第N层称为服务提供者,第N+1层称为服务用户。服务是在服务接入点提供给上层使用的。服务可分为面向连接的服务和面向无连接的服务,它在形式上是由一组原语来描述的。这些原语可供访问该服务的用户及其他实体使用。TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。 面向连接的服务(例如 Telnet、 FTP、 rlogin、 X Windows和 SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收 域名数据库),但使用UDP传送有关单个主机的信息。
      简述tcp协议的工作过程

      TCP协议原理

      一个数据包的生命过程:数据包如何送达主机、主机如何将数据包转交给应用、数据是如何被完整地送达应用程序 互联网,实际上是一套理念和协议组成的体系架构 。其中,协议是一套众所周知的规则和标准,如果各方都同意使用,那么它们之间的通信将变得毫无障碍。数据通信是通过数据包来传输的。如果发送的数据很大,那么该数据就会被拆分为很多小数据包来传输。之后再由接收方按照数据包中的一定规则将小的数据包整合成全部数据。IP 是非常底层的协议,只负责把数据包传送到对方电脑,不负责该数据包将由哪个程序去使用。数据包要在互联网上进行传输,就要符合网际协议(Internet Protocol,简称 IP)标准。计算机的地址就称为 IP 地址,访问任何网站实际上只是你的计算机向另外一台计算机请求信息。简单理解数据传输过程就是:装包和拆包。 如果要想把一个数据包从主机 A 发送给主机 B,那么在传输之前,数据包上会被附加上主机 B 的 IP 地址信息,这样在传输过程中才能正确寻址。额外地,数据包上还会附加上主机 A 本身的 IP 地址,有了这些信息主机 B 才可以回复信息给主机 A。这些附加的信息会被装进一个叫 IP 头的数据结构里。IP 头是 IP 数据包开头的信息,包含 IP 版本、源 IP 地址、目标 IP 地址、生存时间等信息。过程:1、上层将含有“数据”的数据包交给网络层;2、网络层再将 IP 头附加到数据包上,组成新的 IP 数据包,并交给底层;3、底层通过物理网络将数据包传输给主机 B;4、数据包被传输到主机 B 的网络层,在这里主机 B 拆开数据包的 IP 头信息,并将拆开来的数据部分交给上层;5、最终,含有“数据”信息的数据包就到达了主机 B 的上层了。基于 IP 之上开发能和应用打交道的协议,最常见的是“用户数据包协议(User Datagram Protocol)”,简称 UDP。负责将传输的数据包交给某一应用程序。UDP 中一个最重要的信息是端口号,端口号其实就是一个数字,每个想访问网络的程序都需要绑定一个端口号。通过端口号 UDP 就能把指定的数据包发送给指定的程序了, 所以 IP 通过 IP 地址信息把数据包发送给指定的电脑,而 UDP 通过端口号把数据包分发给正确的程序。 和 IP 头一样,端口号会被装进 UDP 头里面,UDP 头再和原始数据包合并组成新的 UDP 数据包。UDP 头中除了目的端口,还有源端口号等信息。为了支持 UDP 协议,我把前面的三层结构扩充为四层结构,在网络层和上层之间增加了传输层过程:1、 上层将数据包交给传输层;传输层会在数据包前面附加上 UDP 头,组成新的 UDP 数据包,再将新的 UDP 数据包交给网络层;2、网络层再将 IP 头附加到数据包上,组成新的 IP 数据包,并交给底层;3、数据包被传输到主机 B 的网络层,在这里主机 B 拆开 IP 头信息,并将拆开来的数据部分交给传输层;4、在传输层,数据包中的 UDP 头会被拆开,并根据 UDP 中所提供的端口号,把数据部分交给上层的应用程序;5、最终,含有信息的数据包就旅行到了主机 B 上层应用程序这里。在使用 UDP 发送数据时,有各种因素会导致数据包出错,虽然 UDP 可以校验数据是否正确,但是对于错误的数据包, UDP 并不提供重发机制,只是丢弃当前的包 ,而且 UDP 在发送之后也无法知道是否能达到目的地。虽说UDP 不能保证数据可靠性,但是传输速度却非常快 ,所以 UDP 会应用在一些关注速度、但不那么严格要求数据完整性的领域,如在线视频、互动游戏等上文说到的使用UDP 来传输会存在两个问题 :1、数据包在传输过程中容易丢失;2、大文件会被拆分成很多小的数据包来传输,这些小的数据包会经过不同的路由,并在不同的时间到达接收端,而 UDP 协议并不知道如何组装这些数据包,从而把这些数据包还原成完整的文件。所以TCP协议很好地解决的这个问题。TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。1、对于数据包丢失的情况,TCP 提供重传机制;2、TCP 引入了数据包排序机制,用来保证把乱序的数据包组合成一个完整的文件。和 UDP 头一样,TCP 头除了包含了目标端口和本机端口号外,还提供了 用于排序的序列号 ,以便接收端通过序号来重排数据包一个完整的 TCP 连接的生命周期包括了“建立连接”“传输数据”和“断开连接”三个阶段。首先,建立连接阶段。这个阶段是通过“三次握手”来建立客户端和服务器之间的连接。TCP 提供面向连接的通信传输。面向连接是指在数据通信开始之前先做好两端之间的准备工作。所谓 三次握手 ,是指在建立一个 TCP 连接时,客户端和服务器总共要发送三个数据包以确认连接的建立。其次,传输数据阶段。在该阶段,接收端需要对每个数据包进行确认操作,也就是接收端在接收到数据包之后,需要发送确认数据包给发送端。所以当发送端发送了一个数据包之后,在规定时间内没有接收到接收端反馈的确认消息,则判断为数据包丢失,并触发发送端的重发机制。同样,一个大的文件在传输过程中会被拆分成很多小的数据包,这些数据包到达接收端后,接收端会按照 TCP 头中的序号为其排序,从而保证组成完整的数据。最后,断开连接阶段。数据传输完毕之后,就要终止连接了,涉及到最后一个阶段“ 四次挥手 ”来保证双方都能断开连接。三次握手和四次挥手限于篇幅可看另一篇文章: TCP协议中 的三次握手和四次挥手1、IP 负责把数据包送达目的主机。2、UDP 负责把数据包送达具体应用(可能会丢包)。3、而 TCP保证了数据完整地传输 ,它的连接可分为三个阶段:建立连接、传输数据和断开连接。 完整的数据流程
      TCP协议原理

      简述TCP的三次握手过程。

      TCP握手协议 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接.第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手. 完成三次握手,客户端与服务器开始传送数据
      第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认。第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态。 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。完成三次握手,客户端与服务器开始传送数据。简版:首先A向B发SYN(同步请求),然后B回复SYN+ACK(同步请求应答),最后A回复ACK确认,这样TCP的一次连接(三次握手)的过程就建立了。三次握手我们先明确两个定义:1,client为数据发送方2,server为数据接收方好,下面进行三次握手的总结:1,client想要向server发送数据,请求连接。这时client向服务器发送一个数据包,其中同步位(SYN)被置为1,表明client申请TCP连接,序号为j。2,当server接收到了来自client的数据包时,解析发现同步位为1,便知道client是想要简历TCP连接,于是将当前client的IP、端口之类的加入未连接队列中,并向client回复接受连接请求,想client发送数据包,其中同步位为1,并附带确认位ACK=j+1,表明server已经准备好分配资源了,并向client发起连接请求,请求client为建立TCP连接而分配资源。 3,client向server回复一个ACK,并分配资源建立连接。server收到这个确认时也分配资源进行连接的建立。
      A与B建立TCP连接时:首先A向B发SYN(同步请求),然后B回复SYN+ACK(同步请求应答),最后A回复ACK确认,这样TCP的一次连接(三次握手)的过程就建立了!


      简述TCP的三次握手过程。

      简述TCP协议建立连接的过程

      1,TCP使用三次握手 (three-wayhandshake)协议来建立连接,这三次握手为:请求端(通常称为客户)发送一个SYN报文段(SYN为1)指明客户打算连接的服务器的端口,以及初始顺序号(ISN)。服务器发回包含服务器的初始顺序号的SYN报文段(SYN为1)作为应答。同时,将确认号设置为客户的ISN加1以对客户的SYN报文段进行确认(ACK也为1)。客户必须将确认号设置为服务器的ISN加1以对服务器的SYN报文段进行确认(ACK为1),该报文通知目的主机双方已完成连接建立。发送第一个SYN的一端将执行主动打开(activeopen),接收这个SYN并发回下一个SYN的另一端执行被动打开(passiveopen)。另外,TCP的握手协议被精心设计为可以处理同时打开(simultaneousopen),对于同时打开它仅建立一条连接而不是两条连接。因此,连接可以由任一方或双方发起,一旦连接建立,数据就可以双向对等地流动,而没有所谓的主从关系。2,应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,然后TCP把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传送单元(MTU)的限制)。之后TCP把结果包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。TCP为了保证不发生丢包,就给每个字节一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK); 如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。TCP用一个校验和函数来检验数据是否有错误;在发送和接收时都要计算校验和。
      简述TCP协议建立连接的过程

      TCP协议解析

      主要特点:面向连接、面向字节流、全双工通信、通信可靠。优缺点:应用场景:要求通信数据可靠时,即 数据要准确无误地传递给对方。如:传输文件:HTTP、HTTPS、FTP等协议;传输邮件:POP、SMTP等协议ps:首部的前 20 个字节固定,后面有 4n 字节根据需要增加。故 TCP首部最小长度 = 20字节(最大60个字节)。TCP报头中的源端口号和目的端口号同IP数据报中的源IP与目的IP唯一确定一条TCP连接。重要字段:客户端与服务器来回共发送三个TCP报文段来建立运输连接,三个TCP报文段分别为:(1)客户端A向服务器B发送的TCP请求报段“SYN=1,seq=x”;(2)服务器B向客户端A发送的TCP确认报文段“SYN=1,ACK=1,seq=y,ack=x+1”;(3)客户端A向服务器B发送的TCP确认报文段“ACK=1,seq=x+1,ack=y+1”。ps:在建立TCP连接之前,客户端和服务器都处于关闭状态(CLOSED),直到客户端主动打开连接,服务器才被动打开连接(处于监听状态 = LISTEN),等待客户端的请求。TCP 协议是一个面向连接的、安全可靠的传输层协议,三次握手的机制是为了保证能建立一个安全可靠的连接。通过上述三次握手,双方确认自己与对方的发送与接收是正常的,就建立起一条TCP连接,即可传送应用层数据。ps:因 TCP提供的是全双工通信,故通信双方的应用进程在任何时候都能发送数据;三次握手期间,任何1次未收到对面的回复,则都会重发。为什么两次握手不行呢?结论:防止服务器接收了早已经失效的连接请求报文,服务器同意连接,从而一直等待客户端请求,最终导致形成死锁、浪费资源。ps:SYN洪泛攻击:(具体见下文)为什么不需要四次握手呢?SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK确认序号标志消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。如何来解决半连接攻击?如何来解决全连接攻击?请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,客户端才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果服务器一收到 客户端的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,服务器结束 TCP 连接的时间要早于客户端。TCP是全双工的连接,必须两端同时关闭连接,连接才算真正关闭。简言之,客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器才会发送 FIN 连接释放报文,对方确认后就完全关闭了TCP连接。举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。ps:设想这样一个情景:客户端已主动与服务器建立了 TCP 连接。但后来客户端的主机突然发生故障。显然,服务器以后就不能再收到客户端发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就需要使用TCP的保活计时器。基本原理:tcp11种状态及变迁其实基本包含在正常的三次握手和四次挥手中,除开CLOSING。正常的三次握手包括4中状态变迁:服务器打开监听(LISTEN)->客户端先发起SYN主动连接标识->服务器回复SYN及ACK确认->客户端再确认即三次握手TCP连接成功。这里边涉及四种状态及变迁:正常的四次握手包含6种tcp状态变迁,如主动发起关闭方为客户端:客户端发送FIN进入FIN_WAIT1 -> 服务器发送ACK确认并进入CLOSE_WAIT(被动关闭)状态->客户端收到ACK确认后进入FIN_WAIT2状态 -> 服务器再发送FIN进入LAST_ACK状态 -> 客户端收到服务器的FIN后发送ACK确认进入TIME_WAIT状态 -> 服务器收到ACK确认后进入CLOSED状态断开连接 -> 客户端在等待2MSL的时间如果期间没有收到服务器的相关包,则进入CLOSED状态断开连接。CLOSING状态:连接断开期间,一般是客户端发送一个FIN,然后服务器回复一个ACK,然后服务器发送完数据后再回复一个FIN,当客户端和服务器同时接受到FIN时,客户端和服务器处于CLOSING状态,也就是此时双方都正在关闭同一个连接。在进入CLOSING状态后,只要收到了对方对自己发送的FIN的ACK,收到FIN的ACK确认就进入TIME_WAIT状态,因此,如果RTT(Round Trip Time TCP包的往返延时)处在一个可接受的范围内,发出的FIN会很快被ACK从而进入到TIME_WAIT状态,CLOSING状态持续的时间就特别短,因此很难看到这种状态。我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。应用场景:UDP协议比TCP协议的效率更高,TCP协议比UDP协议更加安全可靠。下面主要对数据传输出现错误/无应答/堵塞/超时/重复等问题。注意:TCP丢包:TCP是基于不可靠的网路实现可靠传输,肯定会存在丢包问题。如果在通信过程中,发现缺少数据或者丢包,那边么最大的可能性是程序发送过程或者接受过程中出现问题。总结:为了满足TCP协议不丢包,即保证可靠传输,规定如下:注意:TCP丢包有三方面的原因,一是网络的传输质量不好,二是安全策略,三是服务器性能瓶颈先理解2个基础概念:发送窗口、接收窗口工作原理:注意点:关于滑动窗口的知识点:滑动窗口中的数据类型:ARQ解决的问题:出现差错时,让发送方重传差错数据:即 出错重传类型:流量控制和拥塞控制解决的问题:当接收方来不及接收收到的数据时,可通知发送方降低发送数据的效率:即 速度匹配流量控制:注意:拥塞控制:慢开始与拥塞避免:快重传和快恢复:补充:流量控制和拥塞控制的区别什么情况造成TCP粘包和拆包?解决TCP粘包和拆包的方法:传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式,只是实现不在传输层,实现转移到了应用层。最简单的方式是在应用层模仿传输层TCP的可靠性传输。下面不考虑拥塞处理,可靠UDP的简单设计。https://www.jianshu.com/p/65605622234bhttp://www.open-open.com/lib/view/open1517213611158.htmlhttps://blog.csdn.net/dangzhangjing97/article/details/81008836https://blog.csdn.net/qq_30108237/article/details/107057946https://www.jianshu.com/p/6c73a4585eba
      TCP协议解析

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/62286.html

          热门文章

          文章分类