传输层TCP协议连接的建立和断开
什么是TCP呢?由三个单词组成的Transport Control Protocol,字面理解是传输控制协议,可以理解为比特同学要想在网络泳池里游泳,那么他必须学习传输层控制技能,并且要掌握相应的动作——协议,他才能在畅游世界网络这个超大型游泳池。TCP:一个传输层协议,提供Host-To-Host的可靠传输,支持全双工,是一个面向连接的协议。TCP工作在传输层,它的上层是应用层,应用就是人们常用的微信、抖音、王者荣耀等服务工作的协议。两台不同的设备使用微信聊天,发送语音,需要实现Host-To-Host的数据通信,那么就可以直接调用TCP协议进行。调用TCP通信时需要指定通信的端口,不同的端口对应不同应用,不同IP对应不同的主机,也就是不同的设备。这就涉及到网络地址——IP地址,工作在网络层,当然TCP层只负责把对应的IP地址和端口传给网络层即可,具体业务由网络层来实现。互联网层,即Network Layer,提供地址和地址间的通信,只关注地址到地址Address-To-Address间通信,具体设备间通信由数据链路层实现,数据链路层关注MAC地址间通信,具体的物理设备,传输介质由物理层负责。以上就是TCP/IP协议常用的层级分割,最终目的就是为Host-To-Host服务,实现应用到应用的通信服务。什么是连接和会话呢?连接事需要通信双方相互配合来实现的,是双方达成的一种即时的状态约定,保证通信双方都在线,都有能力为接下来的数据传输做出尽快的响应,我们称之为连接。连接是网络行为状态的记录,既然连接需要双方共同努力,那么就需要双方都有一个对象来记忆当前传输的数据类型,对方的端口、已经传输了多少,效率怎么样等等一些关注点。那么与之相关联的另一个名词会话(Session),是什么意思呢,会话是应用的行为。大家每次用微信聊天时都会有一个窗口,用来发送信息,你来我往,这个窗口中会有很多条信息,我们称之为会话,当我们在会话进行中,连接一定是在通信状态的。聊一会,累了,退出微信了,但是一般我们不会删除我们的会话内容,这时会话还在,但是连接已经中断。双工/单工问题想想自己理解的是什么?单工:任何时间,数据只能单向发送,单工至少需要一条线路半全双工:某一时候可以双向发送数据,至少需要一条线路全双工:任何时刻都可以双向发送数据,大于一条线路这里线路不一定真实存在物理线路,可能采用模拟的形式实现TCP是一个全双工协议,数据任何时刻都可以双向发送,这说明服务器和客户端可以根据需要选择任意时刻发送和接收信息,所以呢都可以被称为主机(Host)可靠性的定义TCP可以提供可靠性,那么可靠性具体的实现方式是什么呢?可靠性指数据无损传输。发送主机按照顺序发送数据,数据通过网络传输,收不同网络条件限制,数据不会按照发送时的顺序到达接收方,这时我们就需要一种算法来保证接收方可以还原出发送方的顺序。这里还有一个概念叫多播,发送方同时发送给多个接收方信息,如果接收方中有一个接收到了这条信息,我们的可靠性就必须保证其他接收方也必须接收到相同的信息,这里我们不讨论多播。TCP的握手和挥手TCP是一个面向连接的连接的协议,握手是建立连接的过程,挥手是断开连接的过程。TCP的基本操作以上三种操作以后,另一方必须立即给发起方返回一个ACK(Ackknowledgement),这是TCP保证可靠性的要求。如果一方不回复发送方ACK,发送方则认为接收方没有收到信息,会重新发送。建立连接的过程-三次握手三次握手的形成和TCP要求每次发送方发送信息以后,接收方必须返回ACK确认有直接的关系上图描述了TCP建立连接的过程,分为6步:TCP建立连接的过程如上,那么为什么是三次呢?第二步服务端做准备,因为是首次收到发送数据请求,无需处理,可以立刻进入数据交互状态,所以可以立刻发送给客户端SYN,告诉客户端,我已准备好,所以第三步和第四步可以合并为一次握手——ACK-SYN,然后客户端回应ACK,连接建立完成以上就是三次握手了具体在数据交互过程,ACK和SYN等需要用标识位来标记,在实际应用中,我们一般使用1来表示开启,0表示关闭。那么四次挥手为什么是四次呢,主要是因为,挥手时服务端收到FIN以后,不能马上回复FIN,因为自身还有任务没有处理完,所以上面所说的6步中,第3、4步就不能一起回复,只能先回复ACK,等自身任务处理完毕,才能告诉客户端,我已经准备好,可以关闭连接,这样就需要4次数据交互,如下图:

TCP/IP协议是什么
TCP/IP协议是什么TCP和UDP处在同一层---运输层,但是TCP和UDP最不同的地方是,TCP提供了一种可靠的数据传输服务,TCP是面向连接的,也就是说,利用TCP通信的两台主机首先要经历一个“拨打电话”的过程,等到通信准备结束才开始传输数据,最后结束通话。所以TCP要比UDP可靠的多,UDP是把数据直接发出去,而不管对方是不是在收信,就算是UDP无法送达,也不会产生ICMP差错报文,这一经时重申了很多遍了。把TCP保证可靠性的简单工作原理:应用数据被分割成TCP认为最适合发送的数据块。这和UDP完全不同,应用程序产生的 数据报长度将保持不变。由TCP传递给IP的信息单位称为报文段或段当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能 及时收到一个确认,将重发这个报文段.当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常将推迟几分之一秒.TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输 过程中的任何变化。如果收到段的检验和有差错, T P将丢弃这个报文段和不确认收到此报文段(希望发端超时并重发)。既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段 的到达也可能会失序。如果必要, TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。TCP还能提供流量控制。TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。从这段话中可以看到,TCP中保持可靠性的方式就是超时重发,这是有道理的,虽然TCP也可以用各种各样的ICMP报文来处理这些,但是这也不是可靠的,最可靠的方式就是只要不得到确认,就重新发送数据报,直到得到对方的确认为止。TCP的首部和UDP首部一样,都有发送端口号和接收端口号。但是显然,TCP的首部信息要比UDP的多,可以看到,TCP协议提供了发送和确认所需要的所有必要的信息。可以想象一个TCP数据的发送应该是如下的一个过程。双方建立连接发送方给接受方TCP数据报,然后等待对方的确认TCP数据报,如果没有,就重新发,如果有,就发送下一个数据报。接受方等待发送方的数据报,如果得到数据报并检验无误,就发送ACK(确认)数据报,并等待下一个TCP数据报的到来。直到接收到FIN(发送完成数据报)中止连接可以想见,为了建立一个TCP连接,系统可能会建立一个新的进程(最差也是一个线程),来进行数据的传送--TCP协议TCP是一个面向连接的协议,在发送输送之前 ,双方需要确定连接。而且,发送的数据可以进行TCP层的分片处理。TCP连接的建立过程 ,可以看成是三次握手 。而连接的中断可以看成四次握手 。1.连接的建立在建立连接的时候,客户端首先向服务器申请打开某一个端口(用SYN段等于1的TCP报文),然后服务器端发回一个ACK报文通知客户端请求报文收到,客户端收到确认报文以后再次发出确认报文确认刚才服务器端发出的确认报文(绕口么),至此,连接的建立完成。这就叫做三次握手。如果打算让双方都做好准备的话,一定要发送三次报文,而且只需要三次报文就可以了。可以想见,如果再加上TCP的超时重传机制,那么TCP就完全可以保证一个数据包被送到目的地。2.结束连接TCP有一个特别的概念叫做half-close,这个概念是说,TCP的连接是全双工(可以同时发送和接收)连接,因此在关闭连接的`时候,必须关闭传和送两个方向上的连接。客户机给服务器一个FIN为1的TCP报文,然后服务器返回给客户端一个确认ACK报文,并且发送一个FIN报文,当客户机回复ACK报文后(四次握手),连接就结束了。3.最大报文长度在建立连接的时候,通信的双方要互相确认对方的最大报文长度(MSS),以便通信。一般这个SYN长度是MTU减去固定IP首部和TCP首部长度。对于一个以太网,一般可以达到1460字节。当然如果对于非本地的IP,这个MSS可能就只有536字节,而且,如果中间的传输网络的MSS更加的小的话,这个值还会变得更小。4.客户端应用程序的状态迁移图客户端的状态可以用如下的流程来表示:CLOSED->SYN_SENT->ESTABLISHED->FIN_WAIT_1->FIN_WAIT_2->TIME_WAIT->CLOSED以上流程是在程序正常的情况下应该有的流程,从书中的图中可以看到,在建立连接时,当客户端收到SYN报文的ACK以后,客户端就打开了数据交互地连接。而结束连接则通常是客户端主动结束的,客户端结束应用程序以后,需要经历FIN_WAIT_1,FIN_WAIT_2等状态,这些状态的迁移就是前面提到的结束连接的四次握手。5.服务器的状态迁移图服务器的状态可以用如下的流程来表示:CLOSED->LISTEN->SYN收到->ESTABLISHED->CLOSE_WAIT->LAST_ACK->CLOSED在建立连接的时候,服务器端是在第三次握手之后才进入数据交互状态,而关闭连接则是在关闭连接的第二次握手以后(注意不是第四次)。而关闭以后还要等待客户端给出最后的ACK包才能进入初始的状态。6.TCP服务器设计前面曾经讲述过UDP的服务器设计,可以发现UDP的服务器完全不需要所谓的并发机制,它只要建立一个数据输入队列就可以。但是TCP不同,TCP服务器对于每一个连接都需要建立一个独立的进程(或者是轻量级的,线程),来保证对话的独立性。所以TCP服务器是并发的。而且TCP还需要配备一个呼入连接请求队列(UDP服务器也同样不需要),来为每一个连接请求建立对话进程,这也就是为什么各种TCP服务器都有一个最大连接数的原因。而根据源主机的IP和端口号码,服务器可以很轻松的区别出不同的会话,来进行数据的分发。TCP的交互数据流对于交互性要求比较高的应用,TCP给出两个策略来提高发送效率和减低网络负担:(1)捎带ACK。(2)Nagle算法(一次尽量多的发数据)捎带ACK的发送方式这个策略是说,当主机收到远程主机的TCP数据报之后,通常不马上发送ACK数据报,而是等上一个短暂的时间,如果这段时间里面主机还有发送到远程主机的TCP数据报,那么就把这个ACK数据报“捎带”着发送出去,把本来两个TCP数据报整合成一个发送。一般的,这个时间是200ms。可以明显地看到这个策略可以把TCP数据报的利用率提高很多。Nagle算法上过bbs的人应该都会有感受,就是在网络慢的时候发贴,有时键入一串字符串以后,经过一段时间,客户端“发疯”一样突然回显出很多内容,就好像数据一下子传过来了一样,这就是Nagle算法的作用。Nagle算法是说,当主机A给主机B发送了一个TCP数据报并进入等待主机B的ACK数据报的状态时,TCP的输出缓冲区里面只能有一个TCP数据报,并且,这个数据报不断地收集后来的数据,整合成一个大的数据报,等到B主机的ACK包一到,就把这些数据“一股脑”的发送出去。虽然这样的描述有些不准确,但还算形象和易于理解,我们同样可以体会到这个策略对于低减网络负担的好处。在编写插口程序的时候,可以通过TCP_NODELAY来关闭这个算法。并且,使用这个算法看情况的,比如基于TCP的X窗口协议,如果处理鼠标事件时还是用这个算法,那么“延迟”可就非常大了。 ;

【网络】TCP的连接建立
TCP是面向连接的协议。运输连接是用来传送TCP报文的。TCP运输连接的建立和释放是每一次连接通信过程中必不可少的。因此,运输连接就有三个阶段:连接建立,数据传送和连接释放。需要解决以下3个问题:连接建立这个过程,需要在客户端和服务器之间,交换3个TCP报文段,也就是三次握手????x3。????请注意,在本例中,A主动打开连接,B被动打开连接一开始,B就在准备接受客户进程的连接请求,然后服务器进程就处于 LISTEN (收听)状态,等待客户的连接请求。如有,即作出响应。A的TCP客户进程像B发出连接请求报文段,这时,首部中的同步位SYN = 1,同时选择一个初始序号 seq = x 。TCP规定????,SYN报文段不能携带数据,但要消耗掉一个序号。这时,TCP客户进程进入SYN-SENT(同步已发送)状态。B收到连接请求的报文段后,如同意建立连接,则向A发送确认。在确认报文段中,应把SYN位和ASK位都置1,确认号是 ack = x + 1 ,同时也为自己选择一个初始序号 seq = y 。请注意,这个报文段也不能携带数据。但同样要消耗掉一个序号。这时,TCP服务器进程进入SYN-RCVD(同步收到)状态。TCP客户进程收到B的确认后,还要向B给出确认。确认报文段的ACK置1,确认号 ack = y + 1 ,而自己的序号 seq = x + 1 。TCP的标准规定????,ACK报文段可以携带数据。但如果不携带数据则不消耗序号,在这种情况下,下一个数据报文段的序号仍是 seq = x +1 。这时,TCP连接已经建立????,A进入ESTABLISHED(已建立连接)状态。当B收到A的确认后,也进入ESTABLISHED(已建立连接)???? Q:为什么A最后还有发送一次确认呢?????A:主要是为了防止已失效的连接请求报文段突然又传送到B,因而产生错误。所谓“已失效的连接请求报文段”是这样产生的。????考虑一种正常情况,A 发出连接请求????,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。A共发出了两个连接请求的报文段,其中第一个丢失????,第二个到达了B????,没有“已失效的连接请求报文段”。????现假定出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某个网络节点长时间的滞留????,以至延误到连接释放以后的某个时间才到达B。本来这是一个 早已失效的报文段 ,但是B收到此时小的连接请求的报文段之后,误以为是A又发出一次新的连接请求。于是向A发出确认报文段,同意建立连接。假定不采用报文握手。那么只要B发出确认之后,新的连接就建立了。由于现在A并没有发出建立连接的请求,因此不会理睬B的确认????,也不会向B发送数据,但B确以为新的运输连接已经建立,并一直等待A发来的数据。B的许多资源就这样白白浪费了。

计算机网络自学笔记:TCP
如果你在学习这门课程,仅仅为了理解网络工作原理,那么只要了解TCP是可靠传输,数据传输丢失时会重传就可以了。如果你还要参加研究生考试或者公司面试等,那么下面内容很有可能成为考查的知识点,主要的重点是序号/确认号的编码、超时定时器的设置、可靠传输和连接的管理。 1 TCP连接TCP面向连接,在一个应用进程开始向另一个应用进程发送数据之前,这两个进程必须先相互“握手”,即它们必须相互发送某些预备报文段,以建立连接。连接的实质是双方都初始化与连接相关的发送/接收缓冲区,以及许多TCP状态变量。这种“连接”不是一条如电话网络中端到端的电路,因为它们的状态完全保留在两个端系统中。TCP连接提供的是全双工服务 ,应用层数据就可在从进程B流向进程A的同时,也从进程A流向进程B。TCP连接也总是点对点的 ,即在单个发送方与单个接收方之间建立连接。一个客户机进程向服务器进程发送数据时,客户机进程通过套接字传递数据流。客户机操作系统中运行的 TCP软件模块首先将这些数据放到该连接的发送缓存里 ,然后会不时地从发送缓存里取出一块数据发送。TCP可从缓存中取出并放入报文段中发送的数据量受限于最大报文段长MSS,通常由最大链路层帧长度来决定(也就是底层的通信链路决定)。 例如一个链路层帧的最大长度1500字节,除去数据报头部长度20字节,TCP报文段的头部长度20字节,MSS为1460字节。报文段被往下传给网络层,网络层将其封装在网络层IP数据报中。然后这些数据报被发送到网络中。当TCP在另一端接收到一个报文段后,该报文段的数据就被放人该连接的接收缓存中。应用程序从接收缓存中读取数据流(注意是应用程序来读,不是操作系统推送)。TCP连接的每一端都有各自的发送缓存和接收缓存。因此TCP连接的组成包括:主机上的缓存、控制变量和与一个进程连接的套接字变量名,以及另一台主机上的一套缓存、控制变量和与一个进程连接的套接字。在这两台主机之间的路由器、交换机中,没有为该连接分配任何缓存和控制变量。2报文段结构TCP报文段由首部字段和一个数据字段组成。数据字段包含有应用层数据。由于MSS限制了报文段数据字段的最大长度。当TCP发送一个大文件时,TCP通常是将文件划分成长度为MSS的若干块。TCP报文段的结构。首部包括源端口号和目的端口号,它用于多路复用/多路分解来自或送至上层应用的数据。另外,TCP首部也包括校验和字段。报文段首部还包含下列字段:32比特的序号字段和32比特的确认号字段。这些字段被TCP发送方和接收方用来实现可靠数据传输服务。16比特的接收窗口字段,该字段用于流量控制。该字段用于指示接收方能够接受的字节数量。4比特的首部长度字段,该字段指示以32比特的字为单位的TCP首部长度。一般TCP首部的长度就是20字节。可选与变长的选项字段,该字段用于当发送方与接收方协商最大报文段长度,或在高速网络环境下用作窗口调节因子时使用。标志字段ACK比特用于指示确认字段中的ACK值的有效性,即该报文段包括一个对已被成功接收报文段的确认。 SYN和FIN比特用于连接建立和拆除。 PSH、URG和紧急指针字段通常没有使用。•序号和确认号TCP报文段首部两个最重要的字段是序号字段和确认号字段。TCP把数据看成一个无结构的但是有序的字节流。TCP序号是建立在传送的字节流之上,而不是建立在传送的报文段的序列之上。一个报文段的序号是该报文段首字节在字节流中的编号。例如,假设主机A上的一个进程想通过一条TCP连接向主机B上的一个进程发送一个数据流。主机A中的TCP将对数据流中的每一个字节进行编号。假定数据流由一个包含4500字节的文件组成(可以理解为应用程序调用send函数传递过来的数据长度),MSS为1000字节(链路层一次能够传输的字节数),如果主机决定数据流的首字节编号是7。TCP模块将为该数据流构建5个报文段(也就是分5个IP数据报)。第一个报文段的序号被赋为7;第二个报文段的序号被赋为1007,第三个报文段的序号被赋为2007,以此类推。前面4个报文段的长度是1000,最后一个是500。确认号要比序号难理解一些。前面讲过,TCP是全双工的,因此主机A在向主机B发送数据的同时,也可能接收来自主机B的数据。从主机B到达的每个报文段中的序号字段包含了从B流向A的数据的起始位置。 因此主机B填充进报文段的确认号是主机B期望从主机A收到的下一报文段首字节的序号。假设主机B已收到了来自主机A编号为7-1006的所有字节,同时假设它要发送一个报文段给主机A。主机B等待主机A的数据流中字节1007及后续所有字节。所以,主机B会在它发往主机A的报文段的确认号字段中填上1007。再举一个例子,假设主机B已收到一个来自主机A的包含字节7-1006的报文段,以及另一个包含字节2007-3006的报文段。由于某种原因,主机A还没有收到字节1007-2006的报文段。在这个例子中,主机A为了重组主机B的数据流,仍在等待字节1007。因此,A在收到包含字节2007-3006的报文段时,将会又一次在确认号字段中包含1007。 因为TCP只确认数据流中至第一个丢失报文段之前的字节数据,所以TCP被称为是采用累积确认。TCP的实现有两个基本的选择:1接收方立即丢弃失序报文段;2接收方保留失序的字节,并等待缺少的字节以填补该间隔。一条TCP连接的双方均可随机地选择初始序号。 这样做可以减少将那些仍在网络中的来自两台主机之间先前连接的报文段,误认为是新建连接所产生的有效报文段的可能性。•例子telnetTelnet由是一个用于远程登录的应用层协议。它运行在TCP之上,被设计成可在任意一对主机之间工作。假设主机A发起一个与主机B的Telnet会话。因为是主机A发起该会话,因此主机A被标记为客户机,主机B被标记为服务器。用户键入的每个字符(在客户机端)都会被发送至远程主机。远程主机收到后会复制一个相同的字符发回客户机,并显示在Telnet用户的屏幕上。这种“回显”用于确保由用户发送的字符已经被远程主机收到并处理。因此,在从用户击键到字符显示在用户屏幕上之间的这段时间内,每个字符在网络中传输了两次。现在假设用户输入了一个字符“C”,假设客户机和服务器的起始序号分别是42和79。前面讲过,一个报文段的序号就是该报文段数据字段首字节的序号。因此,客户机发送的第一个报文段的序号为42,服务器发送的第一个报文段的序号为79。前面讲过,确认号就是主机期待的数据的下一个字节序号。在TCP连接建立后但没有发送任何数据之前,客户机等待字节79,而服务器等待字节42。如图所示,共发了3个报文段。第一个报文段是由客户机发往服务器,其数据字段里包含一字节的字符“C”的ASCII码,其序号字段里是42。另外,由于客户机还没有接收到来自服务器的任何数据,因此该报文段中的确认号字段里是79。第二个报文段是由服务器发往客户机。它有两个目的:第一个目的是为服务器所收到的数据提供确认。服务器通过在确认号字段中填入43,告诉客户机它已经成功地收到字节42及以前的所有字节,现在正等待着字节43的出现。第二个目的是回显字符“C”。因此,在第二个报文段的数据字段里填入的是字符“C”的ASCII码,第二个报文段的序号为79,它是该TCP连接上从服务器到客户机的数据流的起始序号,也是服务器要发送的第一个字节的数据。这里客户机到服务器的数据的确认被装载在一个服务器到客户机的数据的报文段中,这种确认被称为是捎带确认.第三个报文段是从客户机发往服务器的。它的唯一目的是确认已从服务器收到的数据。3往返时延的估计与超时TCP如同前面所讲的rdt协议一样,采用超时/重传机制来处理报文段的丢失问题。最重要的一个问题就是超时间隔长度的设置。显然,超时间隔必须大于TCP连接的往返时延RTT,即从一个报文段发出到收到其确认时。否则会造成不必要的重传。•估计往返时延TCP估计发送方与接收方之间的往返时延是通过采集报文段的样本RTT来实现的,就是从某报文段被发出到对该报文段的确认被收到之间的时间长度。也就是说TCP为一个已发送的但目前尚未被确认的报文段估计sampleRTT,从而产生一个接近每个RTT的采样值。但是,TCP不会为重传的报文段计算RTT。为了估计一个典型的RTT,采取了某种对RTT取平均值的办法。TCP据下列公式来更新EstimatedRTT=(1-)*EstimatedRTT+*SampleRTT即估计RTT的新值是由以前估计的RTT值与sampleRTT新值加权组合而成的。参考值是a=0.125,因此是一个加权平均值。显然这个加权平均对最新样本赋予的权值要大于对老样本赋予的权值。因为越新的样本能更好地反映出网络当前的拥塞情况。从统计学观点来讲,这种平均被称为指数加权移动平均除了估算RTT外,还需要测量RTT的变化,RTT偏差的程度,因为直接使用平均值设置计时器会有问题(太灵敏)。DevRTT=(1-β)*DevRTT+β*|SampleRTT-EstimatedRTT|RTT偏差也使用了指数加权移动平均。B取值0.25.•设置和管理重传超时间隔假设已经得到了估计RTT值和RTT偏差值,那么TCP超时间隔应该用什么值呢?TCP将超时间隔设置成大于等于估计RTT值和4倍的RTT偏差值,否则将造成不必要的重传。但是超时间隔也不应该比估计RTT值大太多,否则当报文段丢失时,TCP不能很快地重传该报文段,从而将给上层应用带来很大的数据传输时延。因此,要求将超时间隔设为估计RTT值加上一定余量。当估计RTT值波动较大时,这个余最应该大些;当波动比较小时,这个余量应该小些。因此使用4倍的偏差值来设置重传时间。TimeoutInterval=EstimatedRTT+4*DevRTT4可信数据传输因特网的网络层服务是不可靠的。IP不保证数据报的交付,不保证数据报的按序交付,也不保证数据报中数据的完整性。TCP在IP不可靠的尽力而为服务基础上建立了一种可靠数据传输服务。TCP提供可靠数据传输的方法涉及前面学过的许多原理。TCP采用流水线协议、累计确认。TCP推荐的定时器管理过程使用单一的重传定时器,即使有多个已发送但还未被确认的报文段也一样。重传由超时和多个ACK触发。在TCP发送方有3种与发送和重传有关的主要事件:从上层应用程序接收数据,定时器超时和收到确认ACK。从上层应用程序接收数据。一旦这个事件发生,TCP就从应用程序接收数据,将数据封装在一个报文段中,并将该报文段交给IP。注意到每一个报文段都包含一个序号,这个序号就是该报文段第一个数据字节的字节流编号。如果定时器还没有计时,则当报文段被传给IP时,TCP就启动一个该定时器。第二个事件是超时。TCP通过重传引起超时的报文段来响应超时事件。然后TCP重启定时器。第三个事件是一个来自接收方的确认报文段(ACK)。当该事件发生时,TCP将ACK的值y与变量SendBase(发送窗口的基地址)进行比较。TCP状态变量SendBase是最早未被确认的字节的序号。就是指接收方已正确按序接收到数据的最后一个字节的序号。TCP采用累积确认,所以y确认了字节编号在y之前的所有字节都已经收到。如果Y>SendBase,则该ACK是在确认一个或多个先前未被确认的报文段。因此发送方更新其SendBase变量,相当于发送窗口向前移动。另外,如果当前有未被确认的报文段,TCP还要重新启动定时器。快速重传超时触发重传存在的另一个问题是超时周期可能相对较长。当一个报文段丢失时,这种长超时周期迫使发送方等待很长时间才重传丢失的分组,因而增加了端到端时延。所以通常发送方可在超时事件发生之前通过观察冗余ACK来检测丢包情况。冗余ACK就是接收方再次确认某个报文段的ACK,而发送方先前已经收到对该报文段的确认。当TCP接收方收到一个序号比所期望的序号大的报文段时,它认为检测到了数据流中的一个间隔,即有报文段丢失。这个间隔可能是由于在网络中报文段丢失或重新排序造成的。因为TCP使用累计确认,所以接收方不向发送方发回否定确认,而是对最后一个正确接收报文段进行重复确认(即产生一个冗余ACK)如果TCP发送方接收到对相同报文段的3个冗余ACK.它就认为跟在这个已被确认过3次的报文段之后的报文段已经丢失。一旦收到3个冗余ACK,TCP就执行快速重传 ,即在该报文段的定时器过期之前重传丢失的报文段。5流量控制前面讲过,一条TCP连接双方的主机都为该连接设置了接收缓存。当该TCP连接收到正确、按序的字节后,它就将数据放入接收缓存。相关联的应用进程会从该缓存中读取数据,但没必要数据刚一到达就立即读取。事实上,接收方应用也许正忙于其他任务,甚至要过很长时间后才去读取该数据。如果应用程序读取数据时相当缓慢,而发送方发送数据太多、太快,会很容易使这个连接的接收缓存溢出。TCP为应用程序提供了流量控制服务以消除发送方导致接收方缓存溢出的可能性。因此,可以说 流量控制是一个速度匹配服务,即发送方的发送速率与接收方应用程序的读速率相匹配。前面提到过,TCP发送方也可能因为IP网络的拥塞而被限制,这种形式的发送方的控制被称为拥塞控制(congestioncontrol)。TCP通过让接收方维护一个称为接收窗口的变量来提供流量控制。接收窗口用于告诉发送方,该接收方还有多少可用的缓存空间。因为TCP是全双工通信,在连接两端的发送方都各自维护一个接收窗口变量。 主机把当前的空闲接收缓存大小值放入它发给对方主机的报文段接收窗口字段中,通知对方它在该连接的缓存中还有多少可用空间。6 TCP连接管理客户机中的TCP会用以下方式与服务器建立一条TCP连接:第一步: 客户机端首先向服务器发送一个SNY比特被置为1报文段。该报文段中不包含应用层数据,这个特殊报文段被称为SYN报文段。另外,客户机会选择一个起始序号,并将其放置到报文段的序号字段中。为了避免某些安全性攻击,这里一般随机选择序号。第二步: 一旦包含TCP报文段的用户数据报到达服务器主机,服务器会从该数据报中提取出TCPSYN报文段,为该TCP连接分配TCP缓存和控制变量,并向客户机TCP发送允许连接的报文段。这个允许连接的报文段还是不包含应用层数据。但是,在报文段的首部却包含3个重要的信息。首先,SYN比特被置为1。其次,该 TCP报文段首部的确认号字段被置为客户端序号+1最后,服务器选择自己的初始序号,并将其放置到TCP报文段首部的序号字段中。 这个允许连接的报文段实际上表明了:“我收到了你要求建立连接的、带有初始序号的分组。我同意建立该连接,我自己的初始序号是XX”。这个同意连接的报文段通常被称为SYN+ACK报文段。第三步: 在收到SYN+ACK报文段后,客户机也要给该连接分配缓存和控制变量。客户机主机还会向服务器发送另外一个报文段,这个报文段对服务器允许连接的报文段进行了确认。因为连接已经建立了,所以该ACK比特被置为1,称为ACK报文段,可以携带数据。一旦以上3步完成,客户机和服务器就可以相互发送含有数据的报文段了。为了建立连接,在两台主机之间发送了3个分组,这种连接建立过程通常被称为 三次握手(SNY、SYN+ACK、ACK,ACK报文段可以携带数据) 。这个过程发生在客户机connect()服务器,服务器accept()客户连接的阶段。假设客户机应用程序决定要关闭该连接。(注意,服务器也能选择关闭该连接)客户机发送一个FIN比特被置为1的TCP报文段,并进人FINWAIT1状态。当处在FINWAIT1状态时,客户机TCP等待一个来自服务器的带有ACK确认信息的TCP报文段。当它收到该报文段时,客户机TCP进入FINWAIT2状态。当处在FINWAIT2状态时,客户机等待来自服务器的FIN比特被置为1的另一个报文段,收到该报文段后,客户机TCP对服务器的报文段进行ACK确认,并进入TIME_WAIT状态。TIME_WAIT状态使得TCP客户机重传最终确认报文,以防该ACK丢失。在TIME_WAIT状态中所消耗的时间是与具体实现有关的,一般是30秒或更多时间。 经过等待后,连接正式关闭,客户机端所有与连接有关的资源将被释放。 因此TCP连接的关闭需要客户端和服务器端互相交换连接关闭的FIN、ACK置位报文段。

简答TCP协议的工作过程
你大概说的是3步握手吧,这跟传真机的5部握手很类似。 下面的资料希望对你有用TCP/IP 是很多的不同的协议组成,实际上是一个协议组,TCP 用户数据报表协议(也称作TCP 传输控制协议,Transport Control Protocol。可靠的主机到主机层协议。这里要先强调一下,传输控制协议是OSI 网络的第四层的叫法,TCP 传输控制协议是TCP/IP 传输的6 个基本协议的一种。两个TCP 意思非相同。)。TCP 是一种可靠的面向连接的传送服务。它在传送数据时是分段进行的,主机交换数据必须建立一个会话。它用比特流通信,即数据被作为无结构的字节流。通过每个TCP 传输的字段指定顺序号,以获得可靠性。是在OSI参考模型中的第四层,TCP 是使用IP 的网间互联功能而提供可靠的数据传输,IP 不停的把报文放到网络上,而TCP 是负责确信报文到达。在协同IP 的操作中TCP 负责:握手过程、报文管理、流量控制、错误检测和处理(控制),可以根据一定的编号顺序对非正常顺序的报文给予从新排列顺序。关于TCP 的RFC 文档有RFC793、RFC791、RFC1700。在TCP 会话初期,有所谓的“三握手”:对每次发送的数据量是怎样跟踪进行协商使数据段的发送和接收同步,根据所接收到的数据量而确定的数据确认数及数据发送、接收完毕后何时撤消联系,并建立虚连接。为了提供可靠的传送,TCP 在发送新的数据之前,以特定的顺序将数据包的序号,并需要这些包传送给目标机之后的确认消息。TCP 总是用来发送大批量的数据。当应用程序在收到数据后要做出确认时也要用到TCP。由于TCP 需要时刻跟踪,需要额外开销,使得TCP 的格式有些显得复杂。下面就让我们看一个TCP 的经典案例,这是后来被称为MITNICK 攻击中KEVIN 开创了两种攻击技术:TCP 会话劫持SYN FLOOD(同步洪流)在这里我们讨论的时TCP 会话劫持的问题。先让我们明白TCP 建立连接的基本简单的过程。为了建设一个小型的模仿环境我们假设有3 台接入互联网的机器。A 为攻击者操纵的攻击机。B 为中介跳板机器(受信任的服务器)。C 为受害者使用的机器(多是服务器),这里把C 机器锁定为目标机器。A 机器向B机器发送SYN 包,请求建立连接,这时已经响应请求的B 机器会向A 机器回应SYN/ACK表明同意建立连接,当A 机器接受到B 机器发送的SYN/ACK 回应时,发送应答ACK 建立A 机器与B 机器的网络连接。这样一个两台机器之间的TCP 通话信道就建立成功了。B 终端受信任的服务器向C 机器发起TCP 连接,A 机器对服务器发起SYN 信息,使C 机器不能响应B 机器。在同时A 机器也向B 机器发送虚假的C 机器回应的SYN 数据包,接收到SYN 数据包的B 机器(被C 机器信任)开始发送应答连接建立的SYN/ACK 数据包,这时C 机器正在忙于响应以前发送的SYN 数据而无暇回应B 机器,而A 机器的攻击者预测出B 机器包的序列号(现在的TCP 序列号预测难度有所加大)假冒C 机器向B 机器发送应答ACK 这时攻击者骗取B 机器的信任,假冒C 机器与B 机器建立起TCP 协议的对话连接。这个时候的C 机器还是在响应攻击者A 机器发送的SYN 数据。TCP 协议栈的弱点:TCP 连接的资源消耗,其中包括:数据包信息、条件状态、序列号等。通过故意不完成建立连接所需要的三次握手过程,造成连接一方的资源耗尽。通过攻击者有意的不完成建立连接所需要的三次握手的全过程,从而造成了C 机器的资源耗尽。序列号的可预测性,目标主机应答连接请求时返回的SYN/ACK 的序列号时可预测的。(早期TCP 协议栈,具体的可以参见1981 年出的关于TCP 雏形的RFC793 文档)TCP 头结构TCP 协议头最少20 个字节,包括以下的区域(由于翻译不禁相同,文章中给出相应的英文单词):TCP 源端口(Source Port):16 位的源端口其中包含初始化通信的端口。源端口和源IP 地址的作用是标示报问的返回地址。TCP 目的端口(Destination port):16 位的目的端口域定义传输的目的。这个端口指明报文接收计算机上的应用程序地址接口。TCP 序列号(序列码,Sequence Number):32 位的序列号由接收端计算机使用,重新分段的报文成最初形式。当SYN 出现,序列码实际上是初始序列码(ISN),而第一个数据字节是ISN+1。这个序列号(序列码)是可以补偿传输中的不一致。TCP 应答号(Acknowledgment Number):32 位的序列号由接收端计算机使用,重组分段的报文成最初形式。,如果设置了ACK 控制位,这个值表示一个准备接收的包的序列码。数据偏移量(HLEN):4 位包括TCP 头大小,指示何处数据开始。保留(Reserved):6 位值域,这些位必须是0。为了将来定义新的用途所保留。标志(Code Bits):6 位标志域。表示为:紧急标志、有意义的应答标志、推、重置连接标志、同步序列号标志、完成发送数据标志。按照顺序排列是:URG、ACK、PSH、RST、SYN、FIN。窗口(Window):16 位,用来表示想收到的每个TCP 数据段的大小。校验位(Checksum):16 位TCP 头。源机器基于数据内容计算一个数值,收信息机要与源机器数值结果完全一样,从而证明数据的有效性。优先指针(紧急,Urgent Pointer):16 位,指向后面是优先数据的字节,在URG标志设置了时才有效。如果URG 标志没有被设置,紧急域作为填充。加快处理标示为紧急的数据段。选项(Option):长度不定,但长度必须以字节。如果没有选项就表示这个一字节的域等于0。填充:不定长,填充的内容必须为0,它是为了数学目的而存在。目的是确保空间的可预测性。保证包头的结合和数据的开始处偏移量能够被32 整除,一般额外的零以保证TCP 头是32 位的整数倍。标志控制功能URG:紧急标志紧急(The urgent pointer) 标志有效。紧急标志置位,ACK:确认标志确认编号(Acknowledgement Number)栏有效。大多数情况下该标志位是置位的。TCP 报头内的确认编号栏内包含的确认编号(w+1,Figure:1)为下一个预期的序列编号,同时提示远端系统已经成功接收所有数据。PSH:推标志该标志置位时,接收端不将该数据进行队列处理,而是尽可能快将数据转由应用处理。在处理telnet 或rlogin 等交互模式的连接时,该标志总是置位的。RST:复位标志复位标志有效。用于复位相应的TCP 连接。SYN:同步标志同步序列编号(Synchronize Sequence Numbers)栏有效。该标志仅在三次握手建立TCP 连接时有效。它提示TCP 连接的服务端检查序列编号,该序列编号为TCP 连接初始端(一般是客户端)的初始序列编号。在这里,可以把TCP 序列编号看作是一个范围从0 到4,294,967,295 的32 位计数器。通过TCP 连接交换的数据中每一个字节都经过序列编号。在TCP 报头中的序列编号栏包括了TCP 分段中第一个字节的序列编号。FIN:结束标志带有该标志置位的数据包用来结束一个TCP 回话,但对应端口仍处于开放状态,准备接收后续数据。服务端处于监听状态,客户端用于建立连接请求的数据包(IP packet)按照TCP/IP协议堆栈组合成为TCP 处理的分段(segment)。分析报头信息: TCP 层接收到相应的TCP 和IP 报头,将这些信息存储到内存中。检查TCP 校验和(checksum):标准的校验和位于分段之中(Figure:2)。如果检验失败,不返回确认,该分段丢弃,并等待客户端进行重传。查找协议控制块(PCB{}):TCP 查找与该连接相关联的协议控制块。如果没有找到,TCP 将该分段丢弃并返回RST。(这就是TCP 处理没有端口监听情况下的机制) 如果该协议控制块存在,但状态为关闭,服务端不调用connect()或listen()。该分段丢弃,但不返回RST。客户端会尝试重新建立连接请求。建立新的socket:当处于监听状态的socket 收到该分段时,会建立一个子socket,同时还有socket{},tcpcb{}和pub{}建立。这时如果有错误发生,会通过标志位来拆除相应的socket 和释放内存,TCP 连接失败。如果缓存队列处于填满状态,TCP 认为有错误发生,所有的后续连接请求会被拒绝。这里可以看出SYN Flood 攻击是如何起作用的。丢弃:如果该分段中的标志为RST 或ACK,或者没有SYN 标志,则该分段丢弃。并释放相应的内存。发送序列变量SND.UNA : 发送未确认SND.NXT : 发送下一个SND.WND : 发送窗口SND.UP : 发送优先指针SND.WL1 : 用于最后窗口更新的段序列号SND.WL2 : 用于最后窗口更新的段确认号ISS : 初始发送序列号接收序列号RCV.NXT : 接收下一个RCV.WND : 接收下一个RCV.UP : 接收优先指针IRS : 初始接收序列号当前段变量SEG.SEQ : 段序列号SEG.ACK : 段确认标记SEG.LEN : 段长SEG.WND : 段窗口SEG.UP : 段紧急指针SEG.PRC : 段优先级CLOSED 表示没有连接,各个状态的意义如下:LISTEN : 监听来自远方TCP 端口的连接请求。SYN-SENT : 在发送连接请求后等待匹配的连接请求。SYN-RECEIVED : 在收到和发送一个连接请求后等待对连接请求的确认。ESTABLISHED : 代表一个打开的连接,数据可以传送给用户。FIN-WAIT-1 : 等待远程TCP 的连接中断请求,或先前的连接中断请求的确认。FIN-WAIT-2 : 从远程TCP 等待连接中断请求。CLOSE-WAIT : 等待从本地用户发来的连接中断请求。CLOSING : 等待远程TCP 对连接中断的确认。LAST-ACK : 等待原来发向远程TCP 的连接中断请求的确认。TIME-WAIT : 等待足够的时间以确保远程TCP 接收到连接中断请求的确认。CLOSED : 没有任何连接状态。TCP 连接过程是状态的转换,促使发生状态转换的是用户调用:OPEN,SEND,RECEIVE,CLOSE,ABORT 和STATUS。传送过来的数据段,特别那些包括以下标记的数据段SYN,ACK,RST 和FIN。还有超时,上面所说的都会时TCP 状态发生变化。序列号请注意,我们在TCP 连接中发送的字节都有一个序列号。因为编了号,所以可以确认它们的收到。对序列号的确认是累积性的。TCP 必须进行的序列号比较操作种类包括以下几种:①决定一些发送了的但未确认的序列号。②决定所有的序列号都已经收到了。③决定下一个段中应该包括的序列号。对于发送的数据TCP 要接收确认,确认时必须进行的:SND.UNA = 最老的确认了的序列号。SND.NXT = 下一个要发送的序列号。SEG.ACK = 接收TCP 的确认,接收TCP 期待的下一个序列号。SEG.SEQ = 一个数据段的第一个序列号。SEG.LEN = 数据段中包括的字节数。SEG.SEQ+SEG.LEN-1 = 数据段的最后一个序列号。如果一个数据段的序列号小于等于确认号的值,那么整个数据段就被确认了。而在接收数据时下面的比较操作是必须的:RCV.NXT = 期待的序列号和接收窗口的最低沿。RCV.NXT+RCV.WND:1 = 最后一个序列号和接收窗口的最高沿。SEG.SEQ = 接收到的第一个序列号。 SEG.SEQ+SEG.LEN:1 = 接收到的最后一个序列号。
TCP/IP协议的工作流程如下: 1.在源主机上,应用层将一串应用数据流传送给传输层。2.传输层将应用层的数据流截成分组,并加上TCP报头形成TCP段,送交网络层。3.在网络层给TCP段加上包括源、目的主机IP地址的IP报头,生成一个IP数据包,并将IP数据包送交链路层。4.链路层在其MAC帧的数据部分装上IP数据包,再加上源、目的主机的MAC地址和帧头,并根据其目的MAC地址,将MAC帧发往目的主机或IP路由器。5.在目的主机,链路层将MAC帧的帧头去掉,并将IP数据包送交网络层。6.网络层检查IP报头,如果报头中校验和与计算结果不一致,则丢弃该IP数据包;若校验和与计算结果一致,则去掉IP报头,将TCP段送交传输层。7.传输层检查顺序号,判断是否是正确的TCP分组,然后检查TCP报头数据。若正确,则向源主机发确认信息;若不正确或丢包,则向源主机要求重发信息。 8.在目的主机,传输层去掉TCP报头,将排好顺序的分组组成应用数据流送给应用程序。这样目的主机接收到的来自源主机的字节流,就像是直接接收来自源主机的字节流一样。

本文由 在线网速测试 整理编辑,转载请注明出处,原文链接:https://www.wangsu123.cn/news/82247.html。