传输层协议(TCP, UDP)
传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram Protocol)。为了简化问题说明,本课程以Telnet为例描述相关技术。设备支持通过Telnet协议和Stelnet协议登录。使用Telnet,Stelnet v1协议存在安全风险,建议你使用STelnet v2登录设备。为了简化问题说明,本课程以FTP为例来描述相关技术。设备支持通过FTP协议,TFTP以及SFTP传输文件。使用FTP,TFTP,SFTP v1协议存在风险,建议使用SFTP v2方式进行文件操作。TCP是一种面向连接的传输层协议,提供可靠的传输服务。TCP是一种面向连接的端到端协议。TCP作为传输控制协议,可以为主机提供可靠的数据传输。TCP需要依赖网络协议为主机提供可用的传输路径。TCP允许一个主机同事运行多个应用进程。每台主机可以拥有多个应用端口,没对端口号,源和目标IP地址的组合唯一地标识了一个会话。端口分为知名端口和动态端口。有些网络服务会使用固定的端口,这类端口称为知名端口,端口号范围为 0~1023 。比如:FTP,HTTP,Telnet,SNMP服务均使用知名端口。动态端口范围 1024~65535 ,这些端口号一般不会固定分配给某个服务,也就是说许多服务都可以使用这些端口。只要运行的程序向系统提出访问网络的申请,那么系统就可以从这些端口号中分配一个供该程序使用。TCP通常使用IP作为网络层协议,这是TCP数据被封装在IP数据包内。TCP数据段由TCP Header(头部)和TCP Data(数据)组成。TCP最多可以有60个字节的头部,如果没有Options字段,正常的长度是20字节。TCP Header是由如上图标识一些字段组成,这里列出几个常用字段。注意:1)主机A(通常也叫客户端)发送一个标识了SYN数据段,标识期望与服务器A建立连接,此数据段的序列号(seq)为a;2)服务器A回复标识了SYN+ACK的数据段,此数据段的序列号(seq)为b,确认序列号为主机A的序列号加1(a+1),以此作为对主机A的SYN报文的确认。3)主机A发送一个标识了ACK的数据段,此数据段的序列号(seq)为a+1,确认序列号为服务器A的序列号加1(b+1),以此作为对服务器A的SYN报文段的确认。TCP是一种可靠的,面向连接的全双工传输层协议。TCP连接的简历是一个三次握手的过程。TCP的可靠传输还提现在TCP使用了确认技术来确保目的设备收到了从源设备发来的数据,并且是准确无误的。确认技术的工作原理如下:目的设备接收到源设备发送的数据段时,会向源端发送确认报文,源设备收到确认报文后,继续发送数据段,如此重复。如图所示,主机A向服务器A发送TCP数据段,为描述方便假设每个数据段的长度都是500个字节。当服务器A成功收到序列号是M+1499的字节以及之前的所有字节时,会以序列号M+1400+1=M+1500进行确认。另外,由于数据段N+3传输失败,所以服务器A未能收到序列号为M+1500的字节,因此服务器A还会再次以序列号M+1500进行确认。注意:上面说到,数据段 N+3 传输失败,那么第二次确认号M+1500,主机A会将N+3,N+4,N+5全部发送一次。TCP滑动窗口技术通过动态改变窗口大小来实现对端到端设备之间的数据传输进行流量控制。如图所示,主机A和服务器A之间通过滑动窗口来实现流量控制。为了方便理解,此例中只考虑主机A发送数据给服务器A时,服务器A通过滑动窗口进行流量控制。例子中:主机A向服务器发送4个长度为1024字节的数据段,其中主机的窗口大小为4096个字节。服务器A收到第3个字节之后,缓存区满,第4个数据段被丢弃。服务器以ACK3073(1024*3=3072)响应,窗口大小调整为3072,表明服务器的缓冲区只能处理3072个字节的数据段。于是主机A改变其发送速率,发送窗口大小为3072的数据段。主机在关闭连接之前,要确认收到来自对方的ACK。TCP支持全双工模式传输数据,这意味着统一时刻两个方向都可以进行数据的传输。在传输数据之前,TCP通过三次握手建立的实际上是两个方向的连接,一次在传输完毕后,两个方向的连接必须都关闭。TCP连接的建立是一个三次握手过程,而TCP连接的终止则要经过四次挥别。如图:1.主机A想终止连接,于是发送一个标识了FIN,ACK的数据段,序列号为a,确认序列号为b。2.服务器A回应一个标识了ACK的数据段,序列号为b,确认序号为a+1,作为对主机A的FIN报文的确认。3.服务器A想终止连接,于是向主机A发送一个标识了FIN,ACK的数据段,序列号为b,确认好为a+1。4.主机A回应一个标识了ACK的数据段,序列号为a+1,确认序号为b+1,作为对服务器A的FIN报文的确认。以上四次交互完成了两个方向连接的关闭。TCP断开连接的步骤,这个比较详细:https://blog.csdn.net/ctrl_qun/article/details/52518479UDP是一种面向无连接的传输层协议,传输可靠性没有保证。当应用程序对传输的可靠性要求不高时,但是对传输速度和延迟要求较高时,可以用UDP协议来替代TCP协议在传输层控制数据的转发。UDP将数据从源端发送到目的端时,无需事先建立连接。UDP采用了简单,容易操作的机制在应用程序间传输数据,没有使用TCP中的确认技术或滑动窗口机制,因此UDP不能保证数据传输的可靠性,也无法避免接受到重复数据的情况。UDP头部仅占8个字节,传输数据时没有确认机制(注意,但是有校验和)。UDP报文分为UDP报文头和UDP数据区域两个部分。报头由源端口,目的端口,报文长度以及校验和组成。UDP适合于实时数据传输,比如语音和视频通信。相比TCP,UDP的传输效率更高,开销更小,但是无法保证数据传输可靠性。UDP头部的标识如下:1)16位源端口号:源主机的应用程序使用的端口号。2)16位目的端口号:目的主机的应用程序使用的端口号。3)16位UDP长度:是指UDP头部和UDP数据的字节长度。因为UDP头部长度是8字节,所以字段的最小值为8。4)16位UDP校验和:该字段提供了与TCP校验字段同样的功能;该字段是可选的。使用UDP传输数据时,由应用程序根据需要提供报文到达确认,排序,流量控制等功能。主机A发送数据包时,这些数据包是以有序的方式发送到网络中的,每个数据包独立地在网络中被发送,所以不同的数据包可能会通过不同的网路径叨叨主机B。这样的情况下,先发送的数据包不一定先到达主机B。因为UDP数据包没有序号,主机B将无法通过UDP协议将数据包按照原来的顺序重新组合,所以此时需要应用程序提供报文的到达确认,排序和流量控制等功能(也就是说UDP报文的到达确认,排序和流量控制是应用程序来确定的)。通常情况下,UDP采用实时传输机制和时间戳来传输语音和视频数据。UDP适合传输对延迟敏感的流量,如语音和视频。在使用TCP协议传输数据时,如果一个数据段丢失或者接受端对某个数据段没有确认,发送端会重新发送该数据段。TCP重新发送数据会带来传输延迟和重复数据,降低了用户的体验。对于延迟敏感的应用,少量的数据丢失一般可以被忽略,这是使用UDP传输能够提升用户的体验。总结:1.TCP头部中的确认标识位有什么作用呢?TCP报文头中的ACK标识位用于目的端对已接受到数据的确认。目的端成功收到序列号为x的字节后,会以序列号x+1进行确认。2.TCP头部中有哪些标识位参与TCP三次握手?在TCP三次握手过程中,要使用SYN和ACK标识位来请求建立连接和确认建立连接。

udp工作原理是怎样的?
UDP工作原理:udp用户数据报协议 (RFC 768) 用户数据报协议(UDP)是 OSI 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。 UDP 协议基本上是 IP 协议与上层协议的接口。 UDP 协议适用端口分别运行在同一台设备上的多个应用程序。由于大多数网络应用程序都在同一台机器上运行,计算机上必须能够确保目的地机器上的软件程序能从源地址机器处获得数据包,以及源计算机能收到正确的回复。这是通过使用 UDP 的“端口号”完成的。UDP协议使用IP层提供的服务把从应用层得到的数据从一台主机的某个应用程序传给网络上另一台主机上的某一个应用程序。UDP协议有如下的特点:1、UDP传送数据前并不与对方建立连接,即UDP是无连接的,在传输数据前,发送方和接收方相互交换信息使双方同步。2、UDP不对收到的数据进行排序,在UDP报文的首部中并没有关于数据顺序的信息(如TCP所采用的序号),而且报文不一定按顺序到达的,所以接收端无从排起。3、UDP对接收到的数据报不发送确认信号,发送端不知道数据是否被正确接收,也不会重发数据。4、UDP传送数据较TCP快速,系统开销也少。 UDP 适用于不需要 TCP 可靠机制的情形,比如,当高层协议或应用程序提供错误和流控制功能的时候。 UDP 是传输层协议,服务于很多知名应用层协议,包括网络文件系统(NFS)、简单网络管理协议(SNMP)、域名系统(DNS)以及简单文件传输系统(TFTP)。

UDP和TCP传输数据的方式有什么不同之处?
TCP---传输控制协议,提供的是面向连接、可靠的字节流服务。当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据。TCP提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端。 UDP---用户数据报协议,是一个简单的面向数据报的运输层协议。UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。由于UDP在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快好好读下,你会明白的。

如何实现TCP和UDP传输
划分为使用TCP端口(面向连接如打电话)和使用UDP端口(无连接如写信)两种。网络中可以被命名和寻址的通信端口是操作系统的一种可分配资源。由网络OSI(开放系统互联参考模型,OpenSystemInterconnectionReferenceModel)七层协议可知,传输层与网络层最大的区别是传输层提供进程通信能力,网络通信的最终地址不仅包括主机地址,还包括可描述进程的某种标识。所以TCP/IP协议提出的协议端口,可以认为是网络通信进程的一种标识符。应用程序(调入内存运行后一般称为:进程)通过系统调用与某端口建立连接(binding,绑定)后,传输层传给该端口的数据都被相应的进程所接收,相应进程发给传输层的数据都从该端口输出。在TCP/IP协议的实现中,端口操作类似于一般的I/O操作,进程获取一个端口,相当于获取本地唯一的I/O文件,可以用一般的读写方式访问类似于文件描述符,每个端口都拥有一个叫端口号的整数描述符,用来区别不同的端口。由于TCP/IP传输层的TCP和UDP两个协议是两个完全独立的软件模块,因此各自的端口号也相互独立。如TCP有一个255号端口,UDP也可以有一个255号端口,两者并不冲突。端口号有两种基本分配方式:第一种叫全局分配这是一种集中分配方式,由一个公认权威的中央机构根据用户需要进行统一分配,并将结果公布于众,第二种是本地分配,又称动态连接,即进程需要访问传输层服务时,向本地操作系统提出申请,操作系统返回本地唯一的端口号,进程再通过合适的系统调用,将自己和该端口连接起来(binding,绑定)。TCP/IP端口号的分配综合了以上两种方式,将端口号分为两部分,少量的作为保留端口,以全局方式分配给服务进程。每一个标准服务器都拥有一个全局公认的端口叫周知口,即使在不同的机器上,其端口号也相同。剩余的为自由端口,以本地方式进行分配。TCP和UDP规定,小于256的端口才能作为保留端口。按端口号可分为3大类:(1)公认端口(WellKnownPorts):从0到1023,它们紧密绑定(binding)于一些服务。通常这些端口的通讯明确表明了某种服务的协议。例如:80端口实际上总是HTTP通讯。(2)注册端口(RegisteredPorts):从1024到49151。它们松散地绑定于一些服务。也就是说有许多服务绑定于这些端口,这些端口同样用于许多其它目的。例如:许多系统处理动态端口从1024左右开始。(3)动态和/或私有端口(Dynamicand/orPrivatePorts):从49152到65535。理论上,不应为服务分配这些端口。实际上,机器通常从1024起分配动态端口。但也有例外:SUN的RPC端口从32768开始。系统管理员可以"重定向"端口:一种常见的技术是把一个端口重定向到另一个地址。例如默认的HTTP端口是80,不少人将它重定向到另一个端口,如8080。如果是这样改了,要访问本文就应改用这个地址.cn:8080。端口漏洞:8080端口可以被各种病毒程序所利用,比如BrownOrifice(BrO)特洛伊木马病毒可以利用8080端口完全遥控被感染的计算机。另外,RemoConChubo,RingZero木马也可以利用该端口进行攻击。操作建议:一般我们是使用80端口进行网页浏览的,为了避免病毒的攻击,我们可以关闭该端口。端口:21服务:FTP说明:FTP服务器所开放的端口,用于上传、下载。最常见的攻击者用于寻找打开anonymous的FTP服务器的方法。这些服务器带有可读写的目录。木马DolyTrojan、Fore、InvisibleFTP、WebEx、WinCrash和BladeRunner所开放的端口。端口:22服务:Ssh说明:PcAnywhere建立的TCP和这一端口的连接可能是为了寻找ssh。这一服务有许多弱点,如果配置成特定的模式,许多使用RSAREF库的版本就会有不少的漏洞存在。端口:23服务:Telnet说明:远程登录,入侵者在搜索远程登录UNIX的服务。大多数情况下扫描这一端口是为了找到机器运行的操作系统。还有使用其他技术,入侵者也会找到密码。木马TinyTelnetServer就开放这个端口。端口:25服务:SMTP说明:SMTP服务器所开放的端口,用于发送邮件。入侵者寻找SMTP服务器是为了传递他们的SPAM。入侵者的帐户被关闭,他们需要连接到高带宽的E-MAIL服务器上,将简单的信息传递到不同的地址。木马Antigen、EmailPasswordSender、HaebuCoceda、ShtrilitzStealth、WinPC、WinSpy都开放这个端口。端口:80服务:HTTP说明:用于网页浏览。木马Executor开放此端口。端口:102服务:Messagetransferagent(MTA)-X.400overTCP/IP说明:消息传输代理。端口:109服务:PostOfficeProtocol-Version3说明:POP3服务器开放此端口,用于接收邮件,客户端访问服务器端的邮件服务。POP3服务有许多公认的弱点。关于用户名和密码交换缓冲区溢出的弱点至少有20个,这意味着入侵者可以在真正登陆前进入系统。成功登陆后还有其他缓冲区溢出错误。端口:110服务:SUN公司的RPC服务所有端口说明:常见RPC服务有rpc.mountd、NFS、rpc.statd、rpc.csmd、rpc.ttybd、amd等端口:119服务:NetworkNewsTransferProtocol说明:NEWS新闻组传输协议,承载USENET通信。这个端口的连接通常是人们在寻找USENET服务器。多数ISP限制,只有他们的客户才能访问他们的新闻组服务器。打开新闻组服务器将允许发/读任何人的帖子,访问被限制的新闻组服务器,匿名发帖或发送SPAM。端口:135服务:LocationService说明:Microsoft在这个端口运行DCERPCend-pointmapper为它的DCOM服务。这与UNIX111端口的功能很相似。使用DCOM和RPC的服务利用计算机上的end-pointmapper注册它们的位置。远端客户连接到计算机时,它们查找end-pointmapper找到服务的位置。HACKER扫描计算机的这个端口是为了找到这个计算机上运行ExchangeServer吗?什么版本?还有些DOS攻击直接针对这个端口。端口:137、138、139服务:NETBIOSNameService说明:其中137、138是UDP端口,当通过网上邻居传输文件时用这个端口。而139端口:通过这个端口进入的连接试图获得NetBIOS/SMB服务。这个协议被用于windows文件和打印机共享和SAMBA。还有WINSRegisrtation也用它。端口:161服务:SNMP说明:SNMP允许远程管理设备。所有配置和运行信息的储存在数据库中,通过SNMP可获得这些信息。许多管理员的错误配置将被暴露在Internet。Cackers将试图使用默认的密码public、private访问系统。他们可能会试验所有可能的组合。SNMP包可能会被错误的指向用户的网络端口:177服务:XDisplayManagerControlProtocol说明:许多入侵者通过它访问X-windows操作台,它同时需要打开6000端口。端口:389服务:LDAP、ILS说明:轻型目录访问协议和NetMeetingInternetLocatorServer共用这一端口。限制端口防非法入侵[分享]一般来说,我们采用一些功能强大的反黑软件和防火墙来保证我们的系统安全,本文拟用一种简易的法——通过限制端口来帮助大家防止非法入侵。非法入侵的方式简单说来,非法入侵的方式可粗略分为4种:1、扫描端口,通过已知的系统Bug攻入主机。2、种植木马,利用木马开辟的后门进入主机。3、采用数据溢出的手段,迫使主机提供后门进入主机。4、利用某些软件设计的漏洞,直接或间接控制主机。非法入侵的主要方式是前两种,尤其是利用一些流行的黑客工具,通过第一种方式攻击主机的情况最多、也最普遍;而对后两种方式来说,只有一些手段高超的黑客才利用,波及面并不广泛,而且只要这两种问题一出现,软件服务商很快就会提供补丁,及时修复系统。对于个人用户来说,您可以限制所有的端口,因为您根本不必让您的机器对外提供任何服务;而对于对外提供网络服务的服务器,我们需把必须利用的端口(比如WWW端口80、FTP端口21、邮件服务端口25、110等)开放,其他的端口则全部关闭。这里,对于采用Windows2000或者WindowsXP的用户来说,不需要安装任何其他软件,可以利用“TCP/IP筛选”功能限制服务器的端口。具体设置如下:1、右键点击“网上邻居”,选择“属性”,然后双击“本地连接”(如果是拨号上网用户,选择“我的连接”图标),弹出“本地连接状态”对话框。2、点击[属性]按钮,弹出“本地连接属性”,选择“此连接使用下列项目”中的“Internet协议(TCP/IP)”,然后点击[属性]按钮。3、在弹出的“Internet协议(TCP/IP)”对话框中点击[高级]按钮。在弹出的“高级TCP/IP设置”中,选择“选项”标签,选中“TCP/IP筛选”,然后点击[属性]按钮。4、在弹出的“TCP/IP筛选”对话框里选择“启用TCP/IP筛选”的复选框,然后把左边“TCP端口”上的“只允许”选上。这样,您就可以来自己添加或删除您的TCP或UDP或IP的各种端口了。添加或者删除完毕,重新启动机器以后,您的服务器就被保护起来了。最后,提醒个人用户,如果您只上网浏览的话,可以不添加任何端口。但是要利用一些网络联络工具,比如OICQ的话,就要把“4000”这个端口打开,同理,如果发现某个常用的网络工具不能起作用的时候,请搞清它在您主机所开的端口,然后在“TCP/IP“里把此端口打开以上来源于网络,不过分析得很好了相同点:都处于传输层不同点:TCP~面向连接、可靠、传输慢、保证数据的顺序UDP~面向无连接、不可靠、传输快、数据按照不同路径到,不保证数据顺序且两者传输的模式不一样
面向连接的TCP “面向连接”就是在正式通信前必须要与对方建立起连接。比如你给别人打电话,必须等线路接通了、对方拿起话筒才能相互通话。TCP(Transmission Control Protocol,传输控制协议)是基于连接的协议,也就是说,在正式收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,我们这里只做简单、形象的介绍,你只要做到能够理解这个过程即可。我们来看看这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。TCP协议能为应用程序提供可靠的通信连接,使一台计算机发出的字节流无差错地发往网络上的其他计算机,对可靠性要求高的数据通信系统往往使用TCP协议传输数据。面向非连接的UDP协议“面向非连接”就是在正式通信前不必与对方先建立连接,不管对方状态就直接发送。这与现在风行的手机短信非常相似:你在发短信的时候,只需要输入对方手机号就OK了。UDP(User Data Protocol,用户数据报协议)是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去!UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。比如,我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。例如,在默认状态下,一次“ping”操作发送4个数据包(如图2所示)。大家可以看到,发送的数据包数量是4包,收到的也是4包(因为对方主机收到后会发回一个确认收到的数据包)。这充分说明了UDP协议是面向非连接的协议,没有建立连接的过程。正因为UDP协议没有连接的过程,所以它的通信效果高;但也正因为如此,它的可靠性不如TCP协议高。QQ就使用UDP发消息,因此有时会出现收不到消息的情况。 TCP协议和UDP协议各有所长、各有所短,适用于不同要求的通信环境。

udp如何保证数据传输的可靠性?
UDP要达到TCP的功能就必须实现拥塞控制的功能,而且是在路由之间实现,这个在底层明显是做不到拥塞控制的,在应用层也是做不到的,因为应用层之间和应用程序挂钩,一般只能操控主机的程序,而表示层是处理所有与数据表示及运输有关的问题,包括转换、加密和压缩,在传输层是不可能的,因为你已经使用了UDP协议,无法在本层转换它,所以只有在会话层
UDP这个协议本身并不保证传输的可靠性。 如果要通过UDP传输数据、但却要保证可靠性的话, 那是要通过第七层(应用层)来实现的。
我所知道的。UDP可在应用层做校验。
世界性难题

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/81813.html。