422串口通信协议(ttl串口通信协议)

      最后更新:2023-04-05 10:24:14 手机定位技术交流文章

      什么是串口通信协议

      串口通信指l两个或两个以上的设备使用串口按位(bit)发送和接收字节。可以在使用一根线发送数据的同时用另一根线接收数据。 串口通信协议就是串口通讯时共同遵循的协议。 协议的内容是每一个bit 所代表的意义。 常用的串口通信协议 有以下几种 1 RS-232(ANSI/EIA-232标准)只支持 点对点, 最大距离 50英尺。最大速度为128000bit/s, 距离越远 速度越慢。 支持全双工(发送同时也可接收)。2 RS-422(EIA RS-422-AStandard),支持点对多一条平衡总线上连接最多10个接收器将传输速率提高到10Mbps,传输距离延长到4000英尺(约1219米),所以在100kbps速率以内,传输距离最大。支持全双工(发送同时也可接收)。RS-485(EIA-485标准)是RS-422的改进,支持多对多(2线连接),从10个增加到32个,可以用超过4000英尺的线进行串行通行。速率最大10Mbps。支持全双工(发送同时也可接收)。2线连接时 是半双工状态。 广义上来说USB 协议 sata 硬盘PCI_E 也是串行通信的范畴. 更为复杂
      什么是串口通信协议

      RS422是如何通讯的?还有,什么叫“无协议通讯模式”?谢谢!

      RS-422支持点对多的双向通信。RS-422是四线接口。实际上还有一根信号地线,共5根线。其DB9连接器引脚定义。由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Slave),从设备之间不能通信,采用4线全双工平衡传输,支持点对多的双向通信。RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)实现。“无协议通讯模式”是指通信双方不需要事先建立一条通信线路,而是把每个带有目的地址的包(报文分组)送到线路上,由系统自主选定路线进行传输。IP、UDP协议就是一种无连接协议。扩展资料:RS-422的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在 100kb/s速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为 1Mb/s。RS-422需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。在短距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输电缆的最远端。
      RS-232、RS-422 与RS-485 都是串行数据接口标准,最初都是由电子工业协会(EIA)制订并发布的,RS-232 在1962 年发布,命名为EIA-232-E,作为工业标准,以保证不同厂家产品之间的兼容。RS-422 由RS-232 发展而来,它是为弥补RS-232 之不足而提出的。为改进RS-232 通信距离短、速率低的缺点,RS-422 定义了一种平衡通信接口,将传输速率提高到10Mb/s,传输距离延长到4000 英尺(速率低于100kb/s 时),并允许在一条平衡总线上连接最多10 个接收器。RS-422 是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A 标准。为扩展应用范围,EIA 又于1983 年在RS-422 基础上制定了RS-485 标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA 提出的建议标准都是以“RS”作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS 作前缀称谓。RS-232、RS-422 与RS-485 标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议。因此在视频界的应用,许多厂家都建立了一套高层通信协议,或公开或厂家独家使用。如录像机厂家中的Sony 与松下对录像机的RS-422 控制协议是有差异的,视频服务器上的控制协议则更多了,如Louth、Odetis 协议是公开的,而ProLINK 则是基于Profile 上的。二、RS-232串行接口标准目前RS-232 是PC 机与通信工业中应用最广泛的一种串行接口。RS-232 被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232 采取不平衡传输方式,即所谓单端通讯。图1 (点击可看图,以下同)收、发端的数据信号是相对于信号地,如从DTE 设备发出的数据在使用DB25 连接器时是2 脚相对7 脚(信号地)的电平,DB25 各引脚定义参见图1。典型的RS-232 信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5~+15V,负电平在-5~-15V 电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS-232 电平再返回TTL 电平。接收器典型的工作电平在+3~+12V 与-3~-12V。由于发送电平与接收电平的差仅为2V 至3V 左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15 米,最高速率为20kb/s。RS-232 是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3~7kΩ。所以RS-232 适合本地设备之间的通信。其有关电气参数参见表1。三、RS-422与RS-485串行接口标准1.平衡传输RS-422、RS-485 与RS-232 不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B,如图2。通常情况下,发送驱动器A、B 之间的正电平在+2~+6V,是一个逻辑状态,负电平在-2~6V,是另一个逻辑状态。另有一个信号地C,在RS-485 中还有一“使能”端,而在RS-422 中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。接收器也作与发送端相对的规定,收、发端通过平衡双绞线将AA 与BB 对应相连,当在收端AB 之间有大于+200mV 的电平时,输出正逻辑电平,小于-200mV 时,输出负逻辑电平。接收器接收平衡线上的电平范围通常在200mV 至6V 之间。参见图3。图32.RS-RS-422 电气规定RS-422 标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。图5 是典型的RS-422 四线接口。实际上还有一根信号地线,共5 根线。图4 是其DB9 连接器引脚定义。由于接收器采用高输入阻抗和发送驱动器比RS232 更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10 个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS-422 支持点对多的双向通信。接收器输入阻抗为4k,故发端最大负载能力是10×4k+100Ω(终接电阻)。RS-422 四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF 握手)或硬件方式(一对单独的双绞线)实现。图4 图5RS-422 的最大传输距离为4000 英尺(约1219 米),最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s 速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s。RS-422 需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300 米以下不需终接电阻。终接电阻接在传输电缆的最远端。RS-422 有关电气参数见表13.RS-485 电气规定由于RS-485 是从RS-422 基础上发展而来的,所以RS-485 许多电气规定与RS-422 相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS-485 可以采用二线与四线方式,二线制可实现真正的多点双向通信,参见图6。而采用四线连接时,与RS-422 一样只能实现点对多的通信,即只能有一个主(Master)设备,其余为从设备,但它比RS-422 有改进, 无论四线还是二线连接方式总线上可多接到32 个设备。参见图7。图6 图7RS-485 与RS-422 的不同还在于其共模输出电压是不同的,RS-485 是-7V 至+12V 之间,而RS-422 在-7V 至+7V之间,RS-485 接收器最小输入阻抗为12k 剑�鳵S-422 是4k 健;�旧峡梢运礴S-485 满足所有RS-422 的规范,所以RS-485 的驱动器可以用在RS-422 网络中应用。RS-485 有关电气规定参见表1。RS-485 与RS-422 一样,其最大传输距离约为1219 米,最大传输速率为10Mb/s。平衡双绞线的长度与传输速率成反比,在100kb/s 速率以下,才可能使用规定最长的电缆长度。只有在很短的距离下才能获得最高速率传输。一般100 米长双绞线最大传输速率仅为1Mb/s。RS-485 需要2 个终接电阻,其阻值要求等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300 米以下不需终接电阻。终接电阻接在传输总线的两端。四、RS-422与RS-485的网络安装注意要点RS-422 可支持10 个节点,RS-485 支持32 个节点,因此多节点构成网络。网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。在构建网络时,应注意如下几点:1.采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。图8 所示为实际应用中常见的一些错误连接方式(a,c,e)和正确的连接方式(b,d,f)。a,c,e 这三种网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。2.应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。总之,应该提供一条单一、连续的信号通道作为总线。图8五、RS-422与RS-485传输线上匹配的一些说明对RS-422 与RS-485 总线网络一般要使用终接电阻进行匹配。但在短距离与低速率下可以不用考虑终端匹配。那么在什么情况下不用考虑匹配呢?理论上,在每个接收数据信号的中点进行采样时,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。但这在实际上难以掌握,美国MAXIM 公司有篇文章提到一条经验性的原则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配:当信号的转换时间(上升或下降时间)超过电信号沿总线单向传输所需时间的3 倍以上时就可以不加匹配。例如具有限斜率特性的RS-485 接口MAX483 输出信号的上升或下降时间最小为250ns,典型双绞线上的信号传输速率约为0.2m/ns(24AWG PVC 电缆),那么只要数据速率在250kb/s以内、电缆长度不超过16 米,采用MAX483 作为RS-485 接口时就可以不加终端匹配。一般终端匹配采用终接电阻方法,前文已有提及,RS-422 在总线电缆的远端并接电阻,RS-485 则应在总线电缆的开始和末端都需并接终接电阻。终接电阻一般在RS-422 网络中取100Ω,在RS-485 网络中取120Ω。相当于电缆特性阻抗的电阻,因为大多数双绞线电缆特性阻抗大约在100~120Ω。这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大功率,对于功耗限制比较严格的系统不太适合。另外一种比较省电的匹配方式是RC 匹配,如图9。利用一只电容C 隔断直流成分可以节省大部分功率。但电容C 的取值是个难点,需要在功耗和匹配质量间进行折衷。还有一种采用二极管的匹配方法,如图10。这种方案虽未实现真正的“匹配”,但它利用二极管的钳位作用能迅速削弱反射信号,达到改善信号质量的目的。节能效果显著。图9 10六、RS-422与RS-485的接地问题电子系统接地是很重要的,但常常被忽视。接地处理不当往往会导致电子系统不能稳定工作甚至危及系统安全。RS-422 与RS-485 传输网络的接地同样也是很重要的,因为接地系统不合理会影响整个网络的稳定性,尤其是在工作环境比较恶劣和传输距离较远的情况下,对于接地的要求更为严格。否则接口损坏率较高。很多情况下,连接RS-422、RS-485 通信链路时只是简单地用一对双绞线将各个接口的“A”、“B”端连接起来。而忽略了信号地的连接,这种连接方法在许多场合是能正常工作的,但却埋下了很大的隐患,这有下面二个原因:1.共模干扰问题:正如前文已述,RS-422 与RS-485 接口均采用差分方式传输信号方式,并不需要相对于某个参照点来检测信号,系统只需检测两线之间的电位差就可以了。但人们往往忽视了收发器有一定的共模电压范围,如RS-422 共模电压范围为-7~+7V,而RS-485 收发器共模电压范围为-7~+12V,只有满足上述条件,整个网络才能正常工作。当网络线路中共模电压超出此范围时就会影响通信的稳定可靠,甚至损坏接口。以图11 为例,当发送驱动器A 向接收器B 发送数据时,发送驱动器A 的输出共模电压为VOS,由于两个系统具有各自独立的接地系统,存在着地电位差VGPD。那么,接收器输入端的共模电压VCM 就会达到VCM=VOS+VGPD。RS-422 与RS-485 标准均规定VOS≤3V,但VGPD 可能会有很大幅度(十几伏甚至数十伏),并可能伴有强干扰信号,致使接收器共模输入VCM 超出正常范围,并在传输线路上产生干扰电流,轻则影响正常通信,重则损坏通信接口电路。图112.(EMI)问题:发送驱动器输出信号中的共模部分需要一个返回通路,如没有一个低阻的返回通道(信号地),就会以辐射的形式返回源端,整个总线就会像一个巨大的天线向外辐射电磁波。由于上述原因,RS-422、RS-485 尽管采用差分平衡传输方式,但对整个RS-422 或RS-485 网络,必须有一条低阻的信号地。一条低阻的信号地将两个接口的工作地连接起来,使共模干扰电压VGPD 被短路。这条信号地可以是额外的一条线(非屏蔽双绞线),或者是屏蔽双绞线的屏蔽层。这是最通常的接地方法。值得注意的是,这种做法仅对高阻型共模干扰有效,由于干扰源内阻大,短接后不会形成很大的接地环路电流,对于通信不会有很大影响。当共模干扰源内阻较低时,会在接地线上形成较大的环路电流,影响正常通信。笔者认为,可以采取以下三种措施:(1) 如果干扰源内阻不是非常小,可以在接地线上加限流电阻以限制干扰电流。接地电阻的增加可能会使共模电压升高,但只要控制在适当的范围内就不会影响正常通信。(2) 采用浮地技术,隔断接地环路。这是较常用也是十分有效的一种方法,当共模干扰内阻很小时上述方法已不能奏效,此时可以考虑将引入干扰的节点(例如处于恶劣的工作环境的现场设备)浮置起来(也就是系统的电路地与机壳或大地隔离),这样就隔断了接地环路,不会形成很大的环路电流。(3) 采用隔离接口。有些情况下,出于安全或其它方面的考虑,电路地必须与机壳或大地相连,不能悬浮,这时可以采用隔离接口来隔断接地回路,但是仍然应该有一条地线将隔离侧的公共端与其它接口的工作地相连。参见图12。图12七、RS-422与RS-485的网络失效保护RS-422 与RS-485 标准都规定了接收器门限为±200mV。这样规定能够提供比较高的噪声抑制能力,如前文所述,当接收器A 电平比B 电平高+200mV 以上时,输出为正逻辑,反之,则输出为负逻辑。但由于第三态的存在,即在主机在发端发完一个信息数据后,将总线置于第三态,即总线空闲时没有任何信号驱动总线,使AB 之间的电压在-200~+200mV 直至趋于0V,这带来了一个问题:接收器输出状态不确定。如果接收机的输出为0V,网络中从机将把其解释为一个新的启动位,并试图读取后续字节,由于永远不会有停止位,产生一个帧错误结果,不再有设备请求总线,网络陷于瘫痪状态。除上述所述的总线空闲会造成两线电压差低于200mV 的情况外,开路或短路时也会出现这种情况。故应采取一定的措施避免接收器处于不确定状态。图13通常是在总线上加偏置,当总线空闲或开路时,利用偏置电阻将总线偏置在一个确定的状态(差分电压≥-200mV)。如图13。将A 上拉到地,B 下拉到5V,电阻的典型值是1kΩ,具体数值随电缆的电容变化而变化。上述方法是比较经典的方法,但它仍然不能解决总线短路时的问题,有些厂家将接收门限移到-200mV/-50mV,可解决这个问题。例如Maxim 公司的MAX3080 系列RS-485 接口,不仅省去了外部偏置电阻,而且解决了总线短路情况下的失效保护问题。八、RS-422与RS-485的瞬态保护前文提到的信号接地措施,只对低频率的共模干扰有保护作用,对于频率很高的瞬态干扰就无能为力了。由于传输线对高频信号而言就是相当于电感,因此对于高频瞬态干扰,接地线实际等同于开路。这样的瞬态干扰虽然持续时间短暂,但可能会有成百上千伏的电压。实际应用环境下还是存在高频瞬态干扰的可能。一般在切换大功率感性负载如电机、变压器、继电器等或闪电过程中都会产生幅度很高的瞬态干扰,如果不加以适当防护就会损坏RS-422 或RS-485 通信接口。对于这种瞬态干扰可以采用隔离或旁路的方法加以防护。1.隔离保护方法。这种方案实际上将瞬态高压转移到隔离接口中的电隔离层上,由于隔离层的高绝缘电阻,不会产生损害性的浪涌电流,起到保护接口的作用。通常采用高频变压器、光耦等元件实现接口的电气隔离,已有器件厂商将所有这些元件集成在一片IC 中,使用起来非常简便,如Maxim 公司的MAX1480/MAX1490,隔离电压可达2500V。这种方案的优点是可以承受高电压、持续时间较长的瞬态干扰,实现起来也比较容易,缺点是成本较高。2.旁路保护方法。这种方案利用瞬态抑制元件(如TVS、MOV、气体放电管等)将危害性的瞬态能量旁路到大地,优点是成本较低,缺点是保护能力有限,只能保护一定能量以内的瞬态干扰,持续时间不能很长,而且需要有一条良好的连接大地的通道,实现起来比较困难。实际应用中是将上述两种方案结合起来灵活加以运用,如图14。在这种方法中,隔离接口对大幅度瞬态干扰进行隔离,旁路元件则保护隔离接口不被过高的瞬态电压击穿。图14
      RS422是如何通讯的?还有,什么叫“无协议通讯模式”?谢谢!

      串口通讯协议的含义和区别?

      通信协议:各计算机之间进行相互会话所使用的共同语言,两台计算机在进行通信时,必须使用的通信协议,它也指通信双方的一种约定,约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。串口通信协议是计算机上一种非常通用设备通信的协议,同时也是通信设备通用的通信协议,可以用于获取远程采集设备的数据。而串口通信协议主要有RS232、RS422 、RS485。最开始出现的串口通信协议是RS232,1962年发布的。由于其传输速度、单向传递、传输距离短等多方面的制约,因此使用受到限制。于是人们在RS232的基础上做了相应的改进,提高了相应的传输速度、传输距离,于是出现了RS422的雏形,并在工业上得到了相应的应用。但由于任然是单向传输的,使构成的网络只能是单向的。既只能是主机给从机发送指令或数据,从机只能接受并处理相应的消息,不能反映相应的结果。于是人们又做了相应的调整。最后于1983年发布了RS485通信协议。RS232协议是一种简单的串口通信协议,也是最基本的。一般用在实验室等短距离、对传输速度等要求不高的场合,并且与TTL电平不兼容。RS422有了相应的提高。是一种单机发送,多机接收的平衡通信协议接口,传输速度最高可以达到10Mbps,传输距离最远可达到4000英尺,并且在这条平衡总线上能最多带10个从机,但是任然是单向的传输,RS485是一种多点,双向通信的平衡通信协议接口。再RS422的基础上增加了网络中接点(多机)的数量和双向通信能力,同时还增加了驱动器的传输能力和冲突保护特性,扩展了总线共模范围。传输速度最高可以达到10Mbps,标准距离可以达到4000英尺,实际能达到3000米,并且在这条线上最多可以带128个收发器。RS-485标准是半双工通信协议, RS-485适用于收发双方共享一对线进行通信,也适用于多个点之间共享一对线路进行总线方式联网,但通信只能是半双工的。所谓的全双工通信协议指在通信的任意时刻,线路上存在A到B和B到A的双向信号传输。在全双工方式下,通信系统的每一端都设置了发送器和接收器,因此,能控制数据同时在两个方向上传送。全双工方式无需进行方向的切换,因此,没有切换操作所产生的时间延迟,这对那些不能有时间延误的交互式应用(例如远程监测和控制系统)十分有利。这种方式要求通讯双方均有发送器和接收器,同时,需要2根数据线传送数据信号。(可能还需要控制线和状态线,以及地线)。全双工(Full Duplex)是指在发送数据的同时也能够接收数据,两者同步进行,这好像我们平时打电话一样,说话的同时也能够听到对方的声音。目前的网卡一般都支持全双工。全双工以太网使用两对电缆线,而不是像半双工方式那样使用一对电缆线。全双工方式在发送设备的发送方和接收设备的接收方之间采取点到点的连接,这意味着在全双工的传送方式下,可以得到更高的数据传输速度。现在的传输设备光端机,如PCM,PC等通讯设备基本上都有这几种协议的应用。在没有开发出新的通讯协议的情况下,仍将占据一份市场,更多详情可查看讯维~网页链接
      串口通讯协议的含义和区别?

      什么是同步RS422?什么是异步RS422?

      同步串口RS422和异步串口RS422都是RS422C方式的体现。数据流的发送,在物理上,体现为一个高低电平序列。发送方产生电平序列,接收方进行解码。双方需要约定一个规矩,使得数据能够正确的发送与接收。其中,关键的一条,是接收方如何辨别每个数据位在电平序列中的始末位置。对于异步串口,定位信息包含在电平序列中。双方先约定好数据帧的格式,例如波特率、数据位、停止位、奇偶校验等。线路空闲时,电平为高。一旦检测到一个下降沿,则视为一个起始位。然后按照约定的格式,接收这一帧的数据。接收完成后,继续检测下一个起始位。也就是说,异步串口的同步,是以帧为单位的。对帧内的各个数据位,则通过约定的波特率来识别。对于同步串口,定位信息则通过专门的时钟信号线来实现。发送、接收方根据时钟,将数据流转换为电平信号。两者的区别是在它们的传输方式上:异步传输是指一次传输一个字符(5~8位)的数据。每个字符用一个韦始位引5261导,用一个停止位结束。这样就能使4102接收方分析出发送方的数据。但容易发生计时漂移。而同步传输是采用面向字1653符或面向位的插入方式,控制所传送的一帧的起始。这就是同步传输和异步传输的区别。扩展资料串行队列异步执行let serialQueue = DispatchQueue(label: "serial_queue")serialQueue.async {print(Thread.current)serialQueue.async {sleep(2)print(Thread.current)print(1)}print(2)serialQueue.async {print(3)print(Thread.current)}sleep(1)}
      什么是同步RS422?什么是异步RS422?

      串口通信协议有哪些

      常见的串行通信协议 1.UARTUART是通用异步收发传输器,使用RxD和TxD两根线实现异步全双工通信;为确保通信可靠,可以在通信两边接共地;因此,完整的UART通信只需最少3根线即可。RxD是发送数据线,TxD是接收数据线,通信双方使用交叉互联,RxD接对方TxD,TxD接对方RxD。UART使用标准的TTL/CMOS电平(0~5V,0~3.3V,0~2.5V,0~1.8V)来表示数据,高电平表示1,低电平表示0.为了增强抗干扰能力,提高传输长度,可将TTL/CMOS 电平转换为RS232电平逻辑电平,3~12V表示0,-3~-12V表示1(RS232为负逻辑)1)UART平时处于空闲状态,逻辑1状态。2)当有数据发送时,先发送起始位,即将TxD拉低并维持1位时间,接收方在检测到起始位下降沿,等待1.5位后开始一位一位检测数据。3)发送数据,UART数据一帧可以是5,6,7,8位等,一般是8bit,一个字节。数据发送是先发送低位,依次发送,直到最高位。4)可以使用0或者1bit的校验位,校验位可以是奇校验或者偶检验。奇校验:数据加校验位中1的个数为奇数;偶校验:数据加校验位中1的个数为偶数。5)最后是停止位,数据线恢复到空闲状态,停止位可以是1,1.5,2位。1位时间由波特率决定,在UART通信中,波特率(一秒钟传输的符号数)等于比特率(一秒钟传输的字符数),通信双方使用约定的一致的波特率进行通信,常见的波特率有4800,9600,115200等。2.I2C与UART不同,I2C 是同步半双工通信协议。I2C使用SCL,SDA两根双向数据线进行通信,同时为了支持线与逻辑,需要使用开漏输出,同时使用上拉电阻;上拉电阻大小常见的有1.8K,4.7K,10K;在低速场合,为了降低功耗,可以使用10K上拉电阻,1.8K的上拉电阻具有最好的性能,可满足较高速的应用。I2C常见的通信速率有普通:100K,快速:400K,高速:3.4M。I2C最大的从机数量受从机地址和最大总线电容400pF电容的限制。I2C的数据帧格式如下:开始位 | 7bit从机地址 | 1bit读写方向位(0写,1读) | 1bit应答 | 8bit数据1 | 1bit应答1| 。.. | 8bit数据N |1bit非应答N | 停止位 。空闲状态:空闲时,SCL,SDA同时处于高电平。此时,各器件的输出场效应管处于截止状态,释放总线,总线信号由上拉电阻上拉至高电平。开始START:SCL为高电平时,SDA有下降沿。数据传输:数据传输已字节为单位,第一个字节表示从机地址+读写方向,后续数据格式由器件自己定义。数据传输中,SDA的只能在SCL低电平时变化,并在SCL上升沿进行数据采样。应答:每发送一个字节后,接收方必须回应答信号ACK,但发送最后一个字节后,回非应答信号NACK。停止STOP :SCL为高电平时,SDA有上升沿。握手机制:I2C提供握手机制,当主机速度太快而从机无法满足快速通信时,从机可以拉低SCL来与主机握手,从而延长SCL低电平的时间。(SCL高电平由所有器件发出最短的高电平决定,低电平则有低电平最长的决定)。仲裁:SDA是线与逻辑,因此,只要有一端输出低,总线就为低电平,因此是低电平优先仲裁。仲裁规则是发送低电平个数多的主机获得总线权。由于I2C通信的方向性,在一次通信中不能改变数据流方向,因此读过程中需要一次dummy写过程:dummy写完后,在restart,然后将数据流方向改为读,接着就可以读取从机数据内容了。3.SPISPI是同步全双工串行通信协议。SPI定义了4根信号线:SCK:时钟线,主机提供MISO:主入从出MOSI:主出从入SS:片选。片选信号可选,因此通信最少需要3根信号线。SPI在时钟上升沿下进行双向数据交换,主机在输出的同时,也会接收到从机的数据。在设计上,主机从机均需要一个移位寄存器。SPI不区分读写方向,只进行数据交换,要读也必须写,才能将数据交换过来。SPI通过时钟极性和时钟相位定义了4种通信模式:时钟极性CPOL:0:空闲时SCK为0,1:空闲时SCK为1.时钟相位CPHA:0:数据在第一个时钟跳沿采样(可能是上升沿,可能是下降沿,与CPOL有关),1:数据在第二个时钟跳沿采样(可能是上升沿,可能是下降沿,与CPOL有关)。 若在上沿采样,则数据在下沿输出,因此数据能够稳定的被采样。
      串口通信指串口按位(bit)发送和接收字节。尽管比特字节(byte)的串行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。串口通信协议是指规定了数据包的内容,内容包含了起始位、主体数据、校验位及停止位,双方需要约定一致的数据包格式才能正常收发数据的有关规范。在串口通信中,常用的协议包括RS-232、RS-422和RS-485。 中文名串口通信协议外文名Serial communication protocol作用发送和接收字节学科计算机学作用用于获取远程采集设备的串口通信的基本原理串口在嵌入式系统当中是一类重要的数据通信接口,其本质功能是作为 CPU 和串行设备间的编码转换器。当数据从 CPU 经过串行端口发送出去时,字节数据转换为串行的位;在接收数据时,串行的位被转换为字节数据。应用程序要使用串口进行通信,必须在使用之前向操作系统提出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。典型地,串口用于 ASCII 码字符的传输。通信使用3根线完成:(1)地线,(2)发送数据线,(3)接收数据线。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配:波特率是一个衡量通信速度的参数,它表示每秒钟传送的 bit 的个数;数据位是衡量通信中实际数据位的参数,当计算机发送一个信息包,标准的值是 5,7 和 8 位。如何设置取决于你的需求;停止位用于表示单个包的最后一位,典型的值为 1,1.5和 2 位,停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会;奇偶校验位是串口通信中一种简单的检错方式,有四种检错方式——偶、奇、高和低,也可以没有校验位。[1]有关规定波特率串口异步通讯中由于没有时钟信号,所以通讯双方需要约定好波特率,即每个码元的长度,以便对信号进行解码。常见的波特率有4800、9600、115200等。起始位、停止位数据包从起始位开始,到停止位结束。起始信号用逻辑0的数据位表示,停止信号由0.5、1、1.5或2个逻辑1的数据位表示,只要双方约定一致即可。有效数据 起始位之后便是传输的主体数据内容了,也称为有效数据,其长度一般被约定为5、6、7或8位长。
      串口通信指l两个或两个以上的设备使用串口按位(bit)发送和接收字节。可以在使用一根线发送数据的同时用另一根线接收数据。 串口通信协议就是串口通讯时共同遵循的协议。 协议的内容是每一个bit 所代表的意义。 常用的串口通信协议 有以下几种 1 RS-232(ANSI/EIA-232标准) 只支持 点对点, 最大距离 50英尺。最大速度为128000bit/s, 距离越远 速度越慢。 支持全双工(发送同时也可接收)。2 RS-422(EIA RS-422-AStandard),支持点对多一条平衡总线上连接最多10个接收器 将传输速率提高到10Mbps,传输距离延长到4000英尺(约1219米),所以在100kbps速率以内,传输距离最大。支持全双工(发送同时也可接收)。RS-485(EIA-485标准)是RS-422的改进, 支持多对多(2线连接),从10个增加到32个,可以用超过4000英尺的线进行串行通行。速率最大10Mbps。支持全双工(发送同时也可接收)。2线连接时 是半双工状态。 广义上来说USB 协议 sata 硬盘 PCI_E 也是串行通信的范畴. 更为复杂
      串口是计算机上一种非常通用的设备通信协议(不要与通用串行总线UniversalSerialBus或者USB混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信接口;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是比特率、数据位、停止位和奇偶校验。对于两个进行通信的端口,这些参数必须匹配:a,比特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,就是指比特率,例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的比特率为14400,28800和36600。比特率可以远远大于这些值,但是波特率和距离成反比。高比特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位为1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。
      一、UART UART是一个大家族,其包括了RS232、RS499、RS423、RS422和RS485等接口标准规范和总线标准规范。它们的主要区别在于其各自的电平范围不相同。嵌入式设备中常常使用到的是TTL、TTL转RS232的这种方式。常用的就三根引线:发送线TX、接收线RX、电平参考地线GND。1.1 电路示意图1.2 通信协议将传输数据的每个字符一位接一位地传输。https://img-blog.csdn.net/20170719232822650” alt=”串口数据传输示意图.png” title=”” />起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。数据位:紧接着起始位之后。数据位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。奇偶校验位:数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。波特率:数据传输的速率。有以下几个档位:300、600、1200、2400、4800、9600、19200、38400、43000、56000、57600、115200.当然也可以自定义。在数据传输和接收双方,需要预先统一波特率,以便正确的传输数据。二、I2C 总线2.1 电路示意图I²C (Inter-Integrated Circuit)。其拥有一根数据线SDA和一根时钟线SCL。其总线通过上拉电阻与电源相连接。每个接到I2C总线上的器件都有唯一的地址。其中,主动发起操作的一方为主机,另外一方为从机。2.2 数据传输 当没有数据传输的时候,两根总线都为高电
      串口通信协议有哪些

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/67238.html

          热门文章

          文章分类