tcp业务无故消耗流量是怎么回事?
TCP是指传输控制协议,是一种面向连接(连接导向)的、可靠的、基于字节流的运输层通信协议。您可在网上搜索有关“TCP”的相关信息。您可以发送“ATTX”至10010开通每日流量短信提示了解流量使用进度,或者登录我司网上营业厅 http://www.10010.com/ 首页,点击“话费查询”>“详单查询”>“上网流量”/“手机上网记录”查询上网流量详单及记录。如查询后仍存在异议,可以联系归属地客服进行解决。

计算机网络自学笔记:TCP
如果你在学习这门课程,仅仅为了理解网络工作原理,那么只要了解TCP是可靠传输,数据传输丢失时会重传就可以了。如果你还要参加研究生考试或者公司面试等,那么下面内容很有可能成为考查的知识点,主要的重点是序号/确认号的编码、超时定时器的设置、可靠传输和连接的管理。 1 TCP连接TCP面向连接,在一个应用进程开始向另一个应用进程发送数据之前,这两个进程必须先相互“握手”,即它们必须相互发送某些预备报文段,以建立连接。连接的实质是双方都初始化与连接相关的发送/接收缓冲区,以及许多TCP状态变量。这种“连接”不是一条如电话网络中端到端的电路,因为它们的状态完全保留在两个端系统中。TCP连接提供的是全双工服务 ,应用层数据就可在从进程B流向进程A的同时,也从进程A流向进程B。TCP连接也总是点对点的 ,即在单个发送方与单个接收方之间建立连接。一个客户机进程向服务器进程发送数据时,客户机进程通过套接字传递数据流。客户机操作系统中运行的 TCP软件模块首先将这些数据放到该连接的发送缓存里 ,然后会不时地从发送缓存里取出一块数据发送。TCP可从缓存中取出并放入报文段中发送的数据量受限于最大报文段长MSS,通常由最大链路层帧长度来决定(也就是底层的通信链路决定)。 例如一个链路层帧的最大长度1500字节,除去数据报头部长度20字节,TCP报文段的头部长度20字节,MSS为1460字节。报文段被往下传给网络层,网络层将其封装在网络层IP数据报中。然后这些数据报被发送到网络中。当TCP在另一端接收到一个报文段后,该报文段的数据就被放人该连接的接收缓存中。应用程序从接收缓存中读取数据流(注意是应用程序来读,不是操作系统推送)。TCP连接的每一端都有各自的发送缓存和接收缓存。因此TCP连接的组成包括:主机上的缓存、控制变量和与一个进程连接的套接字变量名,以及另一台主机上的一套缓存、控制变量和与一个进程连接的套接字。在这两台主机之间的路由器、交换机中,没有为该连接分配任何缓存和控制变量。2报文段结构TCP报文段由首部字段和一个数据字段组成。数据字段包含有应用层数据。由于MSS限制了报文段数据字段的最大长度。当TCP发送一个大文件时,TCP通常是将文件划分成长度为MSS的若干块。TCP报文段的结构。首部包括源端口号和目的端口号,它用于多路复用/多路分解来自或送至上层应用的数据。另外,TCP首部也包括校验和字段。报文段首部还包含下列字段:32比特的序号字段和32比特的确认号字段。这些字段被TCP发送方和接收方用来实现可靠数据传输服务。16比特的接收窗口字段,该字段用于流量控制。该字段用于指示接收方能够接受的字节数量。4比特的首部长度字段,该字段指示以32比特的字为单位的TCP首部长度。一般TCP首部的长度就是20字节。可选与变长的选项字段,该字段用于当发送方与接收方协商最大报文段长度,或在高速网络环境下用作窗口调节因子时使用。标志字段ACK比特用于指示确认字段中的ACK值的有效性,即该报文段包括一个对已被成功接收报文段的确认。 SYN和FIN比特用于连接建立和拆除。 PSH、URG和紧急指针字段通常没有使用。•序号和确认号TCP报文段首部两个最重要的字段是序号字段和确认号字段。TCP把数据看成一个无结构的但是有序的字节流。TCP序号是建立在传送的字节流之上,而不是建立在传送的报文段的序列之上。一个报文段的序号是该报文段首字节在字节流中的编号。例如,假设主机A上的一个进程想通过一条TCP连接向主机B上的一个进程发送一个数据流。主机A中的TCP将对数据流中的每一个字节进行编号。假定数据流由一个包含4500字节的文件组成(可以理解为应用程序调用send函数传递过来的数据长度),MSS为1000字节(链路层一次能够传输的字节数),如果主机决定数据流的首字节编号是7。TCP模块将为该数据流构建5个报文段(也就是分5个IP数据报)。第一个报文段的序号被赋为7;第二个报文段的序号被赋为1007,第三个报文段的序号被赋为2007,以此类推。前面4个报文段的长度是1000,最后一个是500。确认号要比序号难理解一些。前面讲过,TCP是全双工的,因此主机A在向主机B发送数据的同时,也可能接收来自主机B的数据。从主机B到达的每个报文段中的序号字段包含了从B流向A的数据的起始位置。 因此主机B填充进报文段的确认号是主机B期望从主机A收到的下一报文段首字节的序号。假设主机B已收到了来自主机A编号为7-1006的所有字节,同时假设它要发送一个报文段给主机A。主机B等待主机A的数据流中字节1007及后续所有字节。所以,主机B会在它发往主机A的报文段的确认号字段中填上1007。再举一个例子,假设主机B已收到一个来自主机A的包含字节7-1006的报文段,以及另一个包含字节2007-3006的报文段。由于某种原因,主机A还没有收到字节1007-2006的报文段。在这个例子中,主机A为了重组主机B的数据流,仍在等待字节1007。因此,A在收到包含字节2007-3006的报文段时,将会又一次在确认号字段中包含1007。 因为TCP只确认数据流中至第一个丢失报文段之前的字节数据,所以TCP被称为是采用累积确认。TCP的实现有两个基本的选择:1接收方立即丢弃失序报文段;2接收方保留失序的字节,并等待缺少的字节以填补该间隔。一条TCP连接的双方均可随机地选择初始序号。 这样做可以减少将那些仍在网络中的来自两台主机之间先前连接的报文段,误认为是新建连接所产生的有效报文段的可能性。•例子telnetTelnet由是一个用于远程登录的应用层协议。它运行在TCP之上,被设计成可在任意一对主机之间工作。假设主机A发起一个与主机B的Telnet会话。因为是主机A发起该会话,因此主机A被标记为客户机,主机B被标记为服务器。用户键入的每个字符(在客户机端)都会被发送至远程主机。远程主机收到后会复制一个相同的字符发回客户机,并显示在Telnet用户的屏幕上。这种“回显”用于确保由用户发送的字符已经被远程主机收到并处理。因此,在从用户击键到字符显示在用户屏幕上之间的这段时间内,每个字符在网络中传输了两次。现在假设用户输入了一个字符“C”,假设客户机和服务器的起始序号分别是42和79。前面讲过,一个报文段的序号就是该报文段数据字段首字节的序号。因此,客户机发送的第一个报文段的序号为42,服务器发送的第一个报文段的序号为79。前面讲过,确认号就是主机期待的数据的下一个字节序号。在TCP连接建立后但没有发送任何数据之前,客户机等待字节79,而服务器等待字节42。如图所示,共发了3个报文段。第一个报文段是由客户机发往服务器,其数据字段里包含一字节的字符“C”的ASCII码,其序号字段里是42。另外,由于客户机还没有接收到来自服务器的任何数据,因此该报文段中的确认号字段里是79。第二个报文段是由服务器发往客户机。它有两个目的:第一个目的是为服务器所收到的数据提供确认。服务器通过在确认号字段中填入43,告诉客户机它已经成功地收到字节42及以前的所有字节,现在正等待着字节43的出现。第二个目的是回显字符“C”。因此,在第二个报文段的数据字段里填入的是字符“C”的ASCII码,第二个报文段的序号为79,它是该TCP连接上从服务器到客户机的数据流的起始序号,也是服务器要发送的第一个字节的数据。这里客户机到服务器的数据的确认被装载在一个服务器到客户机的数据的报文段中,这种确认被称为是捎带确认.第三个报文段是从客户机发往服务器的。它的唯一目的是确认已从服务器收到的数据。3往返时延的估计与超时TCP如同前面所讲的rdt协议一样,采用超时/重传机制来处理报文段的丢失问题。最重要的一个问题就是超时间隔长度的设置。显然,超时间隔必须大于TCP连接的往返时延RTT,即从一个报文段发出到收到其确认时。否则会造成不必要的重传。•估计往返时延TCP估计发送方与接收方之间的往返时延是通过采集报文段的样本RTT来实现的,就是从某报文段被发出到对该报文段的确认被收到之间的时间长度。也就是说TCP为一个已发送的但目前尚未被确认的报文段估计sampleRTT,从而产生一个接近每个RTT的采样值。但是,TCP不会为重传的报文段计算RTT。为了估计一个典型的RTT,采取了某种对RTT取平均值的办法。TCP据下列公式来更新EstimatedRTT=(1-)*EstimatedRTT+*SampleRTT即估计RTT的新值是由以前估计的RTT值与sampleRTT新值加权组合而成的。参考值是a=0.125,因此是一个加权平均值。显然这个加权平均对最新样本赋予的权值要大于对老样本赋予的权值。因为越新的样本能更好地反映出网络当前的拥塞情况。从统计学观点来讲,这种平均被称为指数加权移动平均除了估算RTT外,还需要测量RTT的变化,RTT偏差的程度,因为直接使用平均值设置计时器会有问题(太灵敏)。DevRTT=(1-β)*DevRTT+β*|SampleRTT-EstimatedRTT|RTT偏差也使用了指数加权移动平均。B取值0.25.•设置和管理重传超时间隔假设已经得到了估计RTT值和RTT偏差值,那么TCP超时间隔应该用什么值呢?TCP将超时间隔设置成大于等于估计RTT值和4倍的RTT偏差值,否则将造成不必要的重传。但是超时间隔也不应该比估计RTT值大太多,否则当报文段丢失时,TCP不能很快地重传该报文段,从而将给上层应用带来很大的数据传输时延。因此,要求将超时间隔设为估计RTT值加上一定余量。当估计RTT值波动较大时,这个余最应该大些;当波动比较小时,这个余量应该小些。因此使用4倍的偏差值来设置重传时间。TimeoutInterval=EstimatedRTT+4*DevRTT4可信数据传输因特网的网络层服务是不可靠的。IP不保证数据报的交付,不保证数据报的按序交付,也不保证数据报中数据的完整性。TCP在IP不可靠的尽力而为服务基础上建立了一种可靠数据传输服务。TCP提供可靠数据传输的方法涉及前面学过的许多原理。TCP采用流水线协议、累计确认。TCP推荐的定时器管理过程使用单一的重传定时器,即使有多个已发送但还未被确认的报文段也一样。重传由超时和多个ACK触发。在TCP发送方有3种与发送和重传有关的主要事件:从上层应用程序接收数据,定时器超时和收到确认ACK。从上层应用程序接收数据。一旦这个事件发生,TCP就从应用程序接收数据,将数据封装在一个报文段中,并将该报文段交给IP。注意到每一个报文段都包含一个序号,这个序号就是该报文段第一个数据字节的字节流编号。如果定时器还没有计时,则当报文段被传给IP时,TCP就启动一个该定时器。第二个事件是超时。TCP通过重传引起超时的报文段来响应超时事件。然后TCP重启定时器。第三个事件是一个来自接收方的确认报文段(ACK)。当该事件发生时,TCP将ACK的值y与变量SendBase(发送窗口的基地址)进行比较。TCP状态变量SendBase是最早未被确认的字节的序号。就是指接收方已正确按序接收到数据的最后一个字节的序号。TCP采用累积确认,所以y确认了字节编号在y之前的所有字节都已经收到。如果Y>SendBase,则该ACK是在确认一个或多个先前未被确认的报文段。因此发送方更新其SendBase变量,相当于发送窗口向前移动。另外,如果当前有未被确认的报文段,TCP还要重新启动定时器。快速重传超时触发重传存在的另一个问题是超时周期可能相对较长。当一个报文段丢失时,这种长超时周期迫使发送方等待很长时间才重传丢失的分组,因而增加了端到端时延。所以通常发送方可在超时事件发生之前通过观察冗余ACK来检测丢包情况。冗余ACK就是接收方再次确认某个报文段的ACK,而发送方先前已经收到对该报文段的确认。当TCP接收方收到一个序号比所期望的序号大的报文段时,它认为检测到了数据流中的一个间隔,即有报文段丢失。这个间隔可能是由于在网络中报文段丢失或重新排序造成的。因为TCP使用累计确认,所以接收方不向发送方发回否定确认,而是对最后一个正确接收报文段进行重复确认(即产生一个冗余ACK)如果TCP发送方接收到对相同报文段的3个冗余ACK.它就认为跟在这个已被确认过3次的报文段之后的报文段已经丢失。一旦收到3个冗余ACK,TCP就执行快速重传 ,即在该报文段的定时器过期之前重传丢失的报文段。5流量控制前面讲过,一条TCP连接双方的主机都为该连接设置了接收缓存。当该TCP连接收到正确、按序的字节后,它就将数据放入接收缓存。相关联的应用进程会从该缓存中读取数据,但没必要数据刚一到达就立即读取。事实上,接收方应用也许正忙于其他任务,甚至要过很长时间后才去读取该数据。如果应用程序读取数据时相当缓慢,而发送方发送数据太多、太快,会很容易使这个连接的接收缓存溢出。TCP为应用程序提供了流量控制服务以消除发送方导致接收方缓存溢出的可能性。因此,可以说 流量控制是一个速度匹配服务,即发送方的发送速率与接收方应用程序的读速率相匹配。前面提到过,TCP发送方也可能因为IP网络的拥塞而被限制,这种形式的发送方的控制被称为拥塞控制(congestioncontrol)。TCP通过让接收方维护一个称为接收窗口的变量来提供流量控制。接收窗口用于告诉发送方,该接收方还有多少可用的缓存空间。因为TCP是全双工通信,在连接两端的发送方都各自维护一个接收窗口变量。 主机把当前的空闲接收缓存大小值放入它发给对方主机的报文段接收窗口字段中,通知对方它在该连接的缓存中还有多少可用空间。6 TCP连接管理客户机中的TCP会用以下方式与服务器建立一条TCP连接:第一步: 客户机端首先向服务器发送一个SNY比特被置为1报文段。该报文段中不包含应用层数据,这个特殊报文段被称为SYN报文段。另外,客户机会选择一个起始序号,并将其放置到报文段的序号字段中。为了避免某些安全性攻击,这里一般随机选择序号。第二步: 一旦包含TCP报文段的用户数据报到达服务器主机,服务器会从该数据报中提取出TCPSYN报文段,为该TCP连接分配TCP缓存和控制变量,并向客户机TCP发送允许连接的报文段。这个允许连接的报文段还是不包含应用层数据。但是,在报文段的首部却包含3个重要的信息。首先,SYN比特被置为1。其次,该 TCP报文段首部的确认号字段被置为客户端序号+1最后,服务器选择自己的初始序号,并将其放置到TCP报文段首部的序号字段中。 这个允许连接的报文段实际上表明了:“我收到了你要求建立连接的、带有初始序号的分组。我同意建立该连接,我自己的初始序号是XX”。这个同意连接的报文段通常被称为SYN+ACK报文段。第三步: 在收到SYN+ACK报文段后,客户机也要给该连接分配缓存和控制变量。客户机主机还会向服务器发送另外一个报文段,这个报文段对服务器允许连接的报文段进行了确认。因为连接已经建立了,所以该ACK比特被置为1,称为ACK报文段,可以携带数据。一旦以上3步完成,客户机和服务器就可以相互发送含有数据的报文段了。为了建立连接,在两台主机之间发送了3个分组,这种连接建立过程通常被称为 三次握手(SNY、SYN+ACK、ACK,ACK报文段可以携带数据) 。这个过程发生在客户机connect()服务器,服务器accept()客户连接的阶段。假设客户机应用程序决定要关闭该连接。(注意,服务器也能选择关闭该连接)客户机发送一个FIN比特被置为1的TCP报文段,并进人FINWAIT1状态。当处在FINWAIT1状态时,客户机TCP等待一个来自服务器的带有ACK确认信息的TCP报文段。当它收到该报文段时,客户机TCP进入FINWAIT2状态。当处在FINWAIT2状态时,客户机等待来自服务器的FIN比特被置为1的另一个报文段,收到该报文段后,客户机TCP对服务器的报文段进行ACK确认,并进入TIME_WAIT状态。TIME_WAIT状态使得TCP客户机重传最终确认报文,以防该ACK丢失。在TIME_WAIT状态中所消耗的时间是与具体实现有关的,一般是30秒或更多时间。 经过等待后,连接正式关闭,客户机端所有与连接有关的资源将被释放。 因此TCP连接的关闭需要客户端和服务器端互相交换连接关闭的FIN、ACK置位报文段。

TCP 连接详解
1、先提出一个问题, 可以不进行三次握手直接往服务端发送数据包吗?是不可以的,也是可以的;1)不可以是因为现在的TCP连接标准和规范要求传输数据前先确认两端的状态,有一端状态不OK的话,发数据包有什么用呢;2)说可以是站在网络连接的角度,像 UDP 协议;2、TCP三次握手1)标志位、随机序列号和确认序列号是在数据包的 TCP 首部里面;2)几个状态是指客户端和服务端连接过程中 socket 状态;3)第一次握手,客户端向服务端发送数据包,该数据包中 SYN 标志位为 1,还有随机生成的序列号c_seq,客户端状态改为 SYN-SENT;4)第二次握手,服务端接收到客户端发过来的数据包中 SYN 标志位为 1,就知道客户端想和自己建立连接,服务端会根据自身的情况决定是拒绝连接,或确定连接,还是丢弃该数据包;拒绝连接,会往客户端发一个数据包,该数据包中 RST 标志位为 1,客户端会报 Connection refused;丢弃客户端的数据包,超过一定时间后客户端会报 Connection timeout;确定连接时会往客户端发一个数据包,该数据包中 ACK 标志位为 1,确认序列号 ack=c_seq+1,SYN 标志位为 1,随机序列号 s_seq,状态由 LISTEN 改为 SYN-RCVD;5)第三次握手,客户端接收到数据包会做校验,校验ACK标志位和确认序列号 ack=c_seq+1,如果确定是服务端的确认数据包,改自己的状态为 ESTABLISHED,并给服务端发确认数据包;6)服务端接到客户端数据包,会校验ACK标志位和确认序列号 ack=s_seq+1,改自己的状态为 ESTABLISHED,之后就可以进行数据传输了;7)建立连接时的数据包是没有实际内容的,没有应用层的数据;8)建立连接之后发起的请求数据包,每个数据包都会封装各层协议的头部信息,标志位ACK为1,其他标志位变动;9)网络进程间的通信,一台服务器内部的进程间通信不用这样;3、TCP 连接三次握手抓包1)Socket 在 linux 系统中是一种特殊的文件,因为 linux 系统的理念就是【一切皆文件】,是系统内核级的功能;2)以上定义比较具体,可以抽象来理解,是一个内核级的用于通信的功能层,包含一组接口函数,这些函数实际就是操作 socket 文件句柄文件描述符;一个 TCP 连接由四要素【源IP、源Port、目标IP、目标Port】唯一标识,也即 socket 由这四要素唯一确定;一个 TCP 连接的建立也就是客户端、服务端创建了相对应的一对 socket,客户端和服务端之间的通信也就是这对 socket 间的通信(物理层面是网卡在发送/接收比特流数据);3)一个服务与另一个服务建立连接,他们的端口是什么呢?客户端发出请求端口号是随机的,服务端是进程监听的端口号;2、socket 主要函数介绍1、进程通信,一个进程只有一个监听 socket,connect socket 是针对一个客户的一个连接的,有很多个; 2、connect 函数内部在发起请求前会找系统随机一个端口号; 3、连接建立后,客户端发起请求传输数据,服务端会直接交给 connect socket 处理,不会交给监听 socket 处理;4、监听 socket 在处理客户端请求时,如果此时其他客户端发请求过来,监听 socket 是没法处理的,此时系统会维护请求队列由 backlog 参数指定;全连接队列(completed connection queue)半连接队列(incomplete connection queue)Linux 内核 2.2 版本之前,backlog 的大小等于全连接队列和半连接队列之和;Linux 内核 2.2 版本之后,backlog 的大小之和全连接队列有关系:半连接队列大小由 /proc/sys/net/ipv4/tcp_max_syn_backlog 文件指定,可以开很大;全连接队列大小由 /proc/sys/net/core/somaxconn 文件和 backlog 参数指定,取两个中的最小值;tomcat acceptCount 就是配置全连接队列大小;3、socket 函数在建立连接和数据传输的大概使用情况4、TCP首部结构1)2的16次方等于 65536,所以系统中端口号的限制个数为 65536,一般1024以下端口被系统占用;2)标志位这里是 6 个,还有其他标志位的,只是这 6 个标志位常用;3)seq 序列号,ack 确认序列号,序列号在数据传输时分包用到。三次握手时 seq 序列号是随机的,没有实际意义;4)TCP 包首部后面接着的是 IP 包首部,再紧接着的是以太网包首部,其实都是加 0101010101 二进制位;几个常用标志位,首先一个标志位占一个 bit 位,只能是二进制中的 1 或 0;1)SYN,简写 S,请求标志位,用来建立连接。在TCP三次握手中收到带有该标志位的数据包,表示对方想与己方建立连接;2)ACK,简写【.】,请求确认/应答标志位,用于对对方的请求进行应答,对方收到含该标志位的数据包,会知道己方存在且可用。也会用在连接建立之后,己方发送响应数据给对方的数据包中;3)FIN,简写 F,请求断开标志位,用于断开连接。对方收到己方的含该标志位的数据包,就知道己方想与它断开连接,不再保持连接;4)RST,简写 R,请求复位标志位,因网络或己方服务原因导致有数据包丢失,己方接收到的数据包序列号与上一个数据包的序列号不衔接,那己方会发送含该标志位的数据包告诉对方,对方接收到含该标志位的数据包就知道己方要求它重新三次握手建立连接并重新发送丢失的数据包,一般断点续传会用到该标志位;还有就是如果对方发过来的数据错了,有问题,己方也会发送含该标志位的数据包;5)PSH,简写 P,推送标志位,表示收到数据包后要立即交给应用程序去处理,不应该放在缓存中,read()/write() 都有缓存区;6)URG,简写 U,紧急标志位,该标志位表示 tcp 包首部中的紧急指针域有效,督促中间层尽快处理;7)ECE,在保留位中;8)CWR,在保留位中;5、TCP 抓包1)服务端会根据自身情况,没有要处理的数据时会把第二次和第三次挥手合并成一次挥手,此时标志位 FIN=1 / ACK=1;2)MSL 是 Maximum Segment Lifetime 缩写,指数据包在网络中最大生存时间,RFC 建议是 2分钟;详细描述:1)客户端、服务端都可以主动发起断开连接;2)第一次挥手,客户端向服务端发送含 FIN=1 标志位的数据包,随机序列号 seq=m,此时客户端状态由 ESTABLISHED 变为 FIN_WAIT_1;3)第二次挥手,服务端收到含 FIN=1 标志位的数据包,就知道客户端要断开连接,服务端会向客户端发送含 ACK=1 标志位的应答数据包,确认序列号 ack=m+1,此时服务端状态由 ESTABLISHED 变为 CLOSE_WAIT;4)客户端收到含 ACK=1 标志位的应答数据包,知道服务端的可以断开的意思,此时客户端状态由 FIN_WAIT_1 变为 FIN_WAIT_2;(第一、二次挥手也只是双方交换一下意见而已)5)第三次挥手,服务端处理完剩下的数据后再次向客户端发送含 FIN=1 标志位的数据包,随机序列号 seq=n,告诉客户端现在可以真正的断开连接了,此时服务端状态由 CLOSE_WAIT 变为 LAST_ACK;6)第四次挥手,客户端收到服务端再次发送的含 FIN=1 标志位的数据包,就知道服务端处理好了可以断开连接了,但是客户端为了慎重起见,不会立马关闭连接,而是改状态,且向服务端发送含 ACK=1 标志位的应答数据包,确认序列号 ack=n+1,此时客户端状态由 FIN_WAIT_2 变为 TIME_WAIT;等待 2 个MSL时间还是未收到服务端发过来的数据,则表明服务端已经关闭连接了,客户端也会关闭连接释放资源,此时客户端状态由 TIME_WAIT 变为 CLOSED;也就是说 TIME_WAIT 状态存在时长在 1~4分钟;7)服务端收到含 ACK=1 标志位的应答数据包,知道客户端确认可以断开了,就立即关闭连接释放资源,此时服务端状态由 LAST_ACK 变为 CLOSED;SYN 洪水攻击(SYN Flood)是一种 DoS攻击(拒绝服务攻击),大概原理是伪造大量的TCP请求,服务端收到大量的第一次握手的数据包,且都会发第二次握手数据包去回应,但是因为 IP 是伪造的,一直都不会有第三次握手数据包,导致服务端存在大量的半连接,即 SYN_RCVD 状态的连接,导致半连接队列被塞满,且服务端默认会发 5 个第二次握手数据包,耗费大量 CPU 和内存资源,使得正常的连接请求进不来;

TCP 的优化
整理自 CSDN 公众号1. 客户端TCP 三次握手的开始是客户端发起 SYN,如果服务端没有及时回复,那么会重传,重传的间隔和次数是可控的,默认是五次,第一次间隔 1 秒,第二次 2 秒,第三次 4 秒,第四次 8 秒,第五次16 秒,最终超时时间是 63 秒,因此在优化时可以修改重传次数和间隔,以尽快把错误暴露给应用程序。2. 服务端的半连接队列优化服务端在第一次返回 SYN + ACK 时,就会把这次请求维护进一个半连接队列,这个队列用来维护尚未完成的握手信息(相对于全连接),如果这个队列溢出了,服务端就无法继续接受新的请求了,这也是 SYN Flood 攻击的点。通过一个命令 netstat -s 可以得到累计的、由于半连接队列已满引发的失败次数,隔几秒执行一次就可以知道这个次数是否有上升的趋势以及分析是否正常。这种 SYN Flood 攻击之所以成立,是因为维护这个半连接队列一定要分配一定的内存资源,那么应对的方式之一 syncookies 就是如何不分配资源的前提下,可以确认是一次有效的连接并 establish。syncookies 的工作原理是,服务器使用一种算法,计算出一个哈希值,它包含了客户端发来请求的部分信息,再将这个哈希值和 SYN+ACK 一起返回给客户端,客户端也经过一些运算,再返回给服务端,那么服务端根据这个返回值和之前的计算值比较,如果合法,就可以建立有效连接,从而不会占据半连接队列的内存。应对 SYN 攻击时,只需将 syncookies 的参数值调为 1(半连接队列溢出时启用),即可。相当的,可以增大半连接队列,但是要和 accept 的队列同时增大才有效,(否则会导致 accept 队列溢出同样丢失 TCP 连接)此时,对于客户端来说已经是 established 状态,但是还要再返回给服务端一个 ACK,服务端收到后,服务端才是 established 状态并开始传数据,如果网络不稳定,同样的,服务端会重发 SYN+ACK,当网络不稳定时,应该增加服务端重发 SYN+ACK 的次数。3. 服务端的 accept 队列优化当连接已经建立、应用程序尚未调用时,TCP 连接会被保存在一个 accept 队列中,如果进程未能及时调用,就会导致 accept 队列溢出,溢出部分连接将被默认丢弃。对此可以做的是,选择向客户端发送 RST 报文,告知关闭这个连接,丢弃握手过程。打开这一功能需要将 tcp_abort_on_overflow 参数设置为 1。如果想让客户端了解是由于 accept 队列溢出造成连接失败可以这样做。当 tcp_abort_on_overflow 参数设置为 0 时,则如果 accept 队列溢出,就会丢弃客户端传来的 ACK(用于最后一次握手)。应对高并发流量时,更好的选择是 tcp_abort_on_overflow 参数设置为 0,这样对于客户端它的状态仍然是 established,客户端会定时发送带有 ack 报文的发送数据请求,一旦服务端的 accept 队列有空位,那么连接仍有可能建立成功。所以只有很确定在一段时间内 accept 都是将溢出的状态,才推荐 tcp_abort_on_overflow 参数设置为 1。同样的,可以调整 accept 队列长度,也可以查看累计的由于溢出导致丢失的连接总数,来判断趋势。在 Linux 3.7 内核版本之后,提供了 TCP Fast Open 功能,这个功能如此生效:初次建立 TCP 连接时,客户端在第一个 SYN 包中传入一个请求 cookie,表明打开 fast open 功能,服务端对应生成一个 cookie 给客户端,除此之外,三次握手没有不同,但是,在 cookie 没有过期之前,下一次再连接的时候,客户端发送带有 cookie 的 SYN 包,服务端校验了 cookie 有效以后,就可以开始传输数据了,从而节约了一个往返的时间消耗。TCP Fast Open 功能需要服务端和客户端同时打开才能生效。(备注一个之前看到差点忘了的知识点。当主动方收到被动方的 FIN 报文后,内核会回复 ACK 报文给被动方,同时主动方的连接状态由 FIN_WAIT2 变为 TIME_WAIT,在 Linux 系统下大约等待 1 分钟后,TIME_WAIT 状态的连接才会彻底关闭。1. 主动方的优化关闭的方式有两种 RST 和 FIN,RST 是暴力关闭连接的方式,安全关闭连接则必须四次挥手。FIN 报文关闭则可以使用 close 和 shutdown 两种函数来实现。close 相对来说是“不优雅”的,调用 close 的一方的连接叫做「孤儿连接」,会同时关闭读和写,而 shutdown 可以控制是读还是写。关闭读的时候,会丢弃接收缓冲区里的所有数据,如果后续再接受到数据,也会悄悄丢弃,并发送 ACK,对方不会知道被丢弃了。关闭写的时候,会把发送缓冲区的数据全部发送并发送 FIN。(1)FIN_WAIT1 的优化主动方发送 FIN 以后,进入 FIN_WAIT1 状态,如果迟迟没收到 ACK,会定时重发 FIN,重发次数由 tcp_orphan_retries 参数控制,默认为 8 次,如果处于 FIN_WAIT1 状态的连接过多,应该考虑降低次数,重发次数超过参数时,连接会被直接关闭。如果遇到恶意攻击,可能无法发送出 FIN,因为 TCP 按顺序发送所有包, FIN 也不能绕过,另外如果对方的接收窗口已经满了,发送方也无法再发送数据。此时应该做的是调整 tcp_max_orphans 参数,它定义了「孤儿连接」的最大数量,当系统中的孤儿连接超过参数值,新增的孤儿连接不会再处于 FIN_WAIT1 状态,而是会被 RST 报文直接关闭。(只会影响 CLOSE 函数关闭的连接,不会影响 shutdown 关闭的,不会影响还有读或写的可能)(2)FIN_WAIT2 的优化主动方收到 ACK 后,会处于 FIN_WAIT2,因为被动方还可能有数据发送,如果是 shutdown 关闭,那它也可能还会发送数据,但是对于 close 关闭的连接,无法再发送和接收数据,保持在 FIN_WAIT2 的状态已经没有太大意义,tcp_fin_timeout 控制了这个状态下连接的持续时长,默认值是 60 秒。这个时间和 TIME_WAIT 状态时长是一致的。(3)TIME_WAIT 的优化TIME_WAIT 和 FIN_WAIT2 的时间是一致的,都是 2MSL,1MSL 表示一个报文在网络中存活的最长时间(报文每经过一次路由器的转发,IP 头部的 TTL 字段就会减 1,减到 0 时报文就被丢弃,这就限制了报文的最长存活时间),那么为什么是等待 2MSL 呢,其实就是允许报文至少丢失一次、再发送一次,这样第一个丢失了,等待的时间里第二个 ACK 还会到达,为什么不是 4MSL 以上呢,这是一个概率的问题,如果一个网络丢包率达到 1%,那么连续两次丢包的概率是万分之一,不必为了这种概率增加等待的时长。TIME_WAIT 有存在的意义,但是太多保持在这种状态的连接会占用双方资源,占据客户端的端口资源和服务端的系统资源。Linux 提供了 tcp_max_tw_buckets 参数,当 TIME_WAIT 的连接数量超过该参数时,新关闭的连接就不再经历 TIME_WAIT 而直接关闭。这个参数的设定应该取一个平衡点,即既不会太少导致高并发时产生连接间数据错乱的问题,也不会太多而导致耗尽端口和线程资源。对于用户端来讲,还可以启用 tcp_tw_reuse 参数来复用处于 TIME_WAIT 状态的连接(来节约接口资源。)这个参数有几个前提,一个是只有客户端可以打开,一个是 TIME_WAIT 状态也要保持 1 秒,另一个是要同步打开时间戳功能,报文带上时间戳就可以避免没有了 2MSL 时长以后的混乱情况,时间戳过期的报文就会被丢掉。另外对于 TIME_WAIT,还可以调整 socket 选项,来达到调用 close 关闭连接时跳过四次挥手直接关闭的效果,但不推荐。2. 被动方的优化首先,被动方收到 FIN 时,会自动回复 ACK,接着等待应用程序调用 close/shutdown 来结束连接,再发送 FIN。如果系统中同时查看到多个连接处于 CLOSE_WAIT 状态,则需要排查是否是应用程序出了故障。然后,当被动方也发送了 FIN 以后,还需要等待主动方回复一个 ACK,如果迟迟没收到,也会重发 FIN,重发次数也是 tcp_orphan_retries 参数控制,这点和主动方的优化一致,可以调整次数。(需确认被动方是否有 tcp_max_orphans 参数)3. 如果双方同时关闭?1.ACK 延迟目前在 TCP 中每传输一个报文都要求接收方进行确认,大量短而频繁的确认报文给网络带来了很多开销。因此采取了延迟 ACK 策略来减少 ACK 的数量,就是接收方收到一个报文以后,不会立即发送 ACK,而是等待 1~200ms,这期间若有回送数据报文就捎带确认,但收到两个连续数据报文或者等待超时则发送一个独立确认。有效减少了 ACK 的数量,改善了 TCP 的整体性能。2. 滑动窗口接收方的接收缓冲区不是不变的,接收到新的会变小,应用程序取出后又会变大,因此接收方会把自己当前的接收窗口大小放在 TCP 头告知发送方,如果不考虑拥塞控制,发送方的窗口大小「约等于」接收方的窗口大小。对于这一点,可以把 tcp_window_scaling 配置设为 1(默认打开)来扩大 TCP 通告窗口至 1G 大小。要使用这一选项,需要主动方在 SYN 中先告知,被动方在 SYN 中再反馈。但是缓冲区并非越大越好,还要考虑网络吞吐的能力。如果缓冲区与网络传输能力匹配,那么缓冲区的利用率就达到了最大化。3. 调整缓冲区大小这里需要说一个概念,就是带宽时延积,它决定网络中飞行报文的大小,它的计算方式:(1)发送缓冲区的调整发送缓冲区是自行调节的,当发送方发送的数据被确认后,并且没有新的数据要发送,就会把发送缓冲区的内存释放掉。接收缓冲区要复杂一些:上面三个数字单位都是字节,它们分别表示:(2)接收缓冲区的调整接收缓冲区可以根据系统空闲内存的大小来调节接收窗口:(3)内存的判断那么如何判断内存紧张或充分呢?上面三个数字单位不是字节,而是「页面大小」,1 页表示 4KB,它们分别表示:在实际的场景中,TCP 缓冲区最小值保持默认 4K 即可,来提高并发处理能力;最大值则尽可能靠近带宽时延积,来最大化网络效率。总结以上:为了提高并发能力、提高网络效率,我们要充分利用网络能力和自己的内存。网络这方面就是将缓冲区大小的极值尽可能靠近带宽时延积,而同时对缓冲区的自动调节需要结合内存来判断,这个 TCP 内存的判断是通过系统内存计算出来的几个值来划分的,在不同区间会对分配给缓冲区的内存大小进行调整。以上就是 TCP 在不同阶段的优化策略和思路,有关拥塞控制和流量控制之后再补一篇笔记。

登陆微博保持tcp链接吗
理论上来说是保持的。TCP连接,当网络通信时采用TCP协议时,在真正的读写操作之前,server与client之间必须建立一个连接,当读写操作完成后,双方不再需要这个连接时它们可以释放这个连接,连接的建立是需要三次握手的,而释放则需要4次握手,所以说每个连接的建立都是需要资源消耗和时间消耗的。TCP保活的必要性:TCP的长连接理论上只要连接建立后,就会一直保持着。但有时有一些防火墙之类的软件会自动检查主机的网络连接状况,比如说如果发现某个连接在几分钟之内都没有数据通讯,则会关闭这个连接。有时客户端与服务器需要实时的检测连接状态,就是需要知道对方是否还在线,如果对方不在线了,需要做相应的处理,这是就需要通过发送心跳包的方法监测链路的状态。导致 TCP 连接断连的因素 :理想状态下,一个 TCP 连接可以被长期保持。然而,在实际应用中,客户端或服务器端上维持的一个看似正常的 TTCP 连接可能已经断连。TCP 连接主要受到两个方面的影响而导致断连:网络中间节点和客户端 / 服务器节点参与通信的两方节点。在实际网络应用中,两个主机之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等。因此,两个主机之间 TCP 连接的保持同样会受到中间节点的影响,尤其是会受到防火墙(软件或硬件防火墙)的限制。防火墙是一种装置,有多种不同的实现方式(软件实现、硬件设备实现或是软硬件相结合实现),它需要依据一系列规则对进出的信息流进行扫描,并允许安全(符合规则)的信息交互、阻止不安全(违反规则)的信息交互。防火墙的工作特性决定了要维护一个网络连接就需要耗费较多的资源,并且企业防火墙常常位于企业网络的出入口,长时间维护非活跃的 TCP 连接必将导致网络性能的下降。因此,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导致 TCP 连接断连。类似的,如果中间节点异常导致如果中间节点异常导致来自客户端关闭连接的请求无法传递到服务器端,也将导致服务器端的相应连接发生断连。另一方面,对于一个 TCP 连接两端的主机而言,创建 TCP 连接需要耗费一定的系统资源。如果不再使用某个连接,那么我们总是希望进行通信的两个主机能够主动关闭相应的连接,以便释放所占用的系统资源。然而,如果由于客户端出现异常 ( 例如崩溃或异常重启 ) 而导致连接未能正常关闭,这将导致服务器端的连接断连。 无论是客户端节点或是服务器端节点,断连的 TCP 连接已经不能传递任何信息,因此,维护大量断连的 TCP 连接将导致系统资源的浪费。这种系统资源的浪费可能并不会对客户端节点带来太大问题;然而,对于服务器主机而言,这可能会导致系统资源(尤指内存资源和 socket 资源)被耗尽而拒绝为新的用户请求提供服务。因此在实际应用中,服务器端需要采取相应的方法来探测 TCP 连接是否已经断连。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/66251.html。