TCP是如何实现可靠传输的?
在计算机网络的经典五层协议中,TCP属于运输层,实现了进程间的通信,保证了数据的可靠传输,属于计算机网络协议族中最重要的协议之一,那么TCP是如何实现可靠数据传输的呢?运输层的进程间通信是通过socket实现的,socket是一个抽象的概念,在Linux系统中以文件的形式存在。网络层通过IP来区分主机,运输层则增加了端口的概念来区分进程。TCP协议中使用目标IP、目标端口、源IP、源端口来定义一个socket,只需要在运输层的报文头部附加上这些信息,目标主机就会知道数据要发送那个socket,对应监听该socket的进程就可以收到数据进行处理。TCP报文包括首部和数据部分,首部附加了TCP报文的信息,首部长度固定部分为20字节,还有40字节的可选部分,具体如下图所示:其中几个关键字段的作用如下:网络层只管尽可能将数据从一个主机发送到另一个主机,并不保证数据可靠到达,由于网络环境总是不稳定的,可能存在丢包、差错等请求,TCP则通过一系列的机制在运输层保证了数据的可靠传输。网络传输可能发生的异常情况和解决方法:要实现可靠传输,最简单的方法就是发送方发送一个报文,接收方收到报文后发送确认报文表示我收到了,你可以发下一个了,传输模型如下:这种方式保证可靠传输称为停止等待协议,这种方式缺点也很明显,效率非常低。为了提高传输效率,充分利用带宽,发送方会连续的发送数据包,如下图所示:客户端不等收到前一个包的确认报文就开始不断的发下一个包,这样可以充分利用网络带宽,提高传输效率,但是于此同时也带来了另外的问题,那么TCP是如何解决这些问题的?累计确认:网络中充斥着大量的发送包和确认回复报文,这些数据只是为了确认报文到达,并不是实际需要传输的数据。是不是一定要每一个报文都要发一个回复确认的报文呢,TCP采用了累计确认的方法:接收方在累计收到了一定量的数据包后发送一个确认报文告诉发送方在此之前的数据包都已经收到了,这样便可以减少确认报文的数量,提高带宽利用率。GBN(回退n步):如果发生丢包的情况,在连续ARQ中,如果接受方收到了123 567个字节,编号为4字节的包丢失了,按照累计确认只能发送3的确认回复,567都要丢掉,因为发送发会进行重传。选择确认ACK:在TCP报文头部的选项字段部分设置已收到的报文,每一段用两个边界来确定,比如上述情况可以用[1,3]和[5,7]来表示,客户端就会根据选项只重传丢失的数据段。因为接收方读数据的能力有限,发送发不能一直发送报文直到把缓冲区所有数据发送完,这样会导致接收方无法接收丢弃掉数据包,发送方收不到确认认为超时又会继续重传,产生了大量无用数据的重传。对此情况TCP使用滑动窗口来解决,基本模型如下:滑动窗口机制实现了TCP的流量控制,不至于发送太快导致太多的数据丢弃和重传。为了避免网络过分拥挤导致丢包严重,传输效率低,TCP实现了拥塞控制机制,拥塞控制的解决办法本质上是流量控制,控制发送方发送的速度,而上文提到流量控制是通过滑动窗口来实现的,所以最终也是通过调整发送方的滑动窗口大小来实现的。拥塞控制的几个重要的概念:慢启动、拥塞避免、快恢复、快重传Reno算法是比较常见的TCP实现的拥塞控制算法,其他拥塞算法还有Tahoe(已废弃不用)、New Reno等,通过拥塞控制算法可以很大程度避免网络拥挤。【书籍】计算机网络:自顶向下方法【码农有道】 这一篇TCP总结请收下

TCP的可靠性主要体现在哪些方面?
TCP的可靠性是通过以下几个规则来实现的。 首先,为了防止数据在传输的过程中被损坏,每个信息包都包含一个校验码,这个校验码头就是一个用来保证信息包在传输过程中没有被更改的代码,当信息到达目的地的时候,接收方会对比较验码和收到的信息中的数据,如果校验码不对,则被信息包将被省略。第二,为了防止信息包丢失,TCP会要求接收方每收到一个信息包都反馈一下,如果接收方没有提供反馈,发送方会自动重发一次,一直到接收方收到为止,或者它会判断网络链接断开了,就会在程序中返回一个错误的提示。 第三,为了防止信息包重复或顺序错误,TCP每传送一个信息包都会传送一个序号,接收方会检查这个序号,确保收到该信息包,并把全部信息包按顺序重新合并,同时,如果接收方看到一个已接收了的序号,则这个信息包就会被丢弃。
TCP通过下列方式来提供可靠性: •应用数据被分割成TCP认为最适合发送的数据块。这和UDP完全不同,应用程序产生的数据报长度将保持不变。由TCP传递给IP的信息单位称为报文段或段(segment)TCP如何确定报文段的长度。•当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。在第21章我们将了解TCP协议中自适应的超时及重传策略。•当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常将推迟几分之一秒•TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP将丢弃这个报文段和不确认收到此报文段(希望发端超时并重发)。•既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段的到达也可能会失序。如果必要,TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。•既然IP数据报会发生重复,TCP的接收端必须丢弃重复的数据。•TCP还能提供流量控制。TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。两个应用程序通过TCP连接交换8bit字节构成的字节流。TCP不在字节流中插入记录标识符。我们将这称为字节流服务(bytestreamservice)。如果一方的应用程序先传10字节,又传20字节,再传50字节,连接的另一方将无法了解发方每次发送了多少字节。收方可以分4次接收这80个字节,每次接收20字节。一端将字节流放到TCP连接上,同样的字节流将出现在TCP连接的另一端。另外,TCP对字节流的内容不作任何解释。TCP不知道传输的数据字节流是二进制数据,还是ASCII字符、EBCDIC字符或者其他类型数据。对字节流的解释由TCP连接双方的应用层解释。 这种对字节流的处理方式与Unix操作系统对文件的处理方式很相似。Unix的内核对一个应用读或写的内容不作任何解释,而是交给应用程序处理。对Unix的内核来说,它无法区分一个二进制文件与一个文本文件。

TCP 如何保证可靠性
[TOC] 1. TCP可靠性的保证机制总结2. 网络基础:TCP协议-如何保证传输可靠性3. TCP协议的流量控制和拥塞控制4. TCP 的那些事儿(下)5. TCP拥塞控制:慢开始、拥塞避免、快重传、快恢复TCP检验和的计算与UDP一样,在计算时要加上12byte的伪首部,检验范围包括TCP首部及数据部分,但是UDP的检验和字段为可选的,而TCP中是必须有的。计算方法为:在发送方将整个报文段分为多个16位的段,然后将所有段进行反码相加,将结果存放在检验和字段中,接收方用相同的方法进行计算,如最终结果为检验字段所有位是全1则正确(UDP中也是全为1则正确),否则存在错误。TCP将每个数据包都进行了编号,这就是序列号。序列号的作用:a、保证可靠性(当接收到的数据总少了某个序号的数据时,能马上知道)b、保证数据的按序到达c、提高效率,可实现多次发送,一次确认d、去除重复数据数据传输过程中的确认应答处理、重发控制以及重复控制等功能都可以通过序列号来实现TCP通过确认应答机制实现可靠的数据传输。在TCP的首部中有一个标志位——ACK,此标志位表示确认号是否有效。接收方对于按序到达的数据会进行确认,当标志位ACK=1时确认首部的确认字段有效。进行确认时,确认字段值表示这个值之前的数据都已经按序到达了。而发送方如果收到了已发送的数据的确认报文,则继续传输下一部分数据;而如果等待了一定时间还没有收到确认报文就会启动重传机制。当报文发出后在一定的时间内未收到接收方的确认,发送方就会进行重传(通常是在发出报文段后设定一个闹钟,到点了还没有收到应答则进行重传)。一种情况是发送包丢失了,其基本过程如下:另一种情况是ACK 丢失,过程如下:当接收方接收到重复的数据时就将其丢掉,重新发送ACK。而要识别出重复的数据,前面提到的序列号就起作用了。重传时间的确定:重传时间的确定:报文段发出到收到应答中间有一个报文段的往返时间RTT,显然超时重传时间RTO会略大于这个RTT,TCP会根据网络情况动态的计算RTT,即RTO是不断变化的。在Linux中,超时以500ms为单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。其规律为:如果重发一次仍得不到应答,就等待2 500ms后再进行重传,如果仍然得不到应答就等待4 500ms后重传,依次类推,以指数形式递增,重传次数累计到一定次数后,TCP认为网络或对端主机出现异常,就会强行关闭连接。连接管理机制即TCP建立连接时的三次握手和断开连接时的四次挥手。接收端处理数据的速度是有限的,如果发送方发送数据的速度过快,导致接收端的缓冲区满,而发送方继续发送,就会造成丢包,继而引起丢包重传等一系列连锁反应。因此TCP支持根据接收端的处理能力,来决定发送端的发送速度,这个机制叫做流量控制。在TCP报文段首部中有一个16位窗口长度,当接收端接收到发送方的数据后,在应答报文ACK中就将自身缓冲区的剩余大小,放入16窗口大小中。这个大小随数据传输情况而变,窗口越大,网络吞吐量越高,而一旦接收方发现自身的缓冲区快满了,就将窗口设置为更小的值通知发送方。如果缓冲区满,就将窗口置为0,发送方收到后就不再发送数据,但是需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉发送端。注意:窗口大小不受16位窗口大小限制,在TCP首部40字节选项中还包含一个窗口扩大因子M,实际窗口大小是窗口字段的值左移M位。流量控制解决了两台主机之间因传送速率而可能引起的丢包问题,在一方面保证了TCP数据传送的可靠性。然而如果网络非常拥堵,此时再发送数据就会加重网络负担,那么发送的数据段很可能超过了最大生存时间也没有到达接收方,就会产生丢包问题。为此TCP引入慢启动机制,先发出少量数据,就像探路一样,先摸清当前的网络拥堵状态后,再决定按照多大的速度传送数据。此处引入一个拥塞窗口:发送开始时定义拥塞窗口大小为1;每次收到一个ACK应答,拥塞窗口加1;而在每次发送数据时,发送窗口取拥塞窗口与接送段接收窗口最小者。慢启动:在启动初期以指数增长方式增长;设置一个慢启动的阈值,当以指数增长达到阈值时就停止指数增长,按照线性增长方式增加;线性增长达到网络拥塞时立即“乘法减小”,拥塞窗口置回1,进行新一轮的“慢启动”,同时新一轮的阈值变为原来的一半。“慢启动”机制可用图表示:1)连接建好的开始先初始化cwnd = 1,表明可以传一个MSS大小的数据。2)每当收到一个ACK,cwnd++; 呈线性上升3)每当过了一个RTT,cwnd = cwnd*2; 呈指数让升4)还有一个ssthresh(slow start threshold),是一个上限,当cwnd >= ssthresh时,就会进入“拥塞避免算法”(后面会说这个算法)1)收到一个ACK时,cwnd = cwnd + 1/cwnd2)当每过一个RTT时,cwnd = cwnd + 1这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。很明显,是一个线性上升的算法。当出现ack超时的时候,需要重传数据包。TCP认为这种情况太糟糕,反应也很强烈。快速重传在收到3个duplicate ACK时就开启重传(三次 ack 就认为丢包的原理见 关于TCP乱序和重传的问题 、 TCP 快速重传为什么是三次冗余 ACK ),而不用等到RTO超时。TCP Reno的实现是:快速重传和快速恢复算法一般同时使用。快速恢复算法是认为,你还有3个Duplicated Acks说明网络也不那么糟糕,所以没有必要像RTO超时那么强烈。 注意,正如前面所说,进入Fast Recovery之前,cwnd 和 sshthresh已被更新:然后,真正的Fast Recovery算法如下:cwnd = sshthresh+ 3 * MSS (3的意思是确认有3个数据包被收到了)重传Duplicated ACKs指定的数据包如果再收到 duplicated Acks,那么cwnd = cwnd +1如果收到了新的Ack,那么,cwnd = sshthresh ,然后就进入了拥塞避免的算法了。如果你仔细思考一下上面的这个算法,你就会知道,上面这个算法也有问题,那就是——它依赖于3个重复的Acks。注意,3个重复的Acks并不代表只丢了一个数据包,很有可能是丢了好多包。但这个算法只会重传一个,而剩下的那些包只能等到RTO超时,于是,进入了恶梦模式——超时一个窗口就减半一下,多个超时会超成TCP的传输速度呈级数下降,而且也不会触发Fast Recovery算法了。 通常来说,正如我们前面所说的,SACK或D-SACK的方法可以让Fast Recovery或Sender在做决定时更聪明一些,但是并不是所有的TCP的实现都支持SACK(SACK需要两端都支持),所以,需要一个没有SACK的解决方案。而通过SACK进行拥塞控制的算法是FACK(可参见 关于TCP乱序和重传的问题 )

TCP协议如何保证可靠传输
所以 TCP 针对数据包丢失的情况,会用重传机制解决。重传机制的其中一个方式,就是在发送数据时,设定一个定时器,当超过指定的时间后,没有收到对方的 ACK 确认应答报文,就会重发该数据,也就是我们常说的超时重传。TCP 会在以下两种情况发生超时重传:我们先来了解一下什么是 RTT(Round-Trip Time 往返时延),从下图我们就可以知道:RTT 指的是数据发送时刻到接收到确认的时刻的差值,也就是包的往返时间。上图中有两种超时时间不同的情况:精确的测量超时时间 RTO 的值是非常重要的,这可让我们的重传机制更高效。根据上述的两种情况,我们可以得知,超时重传时间 RTO 的值应该略大于报文往返 RTT 的值。如果超时重发的数据,再次超时的时候,又需要重传的时候,TCP 的策略是超时间隔加倍。也就是每当遇到一次超时重传的时候,都会将下一次超时时间间隔设为先前值的两倍。两次超时,就说明网络环境差,不宜频繁反复发送。超时触发重传存在的问题是,超时周期可能相对较长。那是不是可以有更快的方式呢?于是就可以用「快速重传」机制来解决超时重发的时间等待。TCP 还有另外一种快速重传(Fast Retransmit)机制,它不以时间为驱动,而是以数据驱动重传。快速重传机制,是如何工作的呢?其实很简单,一图胜千言。在上图,发送方发出了 1,2,3,4,5 份数据:还有一种实现重传机制的方式叫:SACK( Selective Acknowledgment 选择性确认)。这种方式需要在 TCP 头部「选项」字段里加一个 SACK 的东西,它可以将缓存的地图发送给发送方,这样发送方就可以知道哪些数据收到了,哪些数据没收到,知道了这些信息,就可以只重传丢失的数据。如下图,发送方收到了三次同样的 ACK 确认报文,于是就会触发快速重发机制,通过 SACK 信息发现只有 200~299 这段数据丢失,则重发时,就只选择了这个 TCP 段进行重复。Duplicate SACK 又称 D-SACK,其主要使用了 SACK 来告诉「发送方」有哪些数据被重复接收了。下面举例两个栗子,来说明 D-SACK 的作用。这个模式就有点像我和你面对面聊天,你一句我一句。但这种方式的缺点是效率比较低的。如果你说完一句话,我在处理其他事情,没有及时回复你,那你不是要干等着我做完其他事情后,我回复你,你才能说下一句话,很显然这不现实。所以,这样的传输方式有一个缺点:数据包的往返时间越长,通信的效率就越低。为解决这个问题,TCP 引入了窗口这个概念。即使在往返时间较长的情况下,它也不会降低网络通信的效率。那么有了窗口,就可以指定窗口大小,窗口大小就是指无需等待确认应答,而可以继续发送数据的最大值。窗口的实现实际上是操作系统开辟的一个缓存空间,发送方主机在等到确认应答返回之前,必须在缓冲区中保留已发送的数据。如果按期收到确认应答,此时数据就可以从缓存区清除。假设窗口大小为 3 个 TCP 段,那么发送方就可以「连续发送」 3 个 TCP 段,并且中途若有 ACK 丢失,可以通过「下一个确认应答进行确认」。TCP 头里有一个字段叫 Window,也就是窗口大小。这个字段是接收端告诉发送端自己还有多少缓冲区可以接收数据。于是发送端就可以根据这个接收端的处理能力来发送数据,而不会导致接收端处理不过来。所以,通常窗口的大小是由接收方的窗口大小来决定的。发送方发送的数据大小不能超过接收方的窗口大小,否则接收方就无法正常接收到数据。并不是完全相等,接收窗口的大小是约等于发送窗口的大小的。因为滑动窗口并不是一成不变的。比如,当接收方的应用进程读取数据的速度非常快的话,这样的话接收窗口可以很快的就空缺出来。那么新的接收窗口大小,是通过 TCP 报文中的 Windows 字段来告诉发送方。那么这个传输过程是存在时延的,所以接收窗口和发送窗口是约等于的关系。如果一直无脑的发数据给对方,但对方处理不过来,那么就会导致触发重发机制,从而导致网络流量的无端的浪费。为了解决这种现象发生,TCP 提供一种机制可以让「发送方」根据「接收方」的实际接收能力控制发送的数据量,这就是所谓的流量控制。前面的流量控制例子,我们假定了发送窗口和接收窗口是不变的,但是实际上,发送窗口和接收窗口中所存放的字节数,都是放在操作系统内存缓冲区中的,而操作系统的缓冲区,会被操作系统调整。可见最后窗口都收缩为 0 了,也就是发生了窗口关闭。当发送方可用窗口变为 0 时,发送方实际上会定时发送窗口探测报文,以便知道接收方的窗口是否发生了改变,这个内容后面会说,这里先简单提一下。所以,如果发生了先减少缓存,再收缩窗口,就会出现丢包的现象。为了防止这种情况发生,TCP 规定是不允许同时减少缓存又收缩窗口的,而是采用先收缩窗口,过段时间再减少缓存,这样就可以避免了丢包情况。在前面我们都看到了,TCP 通过让接收方指明希望从发送方接收的数据大小(窗口大小)来进行流量控制。这会导致发送方一直等待接收方的非 0 窗口通知,接收方也一直等待发送方的数据,如不采取措施,这种相互等待的过程,会造成了死锁的现象。窗口探测的次数一般为 3 次,每次大约 30-60 秒(不同的实现可能会不一样)。如果 3 次过后接收窗口还是 0 的话,有的 TCP 实现就会发RST报文来中断连接。一般来说,计算机网络都处在一个共享的环境。因此也有可能会因为其他主机之间的通信使得网络拥堵。在网络出现拥堵时,如果继续发送大量数据包,可能会导致数据包时延、丢失等,这时 TCP 就会重传数据,但是一重传就会导致网络的负担更重,于是会导致更大的延迟以及更多的丢包,这个情况就会进入恶性循环被不断地放大....所以,TCP 不能忽略网络上发生的事,它被设计成一个无私的协议,当网络发送拥塞时,TCP 会自我牺牲,降低发送的数据量。于是,就有了拥塞控制,控制的目的就是避免「发送方」的数据填满整个网络。为了在「发送方」调节所要发送数据的量,定义了一个叫做「拥塞窗口」的概念。拥塞控制主要是四个算法:TCP 在刚建立连接完成后,首先是有个慢启动的过程,这个慢启动的意思就是一点一点的提高发送数据包的数量,如果一上来就发大量的数据,这不是给网络添堵吗?慢启动的算法记住一个规则就行:当发送方每收到一个 ACK,拥塞窗口 cwnd 的大小就会加 1。这里假定拥塞窗口 cwnd 和发送窗口 swnd 相等,下面举个栗子:连接建立完成后,一开始初始化 cwnd = 1,表示可以传一个 MSS 大小的数据。当收到一个 ACK 确认应答后,cwnd 增加 1,于是一次能够发送 2 个当收到 2 个的 ACK 确认应答后, cwnd 增加 2,于是就可以比之前多发2 个,所以这一次能够发送 4 个当这 4 个的 ACK 确认到来的时候,每个确认 cwnd 增加 1, 4 个确认 cwnd 增加 4,于是就可以比之前多发 4 个,所以这一次能够发送 8 个。可以看出慢启动算法,发包的个数是指数性的增长。有一个叫慢启动门限ssthresh(slow start threshold)状态变量。前面说道,当拥塞窗口 cwnd 「超过」慢启动门限 ssthresh 就会进入拥塞避免算法。一般来说 ssthresh 的大小是 65535 字节。那么进入拥塞避免算法后,它的规则是:每当收到一个 ACK 时,cwnd 增加 1/cwnd。接上前面的慢启动的栗子,现假定 ssthresh 为 8:当 8 个 ACK 应答确认到来时,每个确认增加 1/8,8 个 ACK 确认 cwnd 一共增加 1,于是这一次能够发送 9 个 MSS 大小的数据,变成了线性增长。所以,我们可以发现,拥塞避免算法就是将原本慢启动算法的指数增长变成了线性增长,还是增长阶段,但是增长速度缓慢了一些。就这么一直增长着后,网络就会慢慢进入了拥塞的状况了,于是就会出现丢包现象,这时就需要对丢失的数据包进行重传。当触发了重传机制,也就进入了「拥塞发生算法」。当网络出现拥塞,也就是会发生数据包重传,重传机制主要有两种:发生超时重传的拥塞发生算法当发生了「超时重传」,则就会使用拥塞发生算法。这个时候,ssthresh 和 cwnd 的值会发生变化:还有更好的方式,前面我们讲过「快速重传算法」。当接收方发现丢了一个中间包的时候,发送三次前一个包的 ACK,于是发送端就会快速地重传,不必等待超时再重传。TCP 认为这种情况不严重,因为大部分没丢,只丢了一小部分,则ssthresh和cwnd变化如下:快速重传和快速恢复算法一般同时使用,快速恢复算法是认为,你还能收到 3 个重复 ACK 说明网络也不那么糟糕,所以没有必要像 RTO 超时那么强烈。正如前面所说,进入快速恢复之前,cwnd 和 ssthresh 已被更新了:

为什么TCP的连接能够提高传输的可靠性
TCP协议支持数据报传输可靠性的主要方法是确认、超时、重传、校验和以及流量控制。(1)校验和——每个TCP报文段都包括检验和字段,校验和用来检查报文段是否出现传输错误,如果报文段出现传输错误,TCP检查出错就丢弃该报文段。(2)确认——接收端检查报文是否出错,发现出错时就丢弃,不发确认;而发送端TCP就通过检查接收端的确认,判断发送的报文段是否已经正确到达目的地。(3)超时——发送端根据发出的报文段在超时规定的时间内是否收到确认,从而来判断该报文段是否丢失或传输出错。TCP使用了4种计时器:重传计时器、坚持计时器、保持计时器和时间等待计时器来保证了传输的可靠性。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/67175.html。