tcp使用什么进行流量控制(tcp使用什么进行流量控制,通过动态改变)

      最后更新:2023-04-08 05:09:40 手机定位技术交流文章

      TCP是如何实现可靠传输的?

      在计算机网络的经典五层协议中,TCP属于运输层,实现了进程间的通信,保证了数据的可靠传输,属于计算机网络协议族中最重要的协议之一,那么TCP是如何实现可靠数据传输的呢?运输层的进程间通信是通过socket实现的,socket是一个抽象的概念,在Linux系统中以文件的形式存在。网络层通过IP来区分主机,运输层则增加了端口的概念来区分进程。TCP协议中使用目标IP、目标端口、源IP、源端口来定义一个socket,只需要在运输层的报文头部附加上这些信息,目标主机就会知道数据要发送那个socket,对应监听该socket的进程就可以收到数据进行处理。TCP报文包括首部和数据部分,首部附加了TCP报文的信息,首部长度固定部分为20字节,还有40字节的可选部分,具体如下图所示:其中几个关键字段的作用如下:网络层只管尽可能将数据从一个主机发送到另一个主机,并不保证数据可靠到达,由于网络环境总是不稳定的,可能存在丢包、差错等请求,TCP则通过一系列的机制在运输层保证了数据的可靠传输。网络传输可能发生的异常情况和解决方法:要实现可靠传输,最简单的方法就是发送方发送一个报文,接收方收到报文后发送确认报文表示我收到了,你可以发下一个了,传输模型如下:这种方式保证可靠传输称为停止等待协议,这种方式缺点也很明显,效率非常低。为了提高传输效率,充分利用带宽,发送方会连续的发送数据包,如下图所示:客户端不等收到前一个包的确认报文就开始不断的发下一个包,这样可以充分利用网络带宽,提高传输效率,但是于此同时也带来了另外的问题,那么TCP是如何解决这些问题的?累计确认:网络中充斥着大量的发送包和确认回复报文,这些数据只是为了确认报文到达,并不是实际需要传输的数据。是不是一定要每一个报文都要发一个回复确认的报文呢,TCP采用了累计确认的方法:接收方在累计收到了一定量的数据包后发送一个确认报文告诉发送方在此之前的数据包都已经收到了,这样便可以减少确认报文的数量,提高带宽利用率。GBN(回退n步):如果发生丢包的情况,在连续ARQ中,如果接受方收到了123 567个字节,编号为4字节的包丢失了,按照累计确认只能发送3的确认回复,567都要丢掉,因为发送发会进行重传。选择确认ACK:在TCP报文头部的选项字段部分设置已收到的报文,每一段用两个边界来确定,比如上述情况可以用[1,3]和[5,7]来表示,客户端就会根据选项只重传丢失的数据段。因为接收方读数据的能力有限,发送发不能一直发送报文直到把缓冲区所有数据发送完,这样会导致接收方无法接收丢弃掉数据包,发送方收不到确认认为超时又会继续重传,产生了大量无用数据的重传。对此情况TCP使用滑动窗口来解决,基本模型如下:滑动窗口机制实现了TCP的流量控制,不至于发送太快导致太多的数据丢弃和重传。为了避免网络过分拥挤导致丢包严重,传输效率低,TCP实现了拥塞控制机制,拥塞控制的解决办法本质上是流量控制,控制发送方发送的速度,而上文提到流量控制是通过滑动窗口来实现的,所以最终也是通过调整发送方的滑动窗口大小来实现的。拥塞控制的几个重要的概念:慢启动、拥塞避免、快恢复、快重传Reno算法是比较常见的TCP实现的拥塞控制算法,其他拥塞算法还有Tahoe(已废弃不用)、New Reno等,通过拥塞控制算法可以很大程度避免网络拥挤。【书籍】计算机网络:自顶向下方法【码农有道】 这一篇TCP总结请收下
      TCP是如何实现可靠传输的?

      TCP 流量控制与拥塞控制

      TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的、可靠的、基于字节流的。为了通过IP数据报实现可靠性传输,需要考虑很多事情,侧如数据的破坏、丢包、重复以及分片顺序混乱等问题。如不能解决这些问题,也就无从谈起可靠传输。TCP通过校验和、序列号、确认应答、重发控制、连接管理、以及窗口控制等机制来实现可靠性传输。TCP建立连接的实质是,主机A和主机B告知彼此的第一个发送字节的初始序列号,建立连接后对每一个发送的字节都需要以初始序列号为基点进行编号,需要对方来确认每一个字节编号都已经成功接收,双方初始序列号是由操作系统动态生成的随机的值,一般每个TCP 会话都会有不一样的初始序列号,占四个字节。TCP通过肯定的确认应答(ACK) 实现可靠的数据传输。当发送端将数据发出之后会等待对端的确认应答。如果有确认应答,说明数据已经成功到达对端。反之,则数据丢失的可能性很大。在一定时间内没有等到确认应答,发送端就可以认为数据已经丢失,并进行重发由此,即使产生了丢包,仍然能够保证数据能够到达对端,实现可靠传输。如果数据被重发之后若还是收不到确认应答,则进行再次发送。此时确认应答的时间将会以2倍、4信的指数函数延长。达到一定次数后,如果任没有任何确认应答返回,就会判断为网络发生异常,强制关闭连接,并且通知应用通信异常强行终止。发送端根据自己的实际情况发送数据。但是,接收端可能收到的是一个毫无关系的数据包又可能会在处理其他问题上花费一些时间。因此在为这个数据包做其他处理时会耗费一些时间,甚至在高负荷的情况下无法接收任何数据。如此一来,如果接收端将本应该接收的数据丢弃的话,就又会触发重发机制,从而导致网络流量的无端浪费。为了防止这种现象的发生,TCP 提供一种机制可以让发送端根据接收端的实际接收能力控制发送的数据量。这就是所谓的流控制。它的具体操作是,接收端主机向发送端主机通知自己可以接收数据的大小,于是发送端会发送不超过这个限度的数据。该大小限度就被称作窗口大小。在前面6.4.6 节中所介绍的窗口大小的值就是由接收端主机决定的。TCP 首部中,专门有一个字段用来通知窗口大小。接收主机将自己可以接收的缓冲区大小放人这个字段中通知给发送端。这个字段的值越大,说明网络的吞吐量越高。不过,接收端的这个缓冲区一旦面临数据溢出时,窗口大小的值也会随之被设置为一个更小的值通知给发送端,从而控制数据发送量。也就是说,发送端主机会根据接收端主机的指示,对发送数据的量进行控制。这也就形成了一个完整的TCP 流控制(流量控制)。因为 TCP 的窗口控制,收发主机之间即使不再以一个数据段为单位发送确认应答,也能够连续发送大量数据包。然而,如果在通信刚开始时就发送大量数据,也可能会引发其他问题。一般来说,计算机网络都处在一个共享的环境。因此也有可能会因为其他主机之间的通信使得网络拥堵。在网络出现拥堵时,如果突然发送一个较大量的数据,极有可能会导致整个网络的瘫痪。TCP 为了防止该问题的出现,在通信一开始时就会通过一个叫做慢启动的算法得出的数值,对发送数据量进行控制。首先,为了在发送端调节所要发送数据的量,定义了一个叫做“拥塞窗口”的概念。于是在慢启动的时候,将这个拥塞窗口的大小设置为1个数据段发送数据,之后每收到一次确认应答(ACK),拥塞窗口的值就加1MSS。在发送数据包时,将拥塞窗D的大小与接收端主机通知的窗口大小做比较,然后按照它们当中较小那个值,发送比其还要小的数据量。如果重发采用超时机制,那么拥塞窗口的初始值可以设置为1以后再进行慢启动修正。有了上述这些机制,就可以有效地减少通信开始时连续发包导致的网络拥堵,还可以避免网络拥塞情况的发生。慢启动算法的基本思想是当TCP开始在一个网络中传输数据或发现数据丢失并开始重发时,首先慢慢的对网路实际容量进行试探,避免由于发送了过量的数据而导致阻塞。主机发送了一个报文后就要停下来等待应答,每收到一个应答,拥塞窗口就增加一段长度,直至等于设定的阈值。比如我们可以先让发送方发一个包,等这个包被 ack 之后,我们再发 2 个包,这 2 个被 ack 之后再发 4 个包,以此类推,让一次所发的包数量慢慢增加,这就是慢启动。谈 TCP 离不开 窗口的概念,有 congestion window,receive window,sliding window 等等。window 是以 tcp segment 数量为单位,我们可以说当前 window 值由几个 tcp 包构成,而当我们说 window size 的时候,又是在说一个 window 所包含的字节数。window size 除了和 tcp segment 的数量有关之外,还和单个 tcp segment 的最大 size 有关,即 MSS 值。发送方的 Window 大小称之为 CWND(congestion window),接收方的 Window 大小称之为 RWND(receiver window,或 advertised window)。CWND 表示当前发送方可以发送多少个 TCP 包,而 RWND 表示当前接收方还能接收多少个 TCP 包。值得注意的是,CWND 是一个发送方本地的值,并不会在网络上传输。而 RWND 则是由接收方告知发送方的,是存在于 TCP 包的协议中,会通过网络传输。比如,A主机发送给B window 大小为8192,意思是:B主机最多可以连续发送8192 字节给A主机(一般来说,8192字节就是A主机的接收缓冲区大小),如果B主机不小心发送超过8192字节,如果application 没有及时取走,则超过 8192 自己数据可能会因为A主机的接收缓冲区满而被丢弃,所以B主机会严格遵守A的 RWND 的大小,如果A主机通告它的window大小为 0,则B主机一定不会发送数据。TCP首部中 Window Size 占两个byte,最大值为65535。MTU: Maximum Transmit Unit,最大传输单元,即物理接口(数据链路层)提供给其上层(通常是IP层)最大一次传输数据的大小;以普遍使用的以太网接口为例,缺省MTU=1500 Byte,这是以太网接口对IP层的约束,如果IP层有<=1500 byte 需要发送,只需要一个IP包就可以完成发送任务;如果IP层有> 1500 byte 数据需要发送,需要分片才能完成发送,这些分片有一个共同点,即IP Header ID相同。MSS:Maximum Segment Size ,TCP提交给IP层最大分段大小,不包含TCP Header和 TCP Option,只包含TCP Payload ,MSS是TCP用来限制application层最大的发送字节数。如果底层物理接口MTU= 1500 byte,则 MSS = 1500- 20(IP Header) -20 (TCP Header) = 1460 byte,如果application 有2000 byte发送,需要两个segment才可以完成发送,第一个TCP segment = 1460,第二个TCP segment = 540。Persist Timer: 用于周期探测对方receiver window size 是否依然为0的定时器。比如,A主机通告它的window大小为 0,则B一定不会发送数据。B主机也不会一直等下去,如果一直等下去则会发生死锁。为了防止这种情况的死锁发生,发送者使用了一个持续计时器(persiet timer)来周期性的询问接收者是否已增加了窗口。从发送者发出的这些段称为窗口探测(window probes)。在iOS设备上抓包比较方便,除了常用的,如:Charles、Paw 等软件外,我们还可以使用tcpdump。以下是抓包的步骤:(待续)
      TCP 流量控制与拥塞控制

      什么是TCP/IP协议?

      TCP/IP协议(又名:网络通讯协议)即传输控制协议/互联网协议,是一个网络通信模型,以及一整个网络传输协议家族。这一模型是Internet最基本的协议,也是Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。 其定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。TCP负责发现传输的问题,而IP是给因特网的每一台联网设备规定一个地址。 为了减少网络设计的复杂性,大多数网络都采用分层结构。对于不同的网络,层的数量、名字、内容和功能都不尽相同。在相同的网络中,一台机器上的第N层与另一台机器上的第N层可利用第N层协议进行通信,协议基本上是双方关于如何进行通信所达成的一致。不同机器中包含的对应层的实体叫做对等进程。在对等进程利用协议进行通信时,实际上并不是直接将数据从一台机器的第N层传送到另一台机器的第N层,而是每一层都把数据连同该层的控制信息打包交给它的下一层,它的下一层把这些内容看做数据,再加上它这一层的控制信息一起交给更下一层,依此类推,直到最下层。最下层是物理介质,它进行实际的通信。相邻层之间有接口,接口定义下层向上层提供的原语操作和服务。相邻层之间要交换信息,对等接口必须有一致同意的规则。层和协议的集合被称为网络体系结构。每一层中的活动元素通常称为实体,实体既可以是软件实体,也可以是硬件实体。第N层实体实现的服务被第N+1层所使用。在这种情况下,第N层称为服务提供者,第N+1层称为服务用户。服务是在服务接入点提供给上层使用的。服务可分为面向连接的服务和面向无连接的服务,它在形式上是由一组原语来描述的。这些原语可供访问该服务的用户及其他实体使用。TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。 面向连接的服务(例如 Telnet、 FTP、 rlogin、 X Windows和 SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收 域名数据库),但使用UDP传送有关单个主机的信息。
      什么是TCP/IP协议?

      TCP的流量控制

      流量控制:让发送方的发送速率不要太快,要让接收方来得及接收 接收方设置接收窗口的大小,只有当ACK 值为 1 有效发送方的发送窗口不能超过上述数值 控制TCP 报文段的发送时机
      TCP的流量控制

      TCP 协议是如何实现流量控制的,具体一点

      其实这类问题百度一下,答案非常多,也非常详细,直接复制如下,有问题可以追问。 T C P使用一种窗口(w i n d ow)机制来控制数据流。当一个连接建立时,连接的每一端分配一个缓冲区来保存输入的数据,并将缓冲区的尺寸发送给另一端。当数据到达时,接收方发送确认,其中包含了自己剩余的缓冲区尺寸。剩余的缓冲区空间的大小被称为窗口( w i n d o w) ,指出窗口大小的通知称为窗口通告(windowadvertisement) 。接收方在发送的每一确认中都含有一个窗口通告。如果接收方应用程序读数据的速度能够与数据到达的速度一样快,接收方将在每一确认中发送一个正的窗口通告。然而,如果发送方操作的速度快于接收方(由于CP U更快) ,接收到的数据最终将充满接收方的缓冲区,导致接收方通告一个零窗口( zero window)。发送方收到一个零窗口通告时,必须停止发送,直到接收方重新通告一个正的窗口。TCP的窗口以字节为单位进行调整,以适应接收方的处理能力。处理过程如下:(1)TCP连接阶段,双方协商窗口尺寸,同时接收方预留数据缓存区;(2)发送方根据协商的结果,发送符合窗口尺寸的数据字节流,并等待对方的确认;(3)发送方根据确认信息,改变窗口的尺寸,增加或者减少发送未得到确认的字节流中的字节数。调整过程包括:如果出现发送拥塞,发送窗口缩小为原来的一半,同时将超时重传的时间间隔扩大一倍。 TCP的窗口机制和确认保证了数据传输的可靠性和流量控制。
      TCP 协议是如何实现流量控制的,具体一点

      本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/69916.html

          热门文章

          文章分类