gb28181-2016tcp主动和tcp被动区别
UDP服务端监听UDP端口,通过INVITE信令告知设备端口,设备主动向服务端发起流传输TCP 被动服务端监听TCP端口,通过INVITE信令告知设备端口,设备向服务端发起流传输TCP 主动设备端告知服务端监听的TCP端口情况,服务端主动向设备拉流,此种场景较少,且设备所在网络可以被服务所在网络访问(如下级设备与上级GB28181服务在同一个局域网,或者都在公网上能相互访问)。

TCP协议解析
主要特点:面向连接、面向字节流、全双工通信、通信可靠。优缺点:应用场景:要求通信数据可靠时,即 数据要准确无误地传递给对方。如:传输文件:HTTP、HTTPS、FTP等协议;传输邮件:POP、SMTP等协议ps:首部的前 20 个字节固定,后面有 4n 字节根据需要增加。故 TCP首部最小长度 = 20字节(最大60个字节)。TCP报头中的源端口号和目的端口号同IP数据报中的源IP与目的IP唯一确定一条TCP连接。重要字段:客户端与服务器来回共发送三个TCP报文段来建立运输连接,三个TCP报文段分别为:(1)客户端A向服务器B发送的TCP请求报段“SYN=1,seq=x”;(2)服务器B向客户端A发送的TCP确认报文段“SYN=1,ACK=1,seq=y,ack=x+1”;(3)客户端A向服务器B发送的TCP确认报文段“ACK=1,seq=x+1,ack=y+1”。ps:在建立TCP连接之前,客户端和服务器都处于关闭状态(CLOSED),直到客户端主动打开连接,服务器才被动打开连接(处于监听状态 = LISTEN),等待客户端的请求。TCP 协议是一个面向连接的、安全可靠的传输层协议,三次握手的机制是为了保证能建立一个安全可靠的连接。通过上述三次握手,双方确认自己与对方的发送与接收是正常的,就建立起一条TCP连接,即可传送应用层数据。ps:因 TCP提供的是全双工通信,故通信双方的应用进程在任何时候都能发送数据;三次握手期间,任何1次未收到对面的回复,则都会重发。为什么两次握手不行呢?结论:防止服务器接收了早已经失效的连接请求报文,服务器同意连接,从而一直等待客户端请求,最终导致形成死锁、浪费资源。ps:SYN洪泛攻击:(具体见下文)为什么不需要四次握手呢?SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK确认序号标志消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。如何来解决半连接攻击?如何来解决全连接攻击?请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,客户端才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果服务器一收到 客户端的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,服务器结束 TCP 连接的时间要早于客户端。TCP是全双工的连接,必须两端同时关闭连接,连接才算真正关闭。简言之,客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器才会发送 FIN 连接释放报文,对方确认后就完全关闭了TCP连接。举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。ps:设想这样一个情景:客户端已主动与服务器建立了 TCP 连接。但后来客户端的主机突然发生故障。显然,服务器以后就不能再收到客户端发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就需要使用TCP的保活计时器。基本原理:tcp11种状态及变迁其实基本包含在正常的三次握手和四次挥手中,除开CLOSING。正常的三次握手包括4中状态变迁:服务器打开监听(LISTEN)->客户端先发起SYN主动连接标识->服务器回复SYN及ACK确认->客户端再确认即三次握手TCP连接成功。这里边涉及四种状态及变迁:正常的四次握手包含6种tcp状态变迁,如主动发起关闭方为客户端:客户端发送FIN进入FIN_WAIT1 -> 服务器发送ACK确认并进入CLOSE_WAIT(被动关闭)状态->客户端收到ACK确认后进入FIN_WAIT2状态 -> 服务器再发送FIN进入LAST_ACK状态 -> 客户端收到服务器的FIN后发送ACK确认进入TIME_WAIT状态 -> 服务器收到ACK确认后进入CLOSED状态断开连接 -> 客户端在等待2MSL的时间如果期间没有收到服务器的相关包,则进入CLOSED状态断开连接。CLOSING状态:连接断开期间,一般是客户端发送一个FIN,然后服务器回复一个ACK,然后服务器发送完数据后再回复一个FIN,当客户端和服务器同时接受到FIN时,客户端和服务器处于CLOSING状态,也就是此时双方都正在关闭同一个连接。在进入CLOSING状态后,只要收到了对方对自己发送的FIN的ACK,收到FIN的ACK确认就进入TIME_WAIT状态,因此,如果RTT(Round Trip Time TCP包的往返延时)处在一个可接受的范围内,发出的FIN会很快被ACK从而进入到TIME_WAIT状态,CLOSING状态持续的时间就特别短,因此很难看到这种状态。我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。应用场景:UDP协议比TCP协议的效率更高,TCP协议比UDP协议更加安全可靠。下面主要对数据传输出现错误/无应答/堵塞/超时/重复等问题。注意:TCP丢包:TCP是基于不可靠的网路实现可靠传输,肯定会存在丢包问题。如果在通信过程中,发现缺少数据或者丢包,那边么最大的可能性是程序发送过程或者接受过程中出现问题。总结:为了满足TCP协议不丢包,即保证可靠传输,规定如下:注意:TCP丢包有三方面的原因,一是网络的传输质量不好,二是安全策略,三是服务器性能瓶颈先理解2个基础概念:发送窗口、接收窗口工作原理:注意点:关于滑动窗口的知识点:滑动窗口中的数据类型:ARQ解决的问题:出现差错时,让发送方重传差错数据:即 出错重传类型:流量控制和拥塞控制解决的问题:当接收方来不及接收收到的数据时,可通知发送方降低发送数据的效率:即 速度匹配流量控制:注意:拥塞控制:慢开始与拥塞避免:快重传和快恢复:补充:流量控制和拥塞控制的区别什么情况造成TCP粘包和拆包?解决TCP粘包和拆包的方法:传输层无法保证数据的可靠传输,只能通过应用层来实现了。实现的方式可以参照tcp可靠性传输的方式,只是实现不在传输层,实现转移到了应用层。最简单的方式是在应用层模仿传输层TCP的可靠性传输。下面不考虑拥塞处理,可靠UDP的简单设计。https://www.jianshu.com/p/65605622234bhttp://www.open-open.com/lib/view/open1517213611158.htmlhttps://blog.csdn.net/dangzhangjing97/article/details/81008836https://blog.csdn.net/qq_30108237/article/details/107057946https://www.jianshu.com/p/6c73a4585eba

TCP与UDP的区别
在介绍TCP和UDP协议之前,有必要先了解下TCP/IP模型,TCP/IP中的两个具有代表性的传输协议:TCP和UDP。 TCP/IP 是互联网相关的各类协议族的总称,比如:TCP,UDP,IP,FTP,HTTP,ICMP,SMTP 等都属于 TCP/IP 族内的协议。TCP/IP模型是互联网的基础,它是一系列网络协议的总称。这些协议可以划分为四层,分别为链路层、网络层、传输层和应用层。TCP协议全称是传输控制协议,是一种面向连接、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。流就是指不间断的数据结构,可以想象成水管中的水流。TCP 在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的运输服务(TCP 的可靠体现在 TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源),这难以避免增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。最初客户端和服务端都处于CLOSED(关闭)状态,客户端主动打开连接,服务端被动打开连接。--- 为了防止已经失效的连接请求又突然被服务端接收,从而产生错误。比如:A发出的第一个连接请求报文段并没有丢失,而是在网络结点时间长了,以致于延误到连接释放以后的某个时间段才到达B,但是B收到此失效的请求后,就误以为A又发出一次新的连接请求,于是就向A发出确认报文段,同意建立连接。出现失效的连接请求报文段被服务端接收的情况,从而产生错误。UDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在第四层——传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。UDP在传送数据之前不需要建立连接,远地主机在收到UDP报文后,不需要给出任何确认。虽然UDP不提供可靠交付,但在某些情况下,UDP却是最有效的一种比如QQ语音、QQ视频、直播等即时通信应用。因此 UDP 的头部开销小,只有八字节,相比 TCP 的至少二十字节要少得多,在传输数据报文时是很高效的1、连接的区别TCP面向连接,即发送数据之前先建立连接。UDP是无连接的,即发送数据之前是不需要建立连接的。2、安全方面的区别TCP是全双工的可靠通信,提供可靠的服务,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达。使用流量控制和拥塞控制。UDP是不可靠传输,尽最大努力交付,即不保证可靠交付。3、传输效率的区别TCP传输效率较低。UDP传输效率高,适用于对高速传输和实时性有较高要求的通信或广播通信。4、连接对象数量的区别TCP连接只能是点到点,一对一的。UDP支持一对一,一对多,多对一和多对多的交互通信。5、传输方式的区别TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流。适用于要求可靠传输的应用比如文件传输等。UDP面向报文,没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低,对实时应用很有用比如实时视频会议等。6、首部开销TCP首部开销最小20字节,最大60字节。 UDP首部开销小,只有8个字节。

tcp连接状态详解
unix的哲学是一切皆文件,可以把socket看成是一种特殊的文件,而一些socket函数就是对其进行的操作api(读/写IO、打开、关闭)。我们知道普通文件的打开操作(open)返回一个文件描述字,与之类似,socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,sockfd即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。在将一个地址绑定到socket的时候,需要先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过不少血案,谨记对主机字节序不要做任何假定,务必将其转化为网络字节序再赋给socket。这里的主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:listen函数的第一个参数即为要监听的socket描述字,第二个参数为socket可以接受的排队的最大连接个数。listen函数表示等待客户的连接请求。connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()之后就向TCP服务器发送连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数去接收请求,这样连接就建立好了(在connect之后就建立好了三次连接),之后就可以开始进行类似于普通文件的网络I/O操作了。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与客户的TCP连接。accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,类似于操作完打开的文件要调用fclose关闭打开的文件。close一个TCP socket的缺省行为时把该socket标记为已关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:客户端向服务器发送一个SYN J服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1客户端再想服务器发一个确认ACK K+1socket中TCP的四次握手释放连接详解某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。一段时间之后,服务端调用close关闭它的socket。这导致它的TCP也发送一个FIN N;接收到这个FIN的源发送端TCP对它进行确认,这样每个方向上都有一个FIN和ACK。为什么要三次握手由于tcp连接是全双工的,存在着双向的读写通道,每个方向都必须单独进行关闭。当一方完成它的数据发送任务后就可以发送一个FIN来终止这个方向的连接。收到FIN只意味着这个方向上没有数据流动,但并不表示在另一个方向上没有读写,所以要双向的读写关闭需要四次握手,3. time_wait状态如何避免?首先服务器可以设置SO_REUSEADDR套接字选项来通知内核,如果端口忙,但TCP连接位于TIME_WAIT状态时可以重用端口。在一个非常有用的场景就是,如果你的服务器程序停止后想立即重启,而新的套接字依旧希望使用同一端口,此时SO_REUSEADDR选项就可以避免TIME_WAIT状态。1.客户端连接服务器的80服务,这时客户端会启用一个本地的端口访问服务器的80,访问完成后关闭此连接,立刻再次访问服务器的80,这时客户端会启用另一个本地的端口,而不是刚才使用的那个本地端口。原因就是刚才的那个连接还处于TIME_WAIT状态。2.客户端连接服务器的80服务,这时服务器关闭80端口,立即再次重启80端口的服务,这时可能不会成功启动,原因也是服务器的连接还处于TIME_WAIT状态。实战分析:状态描述:CLOSED:无连接是活动的或正在进行LISTEN:服务器在等待进入呼叫SYN_RECV:一个连接请求已经到达,等待确认SYN_SENT:应用已经开始,打开一个连接ESTABLISHED:正常数据传输状态FIN_WAIT1:应用说它已经完成FIN_WAIT2:另一边已同意释放ITMED_WAIT:等待所有分组死掉CLOSING:两边同时尝试关闭TIME_WAIT:另一边已初始化一个释放LAST_ACK:等待所有分组死掉命令解释:如何尽量处理TIMEWAIT过多?编辑内核文件/etc/sysctl.conf,加入以下内容:net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。net.ipv4.tcp_fin_timeout 修改系默认的 TIMEOUT 时间然后执行 /sbin/sysctl -p 让参数生效./etc/sysctl.conf是一个允许改变正在运行中的Linux系统的接口,它包含一些TCP/IP堆栈和虚拟内存系统的高级选项,修改内核参数永久生效。简单来说,就是打开系统的TIMEWAIT重用和快速回收。本文主要讲述了socket的主要api,以及tcp的连接过程和其中各个阶段的连接状态,理解这些是更深入了解tcp的基础!

tcp的全称是什么?
传输控制协议( TCP ) 是Internet 协议套件的主要协议之一。起源于最初的网络实现,它补充了Internet 协议(IP)。因此,整个套件通常称为TCP/IP。TCP在通过 IP 网络通信的主机上运行的应用程序之间提供可靠的、有序的和经过错误检查的八位位组(字节)流传输。主要的互联网应用程序,例如万维网、电子邮件、远程管理和文件传输依赖于 TCP,它是TCP/IP 套件传输层的一部分。SSL/TLS通常运行在 TCP 之上。TCP 是面向连接的,在发送数据之前,客户端和服务器之间建立了连接。在建立连接之前,服务器必须正在侦听(被动打开)来自客户端的连接请求。三向握手(主动打开)、重传和错误检测增加了可靠性,但延长了延迟。不需要可靠数据流服务的应用程序可以使用用户数据报协议(UDP),它提供了一种无连接 数据报服务,它优先考虑时间而不是可靠性。TCP 采用网络拥塞避免。但是,TCP 存在漏洞,包括拒绝服务、连接劫持、TCP 否决和重置攻击。网络功能传输控制协议在应用程序和 Internet 协议之间提供中间级别的通信服务。它在Internet 模型的传输层提供主机到主机的连接。应用程序不需要知道通过链接将数据发送到另一台主机的特定机制,例如为容纳传输介质的最大传输单元所需的IP 分段。在传输层,TCP 处理所有握手和传输细节,并通常通过网络套接字接口向应用程序提供网络连接的抽象。在协议栈的较低级别,由于网络拥塞、流量负载平衡或不可预测的网络行为,IP 数据包可能会丢失、重复或乱序传送。TCP 检测到这些问题,请求重新传输丢失的数据,重新排列乱序数据,甚至帮助最小化网络拥塞以减少其他问题的发生。如果数据仍未交付,则会通知源此失败。一旦 TCP 接收器重新组合了最初传输的八位字节序列,它就会将它们传递给接收应用程序。因此,TCP从底层网络细节中 抽象出应用程序的通信。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/77980.html。