简述MCS-51单片机串口通信的四种方式及其特点
方式 0 :这种工作方式比较特殊,与常见的微型计算机的串行口不同,它又叫同步移位寄存器输出方式。在这种方式下,数据从 RXD 端串行输出或输入,同步信号从 TXD 端输出,波特率固定不变,为振荡率的 1/12 。该方式是以 8 位数据为一帧,没有起始位和停止位,先发送或接收最低位。 方式 2 :采用这种方式可接收或发送 11 位数据,以 11 位为一帧,比方式 1 增加了一个数据位,其余相同。第 9 个数据即 D8 位具有特别的用途,可以通过软件搂控制它,再加特殊功能寄存器 SCON 中的 SM2 位的配合,可使 MCS-51 单片机串行口适用于多机通信。方式 2 的波特率固定,只有两种选择,为振荡率的 1/64 或 1/32 ,可由 PCON 的最高位选择。 方式 3 :方式 3 与方式 2 完全类似,唯一的区别是方式 3 的波特率是可变的。而帧格式与方式 2- 样为 11 位一帧。所以方式 3 也适合于多机通信。

51单片机串口通信
////////////////////////////////////////////////////////////////////////////////////////////////// //E51Pro.c//Easy 51Pro编程器主程序,负责通讯,管理编程操作///////////////////////////////////////////////////////////////////////////////////////////////////#include BYTE ComBuf[18];//串口通讯数据缓存,发送和接收都使用UINT nAddress;//ROM中地址计数UINT nTimeOut;//超时计数ProWork pw;//编程器一般操作void Delay_us(BYTE nUs)//微秒级延时<255us{TH0=0;TL0=0;TR0=1;while(TL010000)//后17个字节都有超时限制return 0;}ComBuf[n]=SBUF;RI=0;}return 1;}BOOL WaitResp()//等待上位机回应,1字节,有超时限制{nTimeOut=0;RI=0;while(!RI){nTimeOut++;if(nTimeOut>50000){return 0;}}RI=0;ComBuf[0]=SBUF;return 1;}BOOL WaitData()//写器件时等待上位机数据,18字节,有超时限制{BYTE n;RI=0;for(n=0;n<=17;n++){nTimeOut=0;while(!RI){nTimeOut++;if(nTimeOut>10000){return 0;}}RI=0;ComBuf[n]=SBUF;}return 1;}void SendData()//发送数据或回应操作完成,18字节{BYTE n=0;for(n;n<=17;n++){TI=0;SBUF=ComBuf[n];while(!TI){}TI=0;}}void SendResp()//回应上位机1个字节,在写器件函数中使用{TI=0;SBUF=ComBuf[0];while(!TI){}TI=0;}void SetVpp5V()//设置Vpp为5v{P3_4=0;P3_3=0;}void SetVpp0V()//设置Vpp为0v{P3_3=0;P3_4=1;}void SetVpp12V()//设置Vpp为12v{P3_4=0;P3_3=1;}void RstPro()//编程器复位{pw.fpProOver();//直接编程结束SendData();//通知上位机,表示编程器就绪,可以直接用此函数因为协议号(ComBuf[0])还没被修改,下同}void ReadSign()//读特征字{pw.fpReadSign();SendData();//通知上位机,送出读出器件特征字}void Erase()//擦除器件{pw.fpErase();SendData();//通知上位机,擦除了器件}void Write()//写器件{BYTE n;pw.fpInitPro();//编程前的准备工作SendData();//回应上位机表示进入写器件状态,可以发来数据while(1){if(WaitData())//如果等待数据成功{if(ComBuf[0]==0x07)//判断是否继续写{for(n=2;n<=17;n++)//ComBuf[2~17]为待写入数据块{if(!pw.fpWrite(ComBuf[n]))//<<<<<<<<<<<<<<<<<<<调用写该器件一个单元的函数{pw.fpProOver();//出错了就结束编程ComBuf[0]=0xff;SendResp();//回应上位机一个字节,表示写数据出错了WaitData();//等待上位机的回应后就结束return;}nAddress++;//下一个单元}ComBuf[0]=1;//回应上位机一个字节,表示数据块顺利完成,请求继续SendResp();}else if(ComBuf[0]==0x00)//写器件结束break;else//可能是通讯出错了{pw.fpProOver();return;}}else//等待数据失败{pw.fpProOver();return;}}pw.fpProOver();//编程结束后的工作Delay_ms(50);//延时等待上位机写线程结束ComBuf[0]=0;//通知上位机编程器进入就绪状态SendData();}void Read()//读器件{BYTE n;pw.fpInitPro();//先设置成编程状态SendData();//回应上位机表示进入读状态while(1){if(WaitResp())//等待上位机回应1个字节{if(ComBuf[0]==0)//ComBuf[0]==0表示读结束{break;}else if(ComBuf[0]==0xff)//0xff表示重发{nAddress=nAddress-0x0010;}for(n=2;n<=17;n++)//ComBuf[2~17]保存读出的数据块{ComBuf[n]=pw.fpRead();//<<<<<<<<<<<<<<<<<<<调用写该器件一个单元的函数nAddress++;//下一个单元}ComBuf[0]=6;//向上位机发送读出的数据块SendData();}elsebreak;//等待回应失败}pw.fpProOver();//操作结束设置为运行状态ComBuf[0]=0;//通知上位机编程器进入就绪状态SendData();}void Lock()//写锁定位{pw.fpLock();SendData();}/////////////////////////////////////////////////////////////////////////////////////////////////////所支持的FID,请在这里继续添加///////////////////////////////////////////////////////////////////////////////////////////////////extern void PreparePro00();//FID=00:AT89C51编程器extern void PreparePro01();//FID=01:AT89C2051编程器extern void PreparePro02();//FID=02:AT89S51编程器void main(){SP=0x60;SetVpp5V();//先初始化Vpp为5vSCON=0x00;TCON=0x00;//PCON=0x00;//波特率*2IE=0x00;//TMOD: GATE|C/!T|M1|M0|GATE|C/!T|M1|M0//00 10 00 01TMOD=0x21;//T0用于延时程序TH1=0xff;TL1=0xff;//波特率28800*2,注意PCON//SCON: SM0|SM1|SM2|REN|TB8|RB8|TI|RI//0 1 0 1 0 000SCON=0x50;TR1=1;Delay_ms(1000);//延时1秒后编程器自举ComBuf[0]=0;SendData();while(1)//串口通讯采用查询方式{if(!WaitComm())//如果超时,通讯出错{Delay_ms(500);ComBuf[0]=0;//让编程器复位,使编程器就绪}switch(ComBuf[1])//根据FID设置(ProWork)pw中的函数指针{case 0://at89c51编程器PreparePro00();break;case 1://at89c2051编程器PreparePro01();break;case 2://at89s51编程器PreparePro02();break;//case 3:支持新器件时,请继续向下添加// break;//case 4:// break;default:ComBuf[0]=0xff;ComBuf[1]=0xff;//表示无效的操作break;}switch(ComBuf[0])//根据操作ID跳到不同的操作函数{case 0x00:RstPro();//编程器复位break;case 0x01:ReadSign();//读特征字break;case 0x02:Erase();//擦除器件break;case 0x03:Write();//写器件break;case 0x04:Read();//读器件break;case 0x05:Lock();//写锁定位break;default:SendData();break;}} }
// 单片机串行口发送/接收程序,每接收到字节即发送出去 // 和微机相接后键入的字符回显示在屏幕上// 可用此程序测试//#include #define XTAL 11059200// CUP 晶振频率#define baudrate 9600// 通信波特率void main(void){unsigned char c;TMOD = 0x20; // 定时器1工作于8位自动重载模式, 用于产生波特率TH1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate)));TL1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate)));// 定时器0赋初值SCON = 0x50;PCON = 0x00;TR1 = 1;IE = 0x00;// 禁止任何中断while(1){while(RI == 0);RI = 0;c = SBUF;// 从缓冲区中把接收的字符放入c中SBUF = c;// 要发送的字符放入缓冲区while(TI == 0);TI = 0;} }
void InitSerial(void) {TMOD = 0x20; // T1 方式2PCON=0x00;// PCON=00H,SMOD=0 PD = PCON.2 = 1 进入掉电模式TH1 = TL1 = BAUD_9600;// BAUD: 9600SCON = 0x50; // 串行通信方式1 REN=1 允许接收ET1 = 0;// 不允许中断TR1 = 1;// 开启定时器1IE = 0; // 关闭所有中断允许位memset(&SerialBuf, 0x00, SERIAL_BUF_LEN); // 初始化SerialBuf[SERIAL_BUF_LEN]}/**********************************************************名称:SendByte()**功能:串口发送一个字节**输入:ucData**返回:无**说明:无********************************************************/void SendByte(unsigned char ucData){SBUF = ucData;while(!TI){_CLRWDT_;}TI = 0; }
#include #include unsigned char ch;bit read_flag= 0 ;void init_serialcom( void ) //串口通信初始设定{SCON = 0x50 ; //UART为模式1,8位数据,允许接收TMOD |= 0x20 ; //定时器1为模式2,8位自动重装PCON |= 0x80 ; //SMOD=1;TH1 = 0xFD ; //Baud:19200 fosc="11".0592MHzIE |= 0x90 ; //Enable Serial InterruptTR1 = 1 ; // timer 1 runTI=1;}//向串口发送一个字符void send_char_com( unsigned char ch){SBUF=ch;while (TI== 0);TI= 0 ;}//串口接收中断函数void serial () interrupt 4 using 3{if (RI){RI = 0 ;ch=SBUF;read_flag= 1 ; //就置位取数标志}}main(){init_serialcom(); //初始化串口while ( 1 ){if (read_flag) //如果取数标志已置位,就将读到的数从串口发出{read_flag= 0 ; //取数标志清0send_char_com(ch);}} }

51单片机串口通信,和I2C串口通信协议有什么区别和相同
串口通信准确的说叫RS232通信,串口通信和I2C都是串行通信,但串口通信是RS232协议,I2C通信是遵循I2C协议,举个简单例子,从A到B有条路,一个人走路过去,一个人坐车过去。串行通信就是相当于路,RS232和I2C协议相当于走路和坐车两种不同的方式 赞同
方式1时,SM2一般设置为 0SM2=1,则只有收到有效的停止位时才激活RI。我知道的就这些了,你可以参考一下以上内容来自“飘仙建站论坛”追问 这个我也知道,不过还是谢谢

单片机中所说的通信协议是什么?
单片机通信协议 现在大部分的仪器设备都要求能过通过上位机软件来操作,这样方便调试,利于操作。其中就涉及到通信的过程。在实际制作的几个设备中,笔者总结出了通信程序的通用写法,包括上位机端和下位机端等。1.自定义数据通信协议这里所说的数据协议是建立在物理层之上的通信数据包格式。所谓通信的物理层就是指我们通常所用到的RS232、RS485、红外、光纤、无线等等通信方式。在这个层面上,底层软件提供两个基本的操作函数:发送一个字节数据、接收一个字节数据。所有的数据协议全部建立在这两个操作方法之上。通信中的数据往往以数据包的形式进行传送的,我们把这样的一个数据包称作为一帧数据。类似于网络通信中的TCPIP协议一般,比较可靠的通信协议往往包含有以下几个组成部分:帧头、地址信息、数据类型、数据长度、数据块、校验码、帧尾。帧头和帧尾用于数据包完整性的判别,通常选择一定长度的固定字节组成,要求是在整个数据链中判别数据包的误码率越低越好。减小固定字节数据的匹配机会,也就是说使帧头和帧尾的特征字节在整个数据链中能够匹配的机会最小。通常有两种做法,一、减小特征字节的匹配几率。二、增加特征字节的长度。通常选取第一种方法的情况是整个数据链路中的数据不具有随即性,数据可预测,可以通过人为选择帧头和帧尾的特征字来避开,从而减小特征字节的匹配几率。使用第二种方法的情况更加通用,适合于数据随即的场合。通过增加特征字节的长度减小匹配几率,虽然不能够完全的避免匹配的情况,但可以使匹配几率大大减小,如果碰到匹配的情况也可以由校验码来进行检测,因此这种情况在绝大多说情况下比较可靠。地址信息主要用于多机通信中,通过地址信息的不同来识别不同的通信终端。在一对多的通信系统中,可以只包含目的地址信息。同时包含源地址和目的地址则适用于多对多的通信系统。数据类型、数据长度和数据块是主要的数据部分。数据类型可以标识后面紧接着的是命令还是数据。数据长度用于指示有效数据的个数。校验码则用来检验数据的完整性和正确性。通常对数据类型、数据长度和数据块三个部分进行相关的运算得到。最简单的做法可是对数据段作累加和,复杂的也可以对数据进行CRC运算等等,可以根据运算速度、容错度等要求来选取。2.上位机和下位机中的数据发送物理通信层中提供了两个基本的操作函数,发送一个字节数据则为数据发送的基础。数据包的发送即把数据包中的左右字节按照顺序一个一个的发送数据而已。当然发送的方法也有不同。在单片机系统中,比较常用的方法是直接调用串口发送单个字节数据的函数。这种方法的缺点是需要处理器在发送过程中全程参与,优点是所要发送的数据能够立即的出现在通信线路上,能够立即被接收端接收到。另外一种方法是采用中断发送的方式,所有需要发送的数据被送入一个缓冲区,利用发送中断将缓冲区中的数据发送出去。这种方法的优点是占用处理器资源小,但是可能出现需要发送的数据不能立即被发送的情况,不过这种时延相当的小。对于51系列单片机,比较倾向于采用直接发送的方式,采用中断发送的方式比较占用RAM资源,而且对比直接发送来说也没有太多的优点。以下是51系列单片机中发送单个字节的函数。void SendByte(unsigned char ch){SBUF = ch;while(TI == 0);TI = 0;}上位机中关于串口通信的方式也有多种,这种方式不是指数据有没有缓冲的问题,而是操作串口的方式不同,因为PC上数据发送基本上都会被缓冲后再发送。对于编程来说操作串口有三种方式,一、使用windows系统中自带的串口通信控件,这种方式使用起来比较简单,需要注意的是接收时的阻塞处理和线程机制。二、使用系统的API直接进行串口数据的读取,在windows和linux系统中,设备被虚拟为文件,只需要利用系统提供的API函数即可进行串口数据的发送和读取。三、使用串口类进行串口操作。在此只介绍windows环境下利用串口类编程的方式。CSerialPort是比较好用的串口类。它提供如下的串口操作方法:void WriteToPort(char* string, int len);串口初始化成功后,调用此函数即可向串口发送数据。为了避免串口缓冲所带来的延时,可以开启串口的冲刷机制。3.下位机中的数据接收和协议解析下位机接收数据也有两种方式,一、等待接收,处理器一直查询串口状态,来判断是否接收到数据。二、中断接收。两种方法的优缺点在此前的一篇关于串口通信的文章中详细讨论过。得出的结论是采用中断接收的方法比较好。数据包的解析过程可以设置到不同的位置。如果协议比较简单,整个系统只是处理一些简单的命令,那么可以直接把数据包的解析过程放入到中断处理函数中,当收到正确的数据包的时候,置位相应的标志,在主程序中再对命令进行处理。如果协议稍微复杂,比较好的方式是将接收的数据存放于缓冲区中,主程序读取数据后进行解析。也有两种方式交叉使用的,比如一对多的系统中,首先在接收中断中解析“连接”命令,连接命令接收到后主程序进入设置状态,采用查询的方式来解析其余的协议。以下给出具体的实例。在这个系统中,串口的命令非常简单。所有的协议全部在串口中断中进行。数据包的格式如下:0x55, 0xAA, 0x7E, 0x12, 0xF0, 0x02, 0x23, 0x45, SUM, XOR, 0x0D其中0x55, 0xAA, 0x7E为数据帧的帧头,0x0D为帧尾,0x12为设备的目的地址,0xF0为源地址,0x02为数据长度,后面接着两个数据0x23, 0x45,从目的地址开始结算累加、异或校验和,到数据的最后一位结束。协议解析的目的,首先判断数据包的完整性,正确性,然后提取数据类型,数据等数据,存放起来用于主程序处理。代码如下:if(state_machine == 0) // 协议解析状态机{if(rcvdat == 0x55) // 接收到帧头第一个数据state_machine = 1;elsestate_machine = 0;// 状态机复位}else if(state_machine == 1){if(rcvdat == 0xAA) // 接收到帧头第二个数据state_machine = 2;elsestate_machine = 0;// 状态机复位}else if(state_machine == 2){if(rcvdat == 0x7E) // 接收到帧头第三个数据state_machine = 3;elsestate_machine = 0;// 状态机复位}else if(state_machine == 3){sumchkm = rcvdat; // 开始计算累加、异或校验和xorchkm = rcvdat;if(rcvdat == m_SrcAdr)// 判断目的地址是否正确state_machine = 4;elsestate_machine = 0;}else if(state_machine == 4){sumchkm += rcvdat;xorchkm ^= rcvdat;if(rcvdat == m_DstAdr)// 判断源地址是否正确state_machine = 5;elsestate_machine = 0;}else if(state_machine == 5){lencnt = 0;// 接收数据计数器rcvcount = rcvdat;// 接收数据长度sumchkm += rcvdat;xorchkm ^= rcvdat;state_machine = 6;}else if(state _machine == 6 || state _machine == 7){m_ucData[lencnt++] = rcvdat; // 数据保存sumchkm += rcvdat;xorchkm ^= rcvdat;if(lencnt == rcvcount)// 判断数据是否接收完毕state_machine = 8;elsestate_machine = 7;}else if(state_machine == 8){if(sumchkm == rcvdat)// 判断累加和是否相等state_machine = 9;elsestate_machine = 0;}else if(state_machine == 9){if(xorchkm == rcvdat)// 判断异或校验和是否相等state_machine = 10;elsestate_machine = 0;}else if(state_machine == 10){if(0x0D == rcvdat) // 判断是否接收到帧尾结束符{retval = 0xaa;// 置标志,表示一个数据包接收到}state_machine = 0; // 复位状态机}此过程中,使用了一个变量state_machine作为协议状态机的转换状态,用于确定当前字节处于一帧数据中的那个部位,同时在接收过程中自动对接收数据进行校验和处理,在数据包接收完的同时也进行了校验的比较。因此当帧尾结束符接收到的时候,则表示一帧数据已经接收完毕,并且通过了校验,关键数据也保存到了缓冲去中。主程序即可通过retval的标志位来进行协议的解析处理。接收过程中,只要哪一步收到的数据不是预期值,则直接将状态机复位,用于下一帧数据的判断,因此系统出现状态死锁的情况非常少,系统比较稳定,如果出现丢失数据包的情况也可由上位机进行命令的补发,不过这种情况笔者还没有碰到。对于主程序中进行协议处理的过程与此类似,主程序循环中不断的读取串口缓冲区的数据,此数据即参与到主循环中的协议处理过程中,代码与上面所述完全一样。4.上位机中的数据接收和命令处理上位机中数据接收的过程与下位机可以做到完全一致,不过针对不同的串口操作方法有所不同。对于阻赛式的串口读函数,例如直接进行API操作或者调用windows的串口通信控件,最好能够开启一个线程专门用于监视串口的数据接收,每接收到一个数据可以向系统发送一个消息。笔者常用的CSerialPort类中就是这样的处理过程。CSerialPort打开串口后开启线程监视串口的数据接收,将接收的数据保存到缓冲区,并向父进程发送接收数据的消息,数据将随消息一起发送到父进程。父进程中开启此消息的处理函数,从中获取串口数据后就可以把以上的代码拷贝过来使用。CSerialPort向父类发送的消息号如下:#define WM_COMM_RXCHAR WM_USER+7 // A character was received and placed in the input buffer.因此需要手动添加此消息的响应函数:afx_msg LONG OnCommunication(WPARAM ch, LPARAM port);ON_MESSAGE(WM_COMM_RXCHAR, OnCommunication)响应函数的具体代码如下:LONG CWellInfoView::OnCommunication(WPARAM ch, LPARAM port){int retval = 0;rcvdat = (BYTE)ch;if(state_machine == 0) // 协议解析状态机{if(rcvdat == 0x55) // 接收到帧头第一个数据state_machine = 1;elsestate_machine = 0;// 状态机复位}else if(state_machine == 1){if(rcvdat == 0xAA) // 接收到帧头第二个数据state_machine = 2;elsestate_machine = 0;// 状态机复位......5.总结 以上给出的是通信系统运作的基本雏形,虽然简单,但是可行。实际的通信系统中协议比这个要复杂,而且涉及到数据包响应、命令错误、延时等等一系列的问题,在这样的一个基础上可以克服这些困难并且实现出较为稳定可靠的系统
单片机与别的单片机或者设备及电脑之间传输数据,就需要一个通讯协议,有I2C,SPI,AUSART等协议,具体可协议内容可网上查找。
你是要串口通信协议嘛?还有IIC,SPI,等呢
用我个人理解说一下吧,这个协议一般都是自己订的吧,比如我发一个字符串,总长度为13字节,然后开头和结尾都用‘~’表示,占用了两个字节,剩下的11个字节可以表示要发的内容,而上位机和下位机进行通信,或两单片机进行通信时,内部程序在接收模块处将收到的信息进行程序判断,如果判断出开头是~然后才开始接收,当再次收到~,时停止接收,再进行程序校验,这些大部分要体现在程序里,按自己的要求来定,不然那不轻易被人破解了,那还有个什么意思呀,呵呵,仅个人理解 ,欢迎交流。

51单片机通过串口实现数据的发送与接收程序
串口收发,要有通信协议。也就是什么时候开始接收,接收到指令后,转发什么数据。这个要知道,才可以写。而且使用不同的51单片机,其内部寄存器配置是不同的。 一般来说,过程如下:1,配置串口参数、波特率等,开启串口中断;void Init_UART(){}2,中断函数里写中断响应函数,根据接收的指令或者数据,执行相应的动作;程序一般为:void UART_ISR()interruptx using y{;串口中断处理函数}x- 单片机的C51中断号y - 指定使用的当前工作寄存器组号(0-3PSW中的RS0,RS1组合)3,主程序int main(void){Init_UART();while(1){;//数据发送函数} }

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/74499.html。